首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During the treatment of raw domestic wastewater in the upflow anaerobic sludge blanket (UASB) reactor, the suspended solids (SS) present in the wastewater tend to influence negatively the methanogenic activity and the chemical oxygen demand (COD) conversion efficiency. These problems led to the emergence of various anaerobic sludge bed systems such as the expanded granular sludge bed (EGSB), the upflow anaerobic sludge blanket (UASB)-septic tank, the hydrolysis upflow sludge bed (HUSB), the two-stage reactor and the anaerobic hybrid (AH) reactor. However, these systems have, like the UASB reactor, limited performance with regard to complete treatment (e.g., removal of pathogens). In this respect, a new integrated approach for the anaerobic treatment of domestic wastewater is suggested. This approach combines a UASB reactor and a conventional completely stirred tank reactor (CSTR) for the treatment of the wastewater low in SS and sedimented primary sludge, respectively. The principal advantages of the proposed system are energy recovery from organic waste in an environmentally friendly way; lowering the negative effect of suspended solids in the UASB reactor; production of a high quality effluent for irrigation; and prevention of odour problems.  相似文献   

2.
A model has been developed and experimentally checked for the physical behavior of sludge in the blanket in upflow reactors. The model is based on the mass balance for the sludge in the blanket, and can be used to predict the distribution of sludge in an upflow reactor in relation with the gas production, sludge settling characteristics, and the linear fluid velocity in the reactor. The quantitative values of the transport factors that are a measure of the efficiency of the transport of sludge by the fluid streams occurring in the reactor were determined experimentally in reactors of 30- and 200-m(3) volumes. As this was done for wastewater containing lower fatty acids as the main organic pollutants and for sludge with good settling characteristics, the predictive value of the model is limited. It may be used for the second (methane forming) step of anaerobic treatment of wastewater.  相似文献   

3.
厌氧生物处理技术因其具有有机负荷高、污泥产量低、能耗低等优点被广泛应用于各种废水处理中。厌氧颗粒污泥具有沉降性能好、微生物浓度高、有机负荷高等优点,极大地提高了废水处理效率。尤其在处理含高氨氮废水中,厌氧颗粒污泥的形成对反应器的高效生物脱氮至关重要。但到目前为止,厌氧反应器中的颗粒污泥形成及废水处理效果还缺乏系统的认识。鉴于此,总结了厌氧反应器中颗粒污泥的形成机制,分析了影响厌氧反应器中颗粒污泥形成的因素,论述了厌氧反应器中厌氧颗粒污泥生长的模拟,最后介绍了厌氧颗粒污泥在国内外的主流应用。厌氧反应器中颗粒污泥的形成是综合因素影响的结果,对影响厌氧颗粒污泥形成的每个因素都需要认真对待,可为在厌氧反应器中颗粒污泥的培育和应用提供理论指导和技术支撑。  相似文献   

4.
The discharge of textile wastewater containing dye in the environment is varying for both toxicology and esthetical reasons as dyes impede light penetration, damage the quality of the receiving streams. Upflow anaerobic sludge blanket reactor with anaerobic digester sludge treating starch wastewater has been used to investigate the removal efficiency of chemical oxygen demand (COD) and colour of textile dye wastewater. In this study, the starch and textile dye wastewater was mixed at 70 and 30%, respectively, and the experiments were carried out with recycle of treated wastewater at different percentage as 10, 20, 30 and 40. Maximum removal of COD and colour was 96% and 93.3%, respectively, at 30% recycle. At various OLR and HRT, the maximum removal of COD, colour was 95.9%, 93% at 6.81 kg COD/m3d and 96%, 93% with 24 h of HRT. The maximum production of biogas at 24 h of HRT with 30% recycle was about 355 l/d. The Volatile fatty acid/Alkalinity ratio of methanogenic reactor was found to be 0.049–0.053. The result provided evidence, the starch and dye wastewater have wide variation in their characteristics was treated on combination, this new technology supports the effective utilization of starch waste in destruction of dye.  相似文献   

5.
The upflow anaerobic sludge blanket (UASB) reactor was evaluated for its efficacy in decolourization and reduction in chemical oxygen demand (COD) of real textile wastewater (RTW) under different operational conditions. The efficiency of UASB reactor in reducing COD was found to be over 90%. Over 92% of colour removal due to biodegradation was achieved. The activities of the anaerobic granules were not affected during the treatment of textile wastewater. Cocci-shaped bacteria were the dominant group over Methanothrix like bacteria in textile wastewater treatment. Alkalinity, volatile fatty acids (VFA) content and pH in effluents indicated that the anaerobic process was not inhibited by textile wastewater. It is concluded that UASB reactor system can effectively be used in the treatment of textile wastewater for the removal of colour and in the reduction of COD.  相似文献   

6.
Challenge of psychrophilic anaerobic wastewater treatment   总被引:45,自引:0,他引:45  
Psychrophilic anaerobic treatment is an attractive option for wastewaters that are discharged at moderate to low temperature. The expanded granular sludge bed (EGSB) reactor has been shown to be a feasible system for anaerobic treatment of mainly soluble and pre-acidified wastewater at temperatures of 5--10 degrees C. An organic loading rate (OLR) of 10--12 kg chemical oxygen demand (COD) per cubic meter reactor per day can be achieved at 10--12 degrees C with a removal efficiency of 90%. Further improvement might be obtained by a two-module system in series. Stabile methanogenesis was observed at temperatures as low as 4--5 degrees C. The specific activity of the mesophilic granular sludge was improved under psychrophilic conditions, which indicates that there was growth and enrichment of methanogens and acetogens in the anaerobic system. Anaerobic sewage treatment is a real challenge in moderate climates because sewage belongs to the 'complex' wastewater category and contains a high fraction of particulate COD. A two-step system consisting of either an anaerobic up-flow sludge bed (UASB) reactor combined with an EGSB reactor or an anaerobic filter (AF) combined with an anaerobic hybrid reactor (AH) is successful for anaerobic treatment of sewage at 13 degrees C with a total COD removal efficiency of 50% and 70%, respectively.  相似文献   

7.
Treatment of beet sugar wastewater by UAFB bioprocess   总被引:1,自引:0,他引:1  
The aim of this work was to study the treatment of strong beet sugar wastewater by an upflow anaerobic fixed bed (UAFB) at pilot plant scale. Three fixed bed bioreactors (each 60 L) were filled with standard industrial packing, inoculated with anaerobic culture (chicken manure, cow manure, anaerobic sludge digested from domestic wastewater) and operated at 32-34 degrees C with 20 h hydraulic retention time (HRT) and influent COD ranging between 2000-8000 mg/L. Under these conditions the maximum efficiency of organic content reduction in the reactor ranged from 75% to 93%. The reactor filled with standard pall rings made of polypropylene with an effective surface area of 206 m(2)/m(3) performed best in comparison to the reactor filled with cut polyethylene pipe 134 m(2)/m(3) and reactor filled with PVC packing (50 m(2)/m(3)). There was 2-7% decrease in efficiency with PE while it was 10-16% in case of PVC when compared to standard pall rings. The study provided a very good basis for comparing the effect of packing in reduction efficiency of the system.  相似文献   

8.
The formation of anaerobic granular sludge on wastewater from sugar-beet processing was examined in upflow anaerobic sludge blanket reactors. Two strategies were investigated: addition of high-energy substrate, i.e. sugars, and varying the reactor liquid surface tension. When there were insufficient amounts of sugars i.e. less than 7% of the chemical O2 demand of the influent, no granulation was observed; moreover lowering the reactor liquid surface tension below 48 mN/m was found to increase biomass wash-out. On the other hand, when there were sufficient sugars, granular sludge growth occurred; moreover operating the reactor at a low reactor liquid surface tension reduced biomass wash-out and increased granular yield.  相似文献   

9.
The ability of an anaerobic hybrid reactor, treating coffee wastewater, to achieve a quick start-up was tested at pilot scale. The unacclimatized seed sludge used showed a low specific methanogenic activity of 26.47 g CH4 as chemical oxygen demand (COD)/kg volatile suspended solids (VSS) x day. This strongly limited the reactor performance. After a few days of operation, a COD removal of 77.2% was obtained at an organic loading rate (OLR) of 1.89 kg COD/m3 x day and a hydraulic retention time (HRT) of 22 h. However, suddenly increasing OLR above 2.4 kg COD/m3 x day resulted in a deterioration in treatment efficiency. The reactor recovered from shock loads after shutdowns of 1 week. The hybrid design of the anaerobic reactor prevented the biomass from washing-out but gas clogging in the packing material was also observed. Wide variations in wastewater strength and flow rates prevented stable reactor operation in the short period of the study.  相似文献   

10.
Anammox反应器启动过程中颗粒污泥性状变化特性   总被引:3,自引:0,他引:3  
以厌氧颗粒污泥作为接种物,通过185 d的运行,成功启动了上流式厌氧氨氧化污泥床(Upflow anaerobic sludge blanket,UASB)反应器。反应器的进水氨氮与亚硝氮浓度分别提升至224 mg/L和255 mg/L,容积氮去除速率提升至3.76 kg/(m3·d)。采用红外光谱、扫描电镜和透射电镜等对厌氧氨氧化颗粒污泥的性状进行观察,发现颗粒污泥在启动过程中经历了污泥颗粒裂解到污泥颗粒重组的过程,且厌氧氨氧化颗粒污泥表面含有丰富的官能团,说明厌氧氨氧化颗粒污泥可能具有良好的吸附性能。采用宏基因组测序的方法对启动前后颗粒污泥的生态结构进行分析,发现原接种污泥优势菌群(变形菌门、厚壁菌门、拟杆菌门)丰度大幅减少,厌氧氨氧化菌所属的浮霉状菌门丰度则由1.59%提升到23.24%。  相似文献   

11.
In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant would significantly reduce the nitrogen load of the activated sludge system. Some years ago, a novel biological process was discovered in which ammonium is converted to nitrogen gas under anoxic conditions with nitrite as the electron acceptor (anaerobic ammonium oxidation, anammox). Compared to conventional nitrification and denitrification, the aeration and carbon-source demand is reduced by over 50 and 100%, respectively. The combination of partial nitritation to produce nitrite in a first step and subsequent anaerobic ammonium oxidation in a second reactor was successfully tested on a pilot scale (3.6 m(3)) for over half a year. This report focuses on the feasibility of nitrogen removal from digester effluents from two different wastewater treatment plants (WWTPs) with the combined partial nitritation/anammox process. Nitritation was performed in a continuously stirred tank reactor (V=2.0 m(3)) without sludge retention. Some 58% of the ammonium in the supernatant was converted to nitrite. At 30 degrees C the maximum dilution rate D(x) was 0.85 d(-1), resulting in nitrite production of 0.35 kg NO(2)-N m(-3)(reactor) d(-1). The nitrate production was marginal. The anaerobic ammonium oxidation was carried out in a sequencing batch reactor (SBR, V=1.6 m(3)) with a nitrogen elimination rate of 2.4 kg N m(-3)(reactor) d(-1) during the nitrite-containing periods of the SBR cycle. Over 90% of the inlet nitrogen load to the anammox reactor was removed and the sludge production was negligible. The nitritation efficiency of the first reactor limited the overall maximum rate of nitrogen elimination.  相似文献   

12.
Denitrifying granular sludge reactor holds better nitrogen removal efficiency than other kinds of denitrifying reactors, while this reactor commonly needs seeding anaerobic granular sludge and longer period for start-up in practice, which restricted the application of denitrifying granular sludge reactor. This study presented a rapid and stable start-up method for denitrifying granular sludge. An upflow sludge blanket (USB) reactor with packings was established with flocculent activated sludge for treatment of high concentration nitrite wastewater. Results showed mature denitrifying granular sludge appeared only after 15 days with highest nitrogen removal rate of 5.844 kg N/(m3 day), which was much higher than that of compared anoxic sequencing batch reactor (ASBR). No significant nitrite inhibition occurred in USB and denitrification performance was mainly influenced by hydraulic retention time, influent C/N ratio and internal reflux ratio. Hydraulic shear force created by upflow fluid, shearing of gaseous products and stable microorganisms adhesion on the packings might be the reasons for rapid achievement of granular sludge. Compared to inoculated sludge and ASBR, remarkable microbial communitiy variations were detected in USB. The dominance of Proteobacteria and Bacteroidetes and enrichment of species Pseudomonas_stutzeri should be responsible for the excellent denitrification performance, which further verified the feasibility of start-up method.  相似文献   

13.
Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors   总被引:38,自引:0,他引:38  
The state of the art for upflow anaerobic sludge blanket (UASB) reactors is discussed, focusing on the microbiology of immobilized anaerobic bacteria and the mechanism of granule formation. The development of granular sludge is the key factor for successful operation of the UASB reactors. Criteria for determining if granular sludge has developed in a UASB reactor is given based on the densities and diameters of the granular sludge. The shape and composition of granular sludge can vary significantly. Granules typically have a spherical form with a diameter from 0.14 to 5 mm. The inorganic mineral content varies from 10 to 90% of the dry weight of the granules, depending on the wastewater composition etc. The main components of the ash are calcium, potassium, and iron. The extracellular polymers in the granular sludge are important for the structure and maintenance of granules, while the inorganic composition seems to be of less importance. The extracellular polymer content varies between 0.6 and 20% of the volatile suspended solids and consists mainly of protein and polysaccharides. Both Methanosaeta spp. (formerly Methanothrix) and Methanosarcina spp. have been identified as important aceticlastic methanogens for the initial granulation and development of granular sludge. Immunological methods have been used to identify other methanogens in the granules. The results have showed that, besides the aceticlastic methanogens Methanosaeta spp. and Methanosarcina spp., hydrogen and formate utilizing bacteria are also present, e.g., Methanobacterium formicicum, Methanobacterium thermoautotrophicum, and Methanobrevibacter spp. Microcolonies of syntrophic bacteria are often observed in the granules, and the significant electron transfer in these microcolonies occurs through interspecies hydrogen transfer. The internal organization of the various groups of bacteria in the granules depends on the wastewater composition and the dominating metabolic pathways in the granules. Internal organization is observed in granules where such an arrangement is beneficial for an optimal degradation of the wastewater. A four-step model is given for the initial development of granular sludge. (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
Summary Scanning electron microscopy was applied to evaluate the influence of inoculum on efficiency of initial biofilm formation and reactor performance. Five anaerobic fixed-bed reactors were inoculated with anaerobic sludges from different sources and operated in parallel under identical conditions with defined wastewater and acetate, propionate and butyrate as constituents In all sludges Methanothrix sp. was the predominant acetotroph. The reactors inoculated with anaerobic sludge adapted to the wastewater achieved the highest space loading with 21.0 g COD/l·d after 58 days. The inoculation with granular sludge from an upflow anaerobic sludge blanket (UASB) reactor resulted in significantly less reactor efficiency. Time course of biofilm formation and biofilm thickness (ranging from 20–200 m) depended on the type of inoculum.  相似文献   

15.
A qualitative sludge characterisation technique called "sludge filterability technique" has been developed. This technique enables the determination of the sludge potential for the physical removal of solids, weighing the effect of different process parameters on solids removal and identifying the mechanisms of solids removal in an upflow anaerobic sludge bed system. In this paper guidelines for conducting the test are given and a "standardised" set-up is presented. The experimental set-up and protocol are simple and the results can be obtained in a period as short as a few hours. A sludge sample is added to an upflow reactor incubated at 4 degrees C, to limit gas production, washed with an anaerobically pre-treated and suspended solids free wastewater to remove solids washed out from the sludge, and then fed with a model substrate, prepared from fish meal with a standard procedure. Several experimental runs were conducted to validate and optimise the technique. The results showed that the technique is reliable, workable and reproducible.  相似文献   

16.
Ye FX  Li Y 《Biodegradation》2007,18(5):617-624
In order to understand the fate of PCP in upflow anaerobic sludge blanket reactor (UASB) more completely, the sorption and biodegradation of pentachlorophenol (PCP) by anaerobic sludge granules were investigated. The anaerobic granular sludge degrading PCP was formed in UASB reactor, which was seeded with anaerobic sludge acclimated by chlorophenols. At the hydraulic retention time (HRT) of 20–22 h, and PCP loading rate of 200–220 mg l−1 d−1, UASB reactor exhibited good performance in treating wastewater which containing 170–180 mg l−1 PCP and the PCP removal rate of 99.5% was achieved. Sequential appearance of tetra-, tri-, di-, and mono-chlorophenol was observed in the reactor effluent after 20 mg l−1 PCP introduction. Sorption and desorption of PCP on the anaerobic sludge granules were all fitted to the Freundlich isotherm equation. Sorption of PCP was partly irreversible. The Freundlich equation could describe the behavior of PCP amount sorbed by granular sludge in anaerobic reactor reasonably well. The results demonstrated that the main mechanism leading to removal of PCP on anaerobic granular sludge was biodegradation, not sorption or volatization.  相似文献   

17.
The stability with respect to filamentous bulking of two activated sludge fully-aerobic systems, one with a completely mixed tank and one with a channel reactor, fed either by a synthetic wastewater or by a primary-settled municipal wastewater, of variable composition and flow rate, has been investigated. The morphological characteristics of the biomass in terms of floc size and roughness and of filamentous bacteria abundance have been monitored by image analysis. Severe bulking was only observed in the well-mixed tank fed at a constant flow rate by synthetic substrate of constant concentration, when the channel reactor fed in a similar manner was fully stable. Variations of biomass characteristics as well as of settling properties were observed on both systems fed with the real wastewater, but these events were related to the characteristics of the wastewater, as similar changes were observed on the full-scale plant fed with the same substrate. In any case, automated image analysis was an efficient way to monitor in detail the fate of the activated sludge at pilot and full scale.  相似文献   

18.
In this study, performance of a lab-scale hybrid up-flow anaerobic sludge blanket (UASB) reactor, treating a chemical synthesis-based pharmaceutical wastewater, was evaluated under different operating conditions. This study consisted of two experimental stages: first, acclimation to the pharmaceutical wastewater and second, determination of maximum loading capacity of the hybrid UASB reactor. Initially, the carbon source in the reactor feed came entirely from glucose, applied at an organic loading rate (OLR) 1 kg COD/m(3) d. The OLR was gradually step increased to 3 kg COD/m(3) d at which point the feed to the hybrid UASB reactor was progressively modified by introducing the pharmaceutical wastewater in blends with glucose, so that the wastewater contributed approximately 10%, 30%, 70%, and ultimately, 100% of the carbon (COD) to be treated. At the acclimation OLR of 3 kg COD/m(3) d the hydraulic retention time (HRT) was 2 days. During this period of feed modification, the COD removal efficiencies of the anaerobic reactor were 99%, 96%, 91% and 85%, and specific methanogenic activities (SMA) were measured as 240, 230, 205 and 231 ml CH(4)/g TVS d, respectively. Following the acclimation period, the hybrid UASB reactor was fed with 100% (w/v) pharmaceutical wastewater up to an OLR of 9 kg COD/m(3) d in order to determine the maximum loading capacity achievable before reactor failure. At this OLR, the COD removal efficiency was 28%, and the SMA was measured as 170 ml CH(4)/g TVS d. The hybrid UASB reactor was found to be far more effective at an OLR of 8 kg COD/m(3) d with a COD removal efficiency of 72%. At this point, SMA value was 200 ml CH(4)/g TVS d. It was concluded that the hybrid UASB reactor could be a suitable alternative for the treatment of chemical synthesis-based pharmaceutical wastewater.  相似文献   

19.
A novel bioreactor containing self-flocculated anaerobic granular sludge was developed for high-performance hydrogen production from sucrose-based synthetic wastewater. The reactor achieved an optimal volumetric hydrogen production rate of approximately 7.3 L/h/L (7,150 mmol/d/L) and a maximal hydrogen yield of 3.03 mol H2/mol sucrose when it was operated at a hydraulic retention time (HRT) of 0.5 h with an influent sucrose concentration of 20 g COD/L. The gas-phase hydrogen content and substrate conversion also exceeded 40 and 90%, respectively, under optimal conditions. Packing of a small quantity of carrier matrices on the bottom of the upflow reactor significantly stimulated sludge granulation that can be accomplished within 100 h. Among the four carriers examined, spherical activated carbon was the most effective inducer for granular sludge formation. The carrier-induced granular sludge bed (CIGSB) bioreactor was started up with a low HRT of 4-8 h (corresponding to an organic loading rate of 2.5-5 g COD/h/L) and enabled stable operations at an extremely low HRT (up to 0.5 h) without washout of biomass. The granular sludge was rapidly formed in CIGSB supported with activated carbon and reached a maximal concentration of 26 g/L at HRT = 0.5 h. The ability to maintain high biomass concentration at low HRT (i.e., high organic loading rate) highlights the key factor for the remarkable hydrogen production efficiency of the CIGSB processes.  相似文献   

20.
Results are presented from a pilot scale (4·3 m3) upflow anaerobic filter for the treatment of the wastewater from ice-cream manufacture. The reactor was completely mixed by gas production but the solids or sludge held within the reactor were shown to be affected by the liquid velocities. The reactor was subject to a number of organic and hydraulic shocks and this reduced the consistency of COD removal. Daily loading rates varied from 0 to 18 kg COD/m3/day but with an average load of 5·5 kg/m3/day the mean COD removal was 70%. This was compared with previous work and shown to be a typical performance for an anaerobic filter. Alkalinity and carboxylic acid data are also presented and were within the normal, stable, operating range. Previous research on the anaerobic treatment of industrial effluents has shown alkalinity to be the most important factor controlling reliability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号