首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Genomic DNA of 191 strains of the family Pseudomonadaceae, including 187 strains of the genus Xanthomonas, was cleaved by EcoRI endonuclease. After hybridization of Southern transfer blots with 2-acetylamino-fluorene-labelled Escherichia coli 16+23S rRNA probe, 27 different patterns were obtained. The strains are clearly distinguishable at the genus, species, and pathovar levels. The variability of the rRNA gene restriction patterns was determined for four pathovars of Xanthomonas campestris species. The 16 strains of X. campestris pv. begoniae analyzed gave only one pattern. The variability of rRNA gene restriction patterns of X. campestris pv. manihotis strains could be related to ecotypes. In contrast, the variability of patterns observed for X. campestris pv. malvacearum was not correlated with pathogenicity or with the geographical origins of the strains. The highest degree of variability of DNA fingerprints was observed within X. campestris pv. dieffenbachiae, which is pathogenic to several hosts of the Araceae family. In this case, variability was related to both host plant and pathogenicity.  相似文献   

3.
Two monoclonal antibodies specific for lipopolysaccharide antigens of Xanthomonas campestris pv. begoniae and pv. pelargonii reacted with all of their respective pathovar strains and not with 130 strains of other xanthomonads or 89 nonxanthomonads tested. These results, as well as previous results, indicate that pathovar-specific monoclonal antibodies were readily generated to strains of X. campestris pathovars that generally infect single hosts.  相似文献   

4.
Fifty-one strains representing Xanthomonas campestris pv. manihotis and cassavae and different pathovars occurring on plants of the family Euphorbiaceae were characterized by ribotyping with a 16S+23S rRNA probe of Escherichia coli and by restriction fragment length polymorphism analysis with a plasmid probe from X. campestris pv. manihotis. Pathogenicity tests were performed on cassava (Manihot esculenta). Histological comparative studies were conducted on strains of two pathovars of X. campestris (vascular and mesophyllic) that attack cassava. Our results indicated that X. campestris pv. manihotis and cassavae have different modes of action in the host and supplemented the taxonomic data on restriction fragment length polymorphism that clearly separate the two pathovars. The plasmid probe could detect multiple restriction fragment length polymorphisms among strains of the pathovar studied. Ribotyping provides a useful tool for rapid identification of X. campestris pathovars on cassava.  相似文献   

5.
Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot for cruciferous vegetables worldwide, especially for the cole crops such as cabbage and cauliflower. Due to the lack of resistant cabbage cultivars, black rot has brought about considerable yield losses in recent years in China. Understanding of the pathogen features is a key step for disease prevention, however, the pathogen diversity, population structure, and virulence are largely unknown. In this study, we studied 50 Xcc strains including 39 Xcc isolates collected from cabbage in 20 regions across China, using multilocus sequence genotyping (MLST), repetitive DNA sequence-based PCR (rep-PCR), and pathogenicity tests. For MLST analysis, a total of 12 allelic profiles (AP) were generated, among which the largest AP was AP1 containing 32 strains. Further cluster analysis of rep-PCR divided all strains into 14 DNA groups, with the largest group DNA I comprising of 34 strains, most of which also belonged to AP1. Inoculation tests showed that the representative Xcc strains collected from diverse regions performed differential virulence against three brassica hosts compared with races 1 and 4. Interestingly, these results indicated that AP1/DNA I was not only the main pathotype in China, but also a novel group that differed from the previously reported type races in both genotype and virulence. To our knowledge, this is the first extensive genetic diversity survey for Xcc strains in China, which provides evidence for cabbage resistance breeding and opens the gate for further cabbage-Xcc interaction studies.  相似文献   

6.
Xanthomonas campestris pathovar campestris causes black rot, a vascular disease on cruciferous plants, including Arabidopsis thaliana. The gene XC1553 from X. campestris pv. campestris strain 8004 encodes a protein containing leucine-rich repeats (LRRs) and appears to be restricted to strains of X. campestris pv. campestris. LRRs are found in a number of type III-secreted effectors in plant and animal pathogens. These prompted us to investigate the role of the XC1553 gene in the interaction between X. campestris pv. campestris and A. thaliana. Translocation assays using the hypersensitive-reaction-inducing domain of X. campestris pv. campestris AvrBs1 as a reporter revealed that XC1553 is a type III effector. Infiltration of Arabidopsis leaf mesophyll with bacterial suspensions showed no differences between the wild-type strain and an XC1553 gene mutant; both strains induced disease symptoms on Kashmir and Col-0 ecotypes. However, a clear difference was observed when bacteria were introduced into the vascular system by piercing the central vein of leaves. In this case, the wild-type strain 8004 caused disease on the Kashmir ecotype, but not on ecotype Col-0; the XC1553 gene mutant became virulent on the Col-0 ecotype and still induced disease on the Kashmir ecotype. Altogether, these data show that the XC1553 gene, which was renamed avrACXcc8004, functions as an avirulence gene whose product seems to be recognized in vascular tissues.  相似文献   

7.
Variations in the outer membrane proteins (OMPs) and lipopolysaccharides (LPSs) of 54 isolates belonging to 16 different pathovars of Xanthomonas campestris were characterized. OMP samples prepared by sarcosyl extraction of cell walls and LPS samples prepared by proteinase K treatment of sonicated cells were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of 4 M urea. In general, the OMP and LPS profiles within each pathovar were very similar but different from the profiles of other pathovars. Heterogeneity in OMP and LPS profiles was observed within X. campestris pv. campestris, X. campestris pv. translucens, and X. campestris pv. vesicatoria. LPSs were isolated from six X. campestris pathovars, which fell into two major groups on the basis of O antigenicity. The O antigens of X. campestris pv. begoniae, X. campestris pv. graminis, and X. campestris pv. translucens cross-reacted with each other; the other group consisted of X. campestris pv. campestris, X. campestris pv. pelargonii, and X. campestris pv. vesicatoria. A chemical analysis revealed a significant difference between the compositions of the neutral sugars of the LPSs of those two groups; the LPSs of the first group contained xylose and a 6-deoxy-3-O-methyl hexose, whereas the LPSs of the other group lacked both sugars.  相似文献   

8.
Genomic DNA was prepared from 16 strains of Xanthomonas campestris pv. graminis and Xanthomonas campestris pv. phlei isolated from six species of forage grasses in four countries. The two pathovars could be distinguished clearly by genomic fingerprints generated by EcoRI, BamHI or HindIII digestion. DNA profiles produced by HindIII digestion could differentiate not only between the two pathoars but also among strains within the same pahtovar from different countries. A 1.6 kb EcoRI fragment was cloned from genomic DNA of strain LMG726 and used to detect restriction fragment-length polymorphism among the same strains. EcoRI and BamHI polymorphisms were seen between the two pathovars probed with this 1.6 kb EcoRI fragment (p726EI probe). These polymorphisms appeared to be highly conserved and unique for each pathovar, consistent with previous grouping of the strains based on other criteria.  相似文献   

9.
Twelve polymorphic microsatellite markers were developed for Cylindrocladium parasiticum, a plant pathogen with a wide host range and the causal agent of the serious disease of peanuts (Arachis hypogaea) known as cylindrocladium black rot (CBR). Polymorphism was evaluated on 17 isolates from different hosts and regions. Each locus had between two and six alleles. Cross‐species transferability tested for 20 other Cylindrocladium species found amplification only in Cylindrocladium pacificum, which is phylogenetically closely related to C. parasiticum.  相似文献   

10.

Background

Xanthomonas campestris pathovar campestris (Xcc) is the causal agent of black rot disease of crucifers worldwide. The molecular genetic diversity and host specificity of Xcc are poorly understood.

Results

We constructed a microarray based on the complete genome sequence of Xcc strain 8004 and investigated the genetic diversity and host specificity of Xcc by array-based comparative genome hybridization analyses of 18 virulent strains. The results demonstrate that a genetic core comprising 3,405 of the 4,186 coding sequences (CDSs) spotted on the array are conserved and a flexible gene pool with 730 CDSs is absent/highly divergent (AHD). The results also revealed that 258 of the 304 proved/presumed pathogenicity genes are conserved and 46 are AHD. The conserved pathogenicity genes include mainly the genes involved in type I, II and III secretion systems, the quorum sensing system, extracellular enzymes and polysaccharide production, as well as many other proved pathogenicity genes, while the AHD CDSs contain the genes encoding type IV secretion system (T4SS) and type III-effectors. A Xcc T4SS-deletion mutant displayed the same virulence as wild type. Furthermore, three avirulence genes (avrXccC, avrXccE1 and avrBs1) were identified. avrXccC and avrXccE1 conferred avirulence on the hosts mustard cultivar Guangtou and Chinese cabbage cultivar Zhongbai-83, respectively, and avrBs1 conferred hypersensitive response on the nonhost pepper ECW10R.

Conclusion

About 80% of the Xcc CDSs, including 258 proved/presumed pathogenicity genes, is conserved in different strains. Xcc T4SS is not involved in pathogenicity. An efficient strategy to identify avr genes determining host specificity from the AHD genes was developed.  相似文献   

11.
Strains of Pseudomonas syringae pv. syringae were isolated from healthy and diseased stone fruit tissues sampled from 43 orchard sites in California in 1995 and 1996. These strains, together with P. syringae strains from other hosts and pathovars, were tested for pathogenicity and the presence of the syrB and syrC genes and were genetically characterized by using enterobacterial repetitive intergenic consensus (ERIC) primers and PCR. All 89 strains of P. syringae pv. syringae tested were moderately to highly pathogenic on Lovell peach seedlings regardless of the host of origin, while strains of other pathovars exhibited low or no pathogenicity. The 19 strains of P. syringae pv. syringae examined by restriction fragment length polymorphism analysis contained the syrB and syrC genes, whereas no hybridization occurred with 4 strains of other P. syringae pathovars. The P. syringae pv. syringae strains from stone fruit, except for a strain from New Zealand, generated ERIC genomic fingerprints which shared four fragments of similar mobility. Of the P. syringae pv. syringae strains tested from other hosts, only strains from rose, kiwi, and pear generated genomic fingerprints that had the same four fragments as the stone fruit strains. Analysis of the ERIC fingerprints from P. syringae pv. syringae strains showed that the strains isolated from stone fruits formed a distinct cluster separate from most of the strains isolated from other hosts. These results provide evidence of host specialization within the diverse pathovar P. syringae pv. syringae.  相似文献   

12.
Bacterial plant pathogens manipulate their hosts by injection of numerous effector proteins into host cells via type III secretion systems. Recognition of these effectors by the host plant leads to the induction of a defense reaction that often culminates in a hypersensitive response manifested as cell death. Genes encoding effector proteins can be exchanged between different strains of bacteria via horizontal transfer, and often individual strains are capable of infecting multiple hosts. Host plant species express diverse repertoires of resistance proteins that mediate direct or indirect recognition of bacterial effectors. As a result, plants and their bacterial pathogens should be considered as two extensive coevolving groups rather than as individual host species coevolving with single pathovars. To dissect the complexity of this coevolution, we cloned 171 effector-encoding genes from several pathovars of Pseudomonas and Ralstonia. We used Agrobacterium tumefaciens-mediated transient assays to test the ability of each effector to induce a necrotic phenotype on 59 plant genotypes belonging to four plant families, including numerous diverse accessions of lettuce (Lactuca sativa) and tomato (Solanum lycopersicum). Known defense-inducing effectors (avirulence factors) and their homologs commonly induced extensive necrosis in many different plant species. Nonhost species reacted to multiple effector proteins from an individual pathovar more frequently and more intensely than host species. Both homologous and sequence-unrelated effectors could elicit necrosis in a similar spectrum of plants, suggesting common effector targets or targeting of the same pathways in the plant cell.  相似文献   

13.
We evaluated the biocontrol efficacy of strains of Bacillus from Tanzania against the black rot pathogen, Xanthomonas campestris pv. campestris, in cabbage and the influence of the method of application under field conditions. The incidence and severity of black rot in the foliage, stems and heads of the highly susceptible cultivar, Copenhagen Market, were significantly reduced, especially when antagonists were applied through the roots as compared to application through the seeds or foliage (cotyledons). Promising antagonists included strains of B. cereus, B. lentimorbus and B. pumilus.  相似文献   

14.
The proposal of the present study was to select and carry out the molecular characterization of strains of Xanthomonas sp. in order to correlate with gum production and determine possible genetic alterations during the study. The gums produced were also evaluated rheologically. Ten strains of Xanthomonas were used in the screening and the best ones in terms of productivity were Xanthomonas campestris pv. mangiferaeindicae 1230 (8.93 g/L), X. campestris pv. campestris 254 (9.49 g/L) and X. campestris pv. campestris 1078 (9.67 g/L). The gum produced by X. campestris pv. mangiferaeindicae presented the best apparent viscosity. The results for the profiles of the bands produced by RAPD showed considerable genetic variability amongst the evaluated strains, making not possible to neither group the strains according to pathovar or species, nor correlate the band profile with the productivity obtained. According to the RAPD analysis, no detectable mutations occurred in these bacteria during the study.  相似文献   

15.
Black rot caused by Xanthomonas campestris pv. campestris (Pam.) Dowson is the most destructive disease of cauliflower causing huge loss to the farmers throughout the world. Since there are limited sources of resistance to black rot in B. oleracea (C genome Brassica), exploration of A and B genomes of Brassica was planned as these were thought to be potential reservoirs of black rot resistance gene(s). In our search for new gene(s) for black rot resistance, F2 mapping population was developed in Brassica carinata (BBCC) by crossing NPC-17, a susceptible genotype with NPC-9, a resistant genotype. Out of 364 Intron length polymorphic markers and microsatellite primers used in this study, 41 distinguished the parental lines. However, resistant and susceptible bulks could be distinguished by three markers At1g70610, SSR Na14-G02 and At1g71865 which were used for genotyping of F2 mapping population. These markers were placed along the resistance gene, according to order, covering a distance of 36.30 cM. Intron length polymorphic markers At1g70610 and At1g71865 were found to be linked to black rot resistance locus (Xca1bc) at 6.2 and 12.8 cM distance, respectively. This is the first report of identification of markers linked to Xca1bc locus in Brassica carinata on B-7 linkage group. Intron length polymorphic markers provided a novel and attractive option for marker assisted selection due to high cross transferability and cost effectiveness for marker assisted alien gene introgression into cauliflower.  相似文献   

16.
Xanthomonas campestris strains that cause disease in citrus were compared by restriction endonuclease analysis of DNA fragments separated by pulsed-field gel electrophoresis and by DNA reassociation. Strains of X. campestris pv. citrumelo, which cause citrus bacterial spot, were, on average, 88% related to each other by DNA reassociation, although these strains exhibited diverse restriction digest patterns. In contrast, strains of X. campestris pv. citri groups A and B, which cause canker A and canker B, respectively, had relatively homogeneous restriction digest patterns. The groups of strains causing these three different citrus diseases were examined by DNA reassociation and were found to be from 55 to 63% related to one another. Several pathovars of X. campestris, previously shown to cause weakly aggressive symptoms on citrus, ranged from 83 to 90% similar to X. campestris pv. citrumelo by DNA reassociation. The type strain of X. campestris pv. campestris ranged from 30 to 40% similar in DNA reassociation experiments to strains of X. campestris pv. citrumelo and X. campestris pv. citri groups A and B. Whereas DNA reassociation quantified the difference between relatively unrelated groups of bacterial strains, restriction endonuclease analysis distinguished between closely related strains.  相似文献   

17.
Xanthomonas axonopodis pv. citri (Xac) is the causal agent of citrus bacterial canker (CBC) and is a serious problem worldwide. Like CBC, several important diseases in other fruits, such as mango, pomegranate, and grape, are also caused by Xanthomonas pathovars that display remarkable specificity toward their hosts. While citrus and mango diseases were documented more than 100 years ago, the pomegranate and grape diseases have been known only since the 1950s and 1970s, respectively. Interestingly, diseases caused by all these pathovars were noted first in India. Our genome-based phylogenetic studies suggest that these diverse pathogens belong to a single species and these pathovars may be just a group of rapidly evolving strains. Furthermore, the recently reported pathovars, such as those infecting grape and pomegranate, form independent clonal lineages, while the citrus and mango pathovars that have been known for a long time form one clonal lineage. Such an understanding of their phylogenomic relationship has further allowed us to understand major and unique variations in the lineages that give rise to these pathovars. Whole-genome sequencing studies including ecological relatives from their putative country of origin has allowed us to understand the evolutionary history of Xac and other pathovars that infect fruits.  相似文献   

18.
Perennial grasses constitute a major group of species showing a dramatic decline of biodiversity in successional plant communities. Using AFLP markers, we examined 12 populations of the expansive grass Brachypodium pinnatum differing in habitat age (30–50, ca. 100 and >300 years old) in order to determine whether clonal diversity of populations, genetic variation, and the relative importance of clonal propagation versus sexual reproduction change with grassland age. Five AFLP primer combinations gave a total of 517 bands, 79% of which were polymorphic. 314 different multilocus lineages were distinguished among the 453 samples analyzed. The number of genotypes (G) and clonal richness (R) decreased with habitat age, while the distribution of the frequency of genets changed from many clones of similar size to dominance by one or a few large clones. We consider these results to give evidence of significant role of sexual reproduction in the early phases of colonization and prevalence of clonal growth and competitive exclusion of less adapted genotypes in the later ones. However, habitat age had only marginal effect on genetic diversity, as percentage of polymorphic loci (PPL) within all the populations analyzed was similar, viz. 38.6–43.5%.  相似文献   

19.
A recently emerging bleeding canker disease, caused by Pseudomonas syringae pathovar aesculi (Pae), is threatening European horse chestnut in northwest Europe. Very little is known about the origin and biology of this new disease. We used the nucleotide sequences of seven commonly used marker genes to investigate the phylogeny of three strains isolated recently from bleeding stem cankers on European horse chestnut in Britain (E-Pae). On the basis of these sequences alone, the E-Pae strains were identical to the Pae type-strain (I-Pae), isolated from leaf spots on Indian horse chestnut in India in 1969. The phylogenetic analyses also showed that Pae belongs to a distinct clade of P. syringae pathovars adapted to woody hosts. We generated genome-wide Illumina sequence data from the three E-Pae strains and one strain of I-Pae. Comparative genomic analyses revealed pathovar-specific genomic regions in Pae potentially implicated in virulence on a tree host, including genes for the catabolism of plant-derived aromatic compounds and enterobactin synthesis. Several gene clusters displayed intra-pathovar variation, including those encoding type IV secretion, a novel fatty acid biosynthesis pathway and a sucrose uptake pathway. Rates of single nucleotide polymorphisms in the four Pae genomes indicate that the three E-Pae strains diverged from each other much more recently than they diverged from I-Pae. The very low genetic diversity among the three geographically distinct E-Pae strains suggests that they originate from a single, recent introduction into Britain, thus highlighting the serious environmental risks posed by the spread of an exotic plant pathogenic bacterium to a new geographic location. The genomic regions in Pae that are absent from other P. syringae pathovars that infect herbaceous hosts may represent candidate genetic adaptations to infection of the woody parts of the tree.  相似文献   

20.
Uridine triphosphate (UTP)-glucose-1-phosphate uridylyltransferase (GalU; EC 2.7.7.9) is an enzyme that catalyzes the formation of uridine diphosphate (UDP)-glucose from UTP and glucose-1-phosphate. GalU is involved in virulence in a number of animal-pathogenic bacteria since its product, UDP-glucose, is indispensable for the biosynthesis of virulence factors such as lipopolysaccharide and exopolysaccharide. However, its function in Xanthomonas campestris pv. campestris, the phytopathogen that causes black rot in cruciferous plants, is unclear. Here, we characterized a galU mutant of X. campestris pv. campestris and showed that the X. campestris pv. campestris galU mutant resulted in a reduction in virulence on the host cabbage. We also demonstrated that galU is involved in bacterial attachment, cell motility, and polysaccharide synthesis. Furthermore, the galU mutant showed increased sensitivity to various stress conditions including copper sulfate, hydrogen peroxide, and sodium dodecyl sulfate. In addition, mutation of galU impairs the expression of the flagellin gene fliC as well as the attachment-related genes xadA, fhaC, and yapH. In conclusion, our results indicate involvement of galU in the virulence factor production and pathogenicity in X. campestris pv. campestris, and a role for galU in stress tolerance of this crucifer pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号