首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lithium chloride (LiCl), which induces cell cycle arrest at G2/M phase, is known as a specific production rate (q p)-enhancing additive in recombinant Chinese hamster ovary (CHO) cell culture. To determine the potential of LiCl as a chemical additive that enhances transient gene expression (TGE), LiCl was added to the CHO-NK and human embryonic kidney 293E (HEK293E) cell cultures before and/or after transfection with polyethylenimine as a transfection reagent. The effect of this addition on transfection efficiency (pre-treatment) and q p enhancement during TGE (post-treatment) was examined. For the TGE of monoclonal antibody (mAb) in CHO-NK cells, pretreatment alone with 10 mM LiCl and post-treatment alone with 5 mM LiCl resulted in 1.2- and 3.4-fold increase of maximum mAb concentration (MMC), respectively, compared with the TGE without LiCl treatment. Furthermore, combinatorial treatment with LiCl (10 mM for pre-treatment and 5 mM for post-treatment) synergistically increased the TGE of mAb (5.3-fold increase in MMC). Likewise, combinatorial treatment with LiCl (10 mM for pre-treatment and 15 mM for post-treatment) in HEK293E cells synergistically increased the TGE of mAb (4.9-fold increase in MMC). Taken together, the data obtained here demonstrate that combinatorial treatment with LiCl is a useful means to improve TGE in CHO as well as HEK293 cells.  相似文献   

2.
Transient gene expression (TGE) in mammalian cells at the reactor scale is becoming increasingly important for the rapid production of recombinant proteins. We improved a process for transient calcium phosphate-based transfection of HEK293-EBNA cells in a 1-3 L bioreactor volume. Cells were adapted to suspension culture using a commercially available medium (BioWhittaker, Walkersville, MD). Process parameters were optimized using a plasmid reporter vector encoding the enhanced green fluorescent protein (EGFP/CLONTECH, Palo Alto, CA, USA). Using GFP as a marker-protein, we observed by microscopic examination transfection efficiencies between 70-100%. Three different recombinant proteins were synthesized within a timeframe of 7 days from time of transfection to harvest. The first, a human recombinant IgG(1)-type antibody, was secreted into the supernatant of the cell culture and achieved a final concentration of >20 mg/L. An E. coli-derived DNA-binding protein remained intracellular, as expected, but accumulated to such a concentration that the lysate of cells, taken up into the entire culture volume, gave a concentration of 18 mg/L. The third protein, a transmembrane receptor, was expressed at 3-6 x 10(6) molecules/cell.  相似文献   

3.

Background

Mammalian cells are becoming the prevailing expression system for the production of recombinant proteins because of their capacity for proper protein folding, assembly, and post-translational modifications. These systems currently allow high volumetric production of monoclonal recombinant antibodies in the range of grams per litre. However their use for large-scale expression of cytokines typically results in much lower volumetric productivity.

Results

We have engineered a HEK293 cell clone for high level production of human recombinant glycosylated IFNα2b and developed a rapid and efficient method for its purification. This clone steadily produces more than 200 mg (up to 333 mg) of human recombinant IFNα2b per liter of serum-free culture, which can be purified by a single-step cation-exchange chromatography following media acidification and clarification. This rapid procedure yields 98% pure IFNα2b with a recovery greater than 70%. Purified IFNα2b migrates on SDS-PAGE as two species, a major 21 kDa band and a minor 19 kDa band. N-terminal sequences of both forms are identical and correspond to the expected mature protein. Purified IFNα2b elutes at neutral pH as a single peak with an apparent molecular weight of 44,000 Da as determined by size-exclusion chromatography. The presence of intramolecular and absence of intermolecular disulfide bridges is evidenced by the fact that non-reduced IFNα2b has a greater electrophoretic mobility than the reduced form. Treatment of purified IFNα2b with neuraminidase followed by O-glycosidase both increases electrophoretic mobility, indicating the presence of sialylated O-linked glycan. A detailed analysis of glycosylation by mass spectroscopy identifies disialylated and monosialylated forms as the major constituents of purified IFNα2b. Electron transfer dissociation (ETD) shows that the glycans are linked to the expected threonine at position 106. Other minor glycosylated forms and non-sialylated species are also detected, similar to IFNα2b produced naturally by lymphocytes. Further, the HEK293-produced IFNα2b is biologically active as shown with reporter gene and antiviral assays.

Conclusion

These results show that the HEK293 cell line is an efficient and valuable host for the production of biologically active and glycosylated human IFNα2b.  相似文献   

4.
5.
To develop new recombinant monoclonal antibody fragments for therapy and imaging, it is indispensable to have a simple and easy procedure to handle the eukaryotic expression system for production of proteins in high amounts. Gene amplification techniques such as the dehydrofolate reductase (DHFR) system in Chinese hamster ovary cells or the glutamine synthase system in myeloma cells have a couple of disadvantages. The selection procedure is complex, time-consuming, and not fruitful in all cases. The toxic drug methotrexate (for the DHFR system) can increase the production rate but decreases the specific growth rate of the cells. The production rate is not always stable over a long-term cultivation period. To overcome these problems, we are using stably transfected human embryonic kidney (HEK-293) cells in combination with an efficient screening method. Sodium butyrate can increase the expression of recombinant antibody fragments in the transfectomas up to 500 micrograms/4.2 x 10(7) cells/24 h corresponding to 175 micrograms/mL culture medium. This strategy allows a rapid development of new recombinant monoclonal antibody fragments and allows one to proceed rapidly to in vivo testing.  相似文献   

6.
7.
Sun X  Goh PE  Wong KT  Mori T  Yap MG 《Biotechnology letters》2006,28(11):843-848
Enhanced green fluorescence protein (GFP) and erythropoietin (EPO) were used as reporters to assess and improve transient gene expression in HEK 293 EBNA1 cells. The production of EPO only lasted 3 days and reached 18.1 mg/l in suspension cultures in 1 l batch bioreactors. However, GFP expression examined in well-plate experiments persisted for 12 days in transfected cells but decreased rapidly within the next 15 days. These results suggest that the retaining of a plasmid in cells may not be a limiting factor for protein expression in large-scale transient transfection. To improve cell maintenance and protein expression, a fed-batch culture was performed using an enriched medium, a mixture of equal volumes of 293 SFM II medium and a 5 × amino acid solution prepared based on DMEM/F12 medium formula. EPO reached 33.6 mg/l, representing 86% increase over that of the batch culture. Moreover, the total amount of EPO produced was increased by 165% in view of the volume increase in the fed-batch culture. The serum-free medium used in this work enables cells growing well and transfection without medium change. Thus, the process reported here is simple and easy to scale up.  相似文献   

8.
In this study, a recombinant monoclonal IgG antibody was produced by transient gene expression (TGE) in suspension-adapted HEK-293E cells. The objective of the study was to determine the variation in recombinant IgG yield and glycosylation in ten independent transfections. In a ten-day batch process, the variation in transient IgG yield in the ten batches was less than 30% with the specific productivity averaging 20.2 ± 2.6 pg/cell/day. We characterized the N-glycosylation profile of each batch of affinity-purified IgG by intact protein and bottom-up mass spectrometry. Four major glycans were identified at Asn(297) in the ten batches with the maximum relative deviation for a single glycoform being 2.5%. In addition, within any single transfection there was little variation in glycoforms over the ten-day culture. Our experimental data indicate that with TGE, the production of recombinant IgG with little batch-to-batch variation in volumetric yield and protein glycosylation is feasible, even in a non-instrumented cultivation system as described here.  相似文献   

9.
Standard culture systems of eukaryotic cells generally failed to deliver sufficient amounts of recombinant proteins without increasing the costs of production. We here showed that membrane-based bioreactors, initially developed for the production of monoclonal antibodies, can be very useful for the production using engineered HEK293 cells, of a recombinant proteoglycan called endocan, with achievement of high level expression and efficient long-term production. When compared to standard procedures, the growth in suspension and at high density of these cells in one bioreactor promoted a 60-fold increase of the concentration of the soluble recombinant endocan. These culture conditions did not affect cell viability, stable expression, recognition by specific monoclonal antibodies or electrophoretic profile of the recombinant endocan. Such an easy to scale up system to produce recombinant protein should open soon new opportunities to study structure and functions of endocan or any other glycosylated cell products newly investigated.  相似文献   

10.
Transient transfection allows for fast production of recombinant proteins. However, the current bottlenecks in transient transfection are low titers and low specific productivity compared to stable cell lines. Here, we report an improved transient transfection protocol that yields titers exceeding 1 g/l in HEK293E cells. This was achieved by combining a new highly efficient polyethyleneimine (PEI)-based transfection protocol, optimized gene expression vectors, use of cell cycle regulators p18 and p21, acidic Fibroblast Growth Factor, exposure of cells to valproic acid and consequently the maintenance of cells at high cell densities (4 million cells/ml). This protocol was reproducibly scaled-up to a working volume of 2 l, thus delivering >1 g of purified protein just 2 weeks after transfection. This is the fastest approach to gram quantities of protein ever reported from cultivated mammalian cells and could initiate, upon further scale-up, a paradigm shift in industrial production of such proteins for any application in biotechnology.  相似文献   

11.
12.
We describe a pipeline for the rapid production of recombinant Fabs derived from mouse monoclonal antibodies suitable for use in structural studies. The pipeline is exemplified by the production of three Fabs derived from the monoclonal antibodies OX108 (anti-CD200 receptor), OX117 and OX119 (anti-SIRPgamma). Heavy and light chain variable domains were inserted into separate expression vectors containing resident constant regions using In-Fusion PCR cloning. Following transient co-expression in HEK 293T cells, secreted Fab fragments were purified by metal chelate chromatography and gel filtration using an automated procedure with yields of up to 4mg/L of cell culture. Following crystallization trials, diffracting crystals were obtained for the recombinant Fabs of OX108 and OX117, and their structures solved to 2.3A and 2.4A, respectively.  相似文献   

13.
The human cytomegalovirus (CMV) major immediate-early (MIE) promoter is widely used in mammalian cells for production of recombinant proteins. It is of great interest to further enhance protein production driven by the CMV promoter. Here, we report that the Tax protein of human T-lymphotropic virus stimulates the transgene expression under the control of CMV MIE promoter in HEK293 cells. At least threefold increases in transient production of recombinant proteins, including luciferase and two biopharmaceutical proteins (erythropoietin and interferon-γ), were detected. Furthermore, cyclic adenosine monophosphate (AMP)-response element binding protein 2 (CREB2) was identified as a cellular cofactor, which might be responsible for Tax transactivation of the CMV MIE promoter. Our results not only demonstrate the potential use of this novel expression strategy for improvement of recombinant protein production in HEK293 cells but also provide the molecular mechanism for Tax-mediated activation of CMV MIE promoter.  相似文献   

14.
Human Embryonic Kidney 293 (HEK293) cells were adapted into a serum-free suspension medium through steps of gradual serum weaning for the production of adenoviral (AdV) gene therapy vectors. The presence of sodium heparin in the medium formulation reduced cell clumping dramatically in suspension culture. The adapted cells were ready to grow either in serum-containing medium as an attached culture or in serum-free medium in suspension culture. A scalable production process was developed in shake flasks and was then evaluated in stirred tank bioreactors. This process includes a growth phase in batch-mode followed by a production phase involving medium perfusion and supplementation. Fortification with calcium chloride post viral inoculation resulted in an increase in virus production by at least one fold. Addition of stimulating agents such as sodium butyrate, N-acetyl-L-cysteine (NAC), dimethyl sulfoxide(DMSO), or ethyl alcohol post infection was shown to further improve virus production in a dose-dependent manner. The serum-free suspension process described here should be suitable for the manufacturing of other E1-deleted AdV vectors and could potentially be used for the production of recombinant proteins by HEK293 cells. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Kozak序列+4G提高绿色荧光蛋白在HEK293细胞中的表达   总被引:3,自引:0,他引:3  
构建含不同Kozak序列的绿色荧光蛋白(GFP)基因真核表达载体, 并检测它们在HEK293细胞中的表达差异。 通过设计突变的PCR引物改变目的基因GFP的Kozak序列, +4 位碱基分别为A和G, 且不改变氨基酸编码, 将PCR扩增的GFP片段与载体pcDNA3.1进行酶切、连接、转化、鉴定。成功构建的pHGFP-A, pHGFP-G质粒采用脂质体法转染HEK293细胞, 荧光显微镜下观察绿色荧光表达, 流式细胞术检测目的蛋白GFP的荧光表达阳性率, Western blot检测目的蛋白GFP的表达。构建的两质粒均能有效转染 HEK293细胞, 其中流式细胞术分析显示: pHGFP-A组GFP阳性率约为15%, pHGFP-G组GFP阳性率约为45%; Western blot 显示pHGFP-G的GFP表达量约为pHGFP-A的GFP表达量3.87倍。结果表明, Kozak序列+4G(?3位为嘌呤碱基时)在蛋白表达中发挥重要作用, 可以使绿色荧光蛋白GFP在HEK293细胞中的表达量提高约4倍。  相似文献   

16.
构建含不同Kozak序列的绿色荧光蛋白(GFP)基因真核表达载体, 并检测它们在HEK293细胞中的表达差异。 通过设计突变的PCR引物改变目的基因GFP的Kozak序列, +4 位碱基分别为A和G, 且不改变氨基酸编码, 将PCR扩增的GFP片段与载体pcDNA3.1进行酶切、连接、转化、鉴定。成功构建的pHGFP-A, pHGFP-G质粒采用脂质体法转染HEK293细胞, 荧光显微镜下观察绿色荧光表达, 流式细胞术检测目的蛋白GFP的荧光表达阳性率, Western blot检测目的蛋白GFP的表达。构建的两质粒均能有效转染 HEK293细胞, 其中流式细胞术分析显示: pHGFP-A组GFP阳性率约为15%, pHGFP-G组GFP阳性率约为45%; Western blot 显示pHGFP-G的GFP表达量约为pHGFP-A的GFP表达量3.87倍。结果表明, Kozak序列+4G(?3位为嘌呤碱基时)在蛋白表达中发挥重要作用, 可以使绿色荧光蛋白GFP在HEK293细胞中的表达量提高约4倍。  相似文献   

17.
胰岛素瘤相关蛋白-2(insulinoma-associated protein-2,IA-2),是属于酪氨酸磷酸酶样蛋白家族的跨膜糖蛋白,也是诊断1型糖尿病的重要自身抗原,相关产品已在欧美国家上市。目前,商业化的IA-2抗原主要为重组IA-2ic结构域,或从牛胰岛中天然提取的IA-2,其中重组IA-2抗原在临床上存在弱阳性漏检的问题,无法完全替代天然提取IA-2抗原。本研究利用HEK293表达系统探究IA-2的重组生产。通过瞬时表达IA-2的第449-979位氨基酸跨膜片段(IA-2 transmembrane fragment,IA-2 TMF)这一天然形式的膜蛋白,并优化表达条件和膜蛋白溶解条件,纯化后膜蛋白得率为0.78 mg/L细胞发酵液。随后,通过酶联免疫吸附(enzyme linked immunosorbent assay,ELISA),对比IA-2 TMF与RSR rhIA-2的抗原活性,检测了77位1型糖尿病患者血清和32位健康志愿者血清,测试的结果通过接受者操作特性曲线(receiver operating characteristic curve,ROC)表征敏感性和特异性。结果表明:IA-2 TMF的敏感性为71.4%(55/77),而RSR rhIA-2的敏感性为63.6%(49/77),2种抗原特异性均为100%。2种抗原在特异性上无明显差异,而IA-2 TMF的敏感性略优于进口金标RSR rhIA-2抗原。综上所述,本研究基于HEK293重组表达的IA-2 TMF能够作为1型糖尿病体外诊断试剂开发的原料。  相似文献   

18.

Background

Dicer is a 219-kDa protein that plays key roles in gene regulation, particularly as the ribonuclease III enzyme responsible for cleaving precursor miRNA substrates. Its enzymatic activity is highly regulated by protein factors, and this regulation can impact on the levels of miRNAs and modulate the behavior of a cell. To better understand the underlying mechanisms of regulation, detailed enzymatic and structural characterization of Dicer are needed. However, these types of studies generally require several milligrams of recombinant protein, and efficient preparation of such quantities of pure human Dicer remains a challenge. To prepare large quantities of human Dicer, we have optimized transfection in HEK293-6E cells grown in suspension and streamlined a purification procedure.

Results

Transfection conditions were first optimized to achieve expression levels between 10 and 18?mg of recombinant Dicer per liter of culture. A three-step purification protocol was then developed that yields 4–9?mg of purified Dicer per liter of culture in a single day. From SEC-MALS/RI analysis and negative stain TEM, we confirmed that the purified protein is monomerically pure ( ≥ 98%) and folds with the characteristic L-shape geometry. Using an electrophoretic mobility shift assay, a dissociation constant (Kd) of 5?nM was measured for Dicer binding to pre-let-7a-1, in agreement with previous reports. However, when probing the cleavage activity of Dicer for pre-let-7a-1, we measured kcat (7.2?±?0.5?min??1) and KM (1.2?±?0.3?μM) values that are much higher than previously reported due to experimental conditions that better respect the steady-state assumption.

Conclusions

The expression and purification protocols described here provide high yields of monomerically pure and active human Dicer. Cleavage studies of a pre-let-7 substrate with this purified Dicer reveal higher kcat and KM values than previously reported and support the current view that conformational changes are associated with substrate binding. Large quantities of highly pure Dicer will be valuable for future biochemical, biophysical and structural investigations of this key protein of the miRNA pathway.
  相似文献   

19.
20.
由于各种疾病在全球范围内的肆虐,国际市场对重组腺病毒载体(adenoviral vector,Adv)疫苗的需求量急剧增加,而工艺研究是解决这一问题的有效手段之一。在细胞接毒前施加高渗胁迫可以提高分批培养模式下的Adv产量,新兴的灌流培养也可以显著提高Adv的产量。将高渗胁迫工艺与灌流培养相结合,有望进一步提升高细胞密度生产过程中的Adv产量。本研究利用摇瓶结合拟灌流培养作为生物反应器灌流培养的缩小模型,使用渗透压为300–405 mOsm的培养基研究了高渗胁迫对细胞生长和Adv生产的影响。结果显示,在细胞生长阶段使用370 mOsm的高渗透压培养基,在病毒生产阶段使用300 mOsm的等渗透压培养基的灌流培养工艺有效地提高了Adv的产量。进一步研究发现这可能归因于病毒复制后期HSP70蛋白的表达量增加。将这种工艺放大至生物反应器中,Adv的产量达到3.2×1010 IFU/mL,是传统灌流培养工艺的3倍。本研究首次将高渗胁迫工艺与灌流培养相结合的策略应用于HEK 293细胞生产Adv,同时揭示了高渗胁迫工艺增产Adv的可能原因,为HEK 293细胞生产其他类型Adv的工艺优化提供了借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号