首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three strains of a novel thermophilic, strictly aerobic, Gram-positive, spore-forming hemo-organotrophic bacterium were isolated from three hot springs in the region of Rupi basin, Bulgaria as producers of amylolytic enzymes. Their 16S rRNA gene sequences (first 500 nucleotides) were very similar (99.8%). Strains were able to ferment a wide spectrum of carbohydrates such as sugars, polyols, and polysaccharides like xylan, glycogen and starch. Optimal growth was observed at 55–58°C, and pH at 6.0–6.5. Phylogenetic analysis of the whole 16S rRNA gene sequence clustered the strain R270T with the representatives of the genus Anoxybacillus and with Geobacillus tepidamans. The G + C content of the genomic DNA was 41.7%. DNA–DNA hybridization analysis revealed low homology with the closest relatives (32.0 mol% homology to Geobacillus tepidamans). Fatty acid profile (major fatty acids iso-C15:0 and iso-C17:0) confirmed the affiliation of the strain to the genus Anoxybacillus. On the basis of the data presented here, we propose that strain R270T, represents a new species of the genus Anoxybacillus for which, we recommend the name Anoxybacillus rupiensis sp. nov. (=DSM 17127T = NBIMCC 8387T). The 16S rRNA gene sequence data of a strain R270T have been deposited in the EMBL databases under the accession number AJ879076.  相似文献   

2.
A new moderately halophilic, strictly aerobic, Gram-negative bacterium, strain SX15T, was isolated from hypersaline surface sediment of the southern arm of Great Salt Lake (Utah, USA). The strain grew on a number of carbohydrates and carbohydrate polymers such as xylan, starch, carboxymethyl cellulose and galactomannan. The strain grew at salinities ranging from 2 to 22% NaCl (w/v). Optimal growth occurred in the presence of 7–11% NaCl (w/v) at a temperature of 35°C and a pH of 6.7–8.2. Major whole-cell fatty acids were C16:0 (30.5%), C18:0 (14.8%), C18:1ω7c (13.1%) and C12:0 (7.8%). The G+C content of the DNA was 60 ± 0.5 mol%. By 16S rRNA gene sequence analysis, strain SX15T was shown to be affiliated to members of the gammaproteobacterial genus Marinimicrobium with pair wise identity values of 92.9–94.6%. The pheno- and genotypic properties suggest that strain SX15T represents a novel species of the genus Marinimicrobium for which the name Marinimicrobium haloxylanilyticum is proposed. The type strain is SX15T (= DSM 23100T = CCUG 59572T).  相似文献   

3.
A Gram-positive, rod-shaped, motile and spore-forming bacterium, designated ZLD-8T, was isolated from a desert soil sample collected from Xinjiang Province in north-west China, and subjected to a polyphasic taxonomic analysis. This isolate grew optimally at 30°C and pH 7.0. It grew with 0–4% NaCl (optimum, 0–1%). Comparative 16S rRNA gene sequence analysis showed that strain ZLD-8T was closely related to members of the genus Bacillus, exhibiting the highest 16S rRNA gene sequence similarity to Bacillus kribbensis DSM 17871T (98.0%). The levels of 16S rRNA gene sequence similarity with respect to other Bacillus species with validly published names were less than 96.3%. The DNA G + C content of strain ZLD-8T was 40.1 mol%. The strain contained MK-7 as the predominant menaquinone. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids (>5% of total fatty acids) were anteiso-C15:0 (39.56%), iso-C14:0 (25.69%), C16:1 ω7c alcohol (10.13%) and iso-C15:0 (5.27%). These chemotaxonomic results supported the affiliation of strain ZLD-8T to the genus Bacillus. However, low DNA–DNA relatedness values and distinguishing phenotypic characteristics allowed genotypic and phenotypic differentiation of strain ZLD-8T from recognized Bacillus species. On the basis of the polyphasic evidence presented, strain ZLD-8T is considered to represent a novel species of the genus Bacillus, for which the name Bacillus deserti sp. nov. is proposed. The type strain is ZLD-8T (=CCTCC AB 207173T = KCTC 13246T).  相似文献   

4.
A novel alkaliphilic and moderate halophilic bacterium, designated strain K164T, was isolated from Keke Salt Lake in Qinghai, China. The strain grew with 2.0–20.0% (w/v) NaCl, at 4–50°C and pH 6.5–11.5, with an optimum of 8% (w/v) NaCl, 37°C and pH 10, respectively. The predominant respiratory quinone was menaquinone 6 (MK-6) and the major polar lipid was phosphatidylethanolamine. The major cellular fatty acids were anteiso-C15:0 and iso-C15:0. The genomic DNA G+C content was 50.16 mol. Phylogenetic analysis based on the full-length 16S rRNA gene sequence revealed that strain K164T was a member of the genus Salinicoccus. Strain K164T showed the highest similarity (98.4%) with Salinicoccus alkaliphilus AS 1.2691T and below 97% similarity with other recognized members of the genus in 16S rRNA gene sequence. Level of DNA–DNA relatedness between strain K164T and Salinicoccus alkaliphilus AS 1.2691T was 20.1%. On the basis of its phenotypic characteristics and the level of DNA–DNA hybridization, strain K164T is considered to represent a novel species of the genus Salinicoccus, for which the name Salinicoccus kekensis sp. nov. is proposed. The type strain is K164T (=CGMCC 1.10337T = DSM 23173T).  相似文献   

5.
A novel thermophilic anaerobic and microaerophilic bacterium (optimal growth in the presence of 5–10% O2), strain Nad S1T was isolated from the terrestrial hot spring of Hammam Sidi Jdidi, Nabeul, Tunisia. Cells were motile rods having a Gram-positive cell wall structure. Strain Nad S1T grew optimally at 55°C (range 37–70°C). Optimum pH for growth was 6.5–7.0. It was halotolerant growing with NaCl up to 7% (optimum concentration 1.5–3.0%). It grew chemoorganotrophically on various carbohydrates, organic-acids and amino-acids as energy sources, or chemolithotrophically on H2 using nitrate, as terminal electron acceptor. Beside oxygen (under microaerobic conditions) and nitrate, nitrite was also used. Nitrate was completely reduced to N2. No fermentation occurred. The genomic DNA G + C content was 41.8 mol%. Based on 16S rRNA gene sequence analysis, strain Nad S1T belongs to the Bacillaceae family within the class ‘Bacilli’. Because of its phylogenetic and phenotypic characteristics, we propose this isolate to be assigned as a novel genus and a novel species within the domain Bacteria, Microaerobacter geothermalis gen. nov., sp. nov. The type strain is Nad S1T (=DSM 22679T =JCM 16213T).  相似文献   

6.
A novel haloalkaliphilic, facultative anaerobic and Gram-negative Salinivibrio-like microorganism (designated strain BAGT) was recovered from a saline lake in Ras Mohammed Park (Egypt). Cells were motile, curved rods, not spore-forming and occurred singly. Strain BAGT grew optimally at 35°C (temperature growth range 25–40°C) with 10.0% (w/v) NaCl [NaCl growth range 6.0–16.0% (w/v)] and at pH 9.0 (pH growth range 6.0–10.0). Strain BAGT had phosphatidylethanolamine (PEA) and phosphatidylglycerol (PG) as the main polar lipids, C16:0 (54.0%) and C16:1 (26.0%) as the predominant cellular fatty acids and Q-8 as the major respiratory quinone. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain BAGT was a member of Salinivibrio genus, with the highest sequence similarities of 99.1, 98.4 and 98.1% to Salinivibrio siamensis JCM 14472T, Salinivibrio proteolyticus DSM 19052T and Salinivibrio costicola subsp. alcaliphilus DSM 16359T, respectively. DNA–DNA hybridization values of strain BAGT with members of Salinivibrio genus were lower than 55.0%. DNA G + C content was 51.0 mol%. On the basis of the polyphasic taxonomic results revealed in this study, strain BAGT should be classified as a novel species of Salinivibrio genus, for which the name Salinivibrio sharmensis sp. nov. is proposed, with the type strain BAGT (=ATCC BAA-1319T = DSM 18182T).  相似文献   

7.
A novel bacterium capable of fixing nitrogen was isolated from plantain rhizosphere soil in China. The isolate, designated YN-83T, is Gram-positive, aerobic, motile and rod-shaped (0.4–0.6 μm × 1.9–2.6 μm). Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain YN-83T was a member of the genus Cohnella. High similarity of 16S rRNA gene sequence was found between YN-83T and Cohnella ginsengisoli DSM18997T (97.99%), whereas the similarity was below 96.0% between YN-83T and the other Cohnella species. DNA–DNA relatedness between strain YN-83T and C. ginsengisoli DSM18997T was 27.4 ± 6.2%. The DNA G+C content of strain YN-83T was 59.3 mol%. The predominant isoprenoid quinone was MK-7 and the major fatty acids were anteiso-C15:0 (44.3%), iso-C15:0 (11.3%), iso-C16:0 (18.6%) and C16:0 (7.7%). The polar lipids of strain YN-83T consist of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, lyso- phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides. On the basis of phenotypic and chemotaxonomic properties, 16S rRNA gene sequence, G+C content and DNA–DNA hybridization, strain YN-83T represents a novel species of the genus Cohnella, for which the name Cohnella plantaginis sp. nov. (type strain YN-83T = DSM 25424T = CGMCC 1.12047T) is proposed.  相似文献   

8.
The taxonomic position of strain DFH11T, which was isolated from coastal seawater off Qingdao, People’s Republic of China in 2007, was determined. Strain DFH11T comprised Gram-negative, motile, strictly aerobic spirilli that did not produce catalase. Comparative 16S rRNA gene sequence analysis revealed that strain DFH11T shared ~97.2, 93.3, 91.8, 91.7 and 91.5% sequence similarities with Oleispira antarctica, Spongiispira norvegica, Bermanella marisrubri, Oceaniserpentilla haliotis and Reinekea aestuarii, respectively. DNA–DNA hybridization experiments indicated that the strain was distinct from its closest phylogenetic neighbour, O. antarctica. The strain grew optimally in 2–3% (w/v) NaCl, at pH 5.0–10.0 (optimally at pH 7.0) and between 0 and 30°C (optimum growth temperature 28°C). The strain exhibited a restricted substrate profile, with a preference for aliphatic hydrocarbons, that is consistent with its closest phylogenetic neighbour O. antarctica. Growth of the isolate at different temperatures affected the cellular fatty acid profile. 28°C cultured cells contained C16:1ω7c and/or iso-C15:0 2-OH (50.4%) and C16:0 (19.2%) as the major fatty acids. However, the major fatty acids of the cells cultured at 4°C were C16:1ω7c and/or C16:1ω6c (40.2%), C16:0 (17.2%) and C17:1ω8c (10.1%). The G+C content of the genomic DNA was 42.7 mol%. Phylogeny based on 16S rRNA gene sequences together with data from DNA–DNA hybridization, phenotypic and chemotaxonomic characterization revealed that DFH11T should be classified as a novel species of the genus Oleispira, for which the name Oleispira lenta sp. nov. is proposed, with the type strain DFH11T (=NCIMB 14529T = LMG 24829T).  相似文献   

9.
A novel Gram-negative, catalase- and oxidase-positive, strictly aerobic, non spore-forming, rod-shaped bacterium, designated strain JSM 083058T, was isolated from non-saline forest soil in Hunan Province, China. Growth occurred with 0–8% (w/v) NaCl (optimum, 0.5–3%) at pH 6.0–10.0 (optimum, pH 7.0) and at 5–35°C (optimum, 25–30°C). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 083058T fell within the cluster comprising species of the genus Sphingomonas, clustering with Sphingomonas aestuarii K4T, with which it shared highest 16S rRNA gene sequence similarity (99.2%). The chemotaxonomic properties of strain JSM 083058T were consistent with those of the genus Sphingomonas. The predominant respiratory quinone was ubiquinone Q-10, and the major cellular fatty acids were summed feature 8 (C18:1ω7c/C18:1ω6c), C16:0, summed feature 3 (C16:1ω7c/C16:1ω6c) and C17:1ω6c. The polar lipids consisted of diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and sphingoglycolipid. The genomic DNA G+C content of strain JSM 083058T was 65.5 mol%. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 083058T represents a novel species of the genus Sphingomonas, for which the name Sphingomonas hunanensis sp. nov. is proposed. The type strain is JSM 083058T (=CCTCC AA 209011T = DSM 22213T).  相似文献   

10.
A novel pale-yellow-pigmented, moderately halophilic, facultatively alkaliphilic, non-motile, non-spore-forming, catalase- and oxidase-positive, obligately aerobic Gram-positive coccus, strain YIM-C678T was isolated from a saline soil sample collected from a hypersaline habitat in the Qaidam basin, northwest China. The organism grew at 4–37°C and pH 6.0–11.0, with optimum growth at 25°C and pH 8.0. Strain YIM-C678T grew optimally in the presence of 10–12% (w/v) NaCl and growth was observed in 1–25% (w/v) NaCl. The cell wall murein type was l-Lys-Gly5. Major cellular fatty acids were anteiso-C15:0, iso-C15:0, iso-C16:0 and C16:0. Menaquinone 6 (MK-6) was the major respiratory quinone. The DNA G + C content was 46.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain YIM-C678T belonged to the family Staphylococcaceae and was most closely related to the eight described species of the genus Salinicoccus with sequence similarities from 92.2 (S. luteus YIM 70202T) to 97.5% (S. kunmingensis YIM Y15T). The DNA–DNA relatedness between strain YIM-C678T and S. kunmingensis YIM Y15T was 35.4%. Chemotaxonomic data and 16S rRNA gene sequence analysis supported the affiliation of strain YIM-C678T with the genus Salinicoccus. The combination of phylogenetic analysis, phenotypic characteristics, chemotaxonomic differences and DNA–DNA hybridization data supported the view that the bacterium represents a novel species of the genus Salinicoccus, for which the name Salinicoccus salitudinis sp. nov. is proposed, with YIM-C678T (=DSM 17846 = CGMCC 1.6299) as the type strain.  相似文献   

11.
A novel Gram-negative, slightly halophilic, catalase- and oxidase-positive, obligately aerobic bacterium, strain YIM-C248T, was isolated from a sediment sample collected from a salt-lake in the Qaidam Basin in Qinghai, north-west China. Cells were non-sporulating short rods, occurring singly or as doublets, motile with peritrichous flagella. Growth occurred with 1–15% (w/v) NaCl [optimum 2–4% (w/v) NaCl], at pH 6.0–10.0 (optimum pH 7.5) and at 4–35°C (optimum 25–30°C). The major cellular fatty acids were C18:1 ω7c, C12:0 3-OH, cyclo C19:0 ω8c, C16:0 and C16:1. The predominant respiratory quinone was Q-9 and the genomic DNA G + C content was 58.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YIM-C248T should be assigned to the genus Halomonas. The sequence similarities between the isolate and the type strains of members of the genus Halomonas were in the range of 92.5–97.5%. The combination of phylogenetic analysis, DNA–DNA hybridization data, phenotypic characteristics and chemotaxonomic differences supported the view that strain YIM-C248T represents a new species of the genus Halomonas, for which the name Halomonas sediminis sp. nov. is proposed, with YIM-C248T (=CCTCC AA 207031 = KCTC 22167) as the type strain. The GenBank/EMBL/DBBJ accession number for the 16S rRNA gene sequence of strain YIM-C248T is EU135707.  相似文献   

12.
A novel bacterial strain, designated T-Y1T, capable of degrading a variety of polysaccharides was isolated from seawater of an oyster farm in the South Sea, Korea. It was found to be aerobic, Gram-negative, non-flagellated, non-gliding and rod-shaped. Strain T-Y1T grew optimally at 25 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain T-Y1T belonged to the genus Winogradskyella. Strain T-Y1T exhibited 16S rRNA gene sequence similarity values of 95.0–96.8 % to the type strains of recognized Winogradskyella species and less than 94.5 % to other validly named species. The chemotaxonomic data concurred with the phylogenetic inference. Strain T-Y1T contained MK-6 as the predominant menaquinone and anteiso-C15:0, iso-C15:0, iso-C15:1 G and iso-C16:0 3-OH as the major fatty acids. The major polar lipids of strain T-Y1T were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content was 36.2 mol%. Differential phenotypic properties, together with its phylogenetic distinctiveness, enabled strain T-Y1T to be differentiated from the recognized Winogradskyella species. On the basis of the data presented here, strain T-Y1T is considered to represent a novel species of the genus Winogradskyella, for which the name Winogradskyella multivorans sp. nov. is proposed. The type strain is T-Y1T (=KCTC 23891T = CCUG 62216T).  相似文献   

13.
A new halophilic anaerobe was isolated from the hypersaline surface sediments of El-Djerid Chott, Tunisia. The isolate, designated as strain 6SANG, grew at NaCl concentrations ranging from 14 to 30%, with an optimum at 20–22%. Strain 6SANG was a non-spore-forming, non-motile, rod-shaped bacterium, appearing singly, in pairs, or occasionally as long chains (0.7–1 × 4–13 μm) and showed a Gram-negative-like cell wall pattern. It grew optimally at pH values between 7.2 and 7.4, but had a very broad pH range for growth (5.9–8.4). Optimum temperature for growth was 42°C (range 30–50°C). Strain 6SANG required yeast extract for growth on sugars. Glucose, sucrose, galactose, mannose, maltose, cellobiose, pyruvate, and starch were fermented. The end products from glucose fermentation were acetate, butyrate, lactate, H2, and CO2. The G + C ratio of the DNA was 34.3 mol%. Strain 6SANG exhibited 16S rRNA gene sequence similarity values of 91–92% with members of the genus Halobacteroides, H. halobius being its closest phylogenetic relative. Based on phenotypic and phylogenetic characteristics, we propose that this bacterium be classified as a novel species of a novel genus, Halanaerobaculum tunisiense gen. nov., sp. nov. The type strain is 6SANGT (=DSM 19997T = JCM 15060T).  相似文献   

14.
Two novel denitrifying alkalithermophilic bacteria, AT-1 and AT-2, were isolated from manure-amended soil. The isolates grew at 35–65°C with an optimum temperature at 50–60°C, and pH 6.5–10.0 with an optimum pH at 9.5. Both isolates were Gram-positive, facultative anaerobic, non-motile rod-shaped bacteria. A phylogenetic analysis based on 16S rRNA sequence data indicated that both AT-1 and AT-2 are members of the genus Anoxybacillus. DNA-DNA hybridization revealed moderate relatedness between AT-1 and AT-2 and one phylogenetically related strain, A. pushchinensis K1 (69.5 and 69.1%, respectively). Comparative analysis of morphology and biochemical characteristics of the two isolates also showed similarity to A. pushchinensis K1. Based on these results, we identified AT-1 and AT-2 as A. pushchinensis. To our knowledge, this is the first report of denitrifying bacterium isolated from alkalithermophilic Anoxybacillus spp.  相似文献   

15.
A moderate halophile, strain X50T, was isolated from mustard kimchi, a traditional Korean fermented food. The organism grew under conditions ranging from 0–15.0% (w/v) NaCl (optimum: 3.0%), pH 7.0–10.0 (optimum: pH 9.0) and 15–45°C (optimum: 37°C). The morphological, physiological, and biochemical features and the 16S rRNA gene sequences of strain X50T were characterized. Colonies of the isolate were creamcolored and the cells were rod-shaped. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain X50T belongs to the genus Oceanobacillus and is closely related phylogenetically to the type strain O. iheyensis HTE831T (98.9%) and O. oncorhynchi subsp. oncorhynchi R-2T (97.0%). The cellular fatty acid profiles predominately included anteiso-C15:0 and iso-C15:0. The G+C content of the genomic DNA of the isolate was 37.9 mol% and the major isoprenoid quinone was MK-7. Analysis of the 16S rRNA gene sequences, DNA-DNA relatedness and physiological and biochemical tests indicated genotypic and phenotypic differences among strain X50T and reference species in the genus Oceanobacillus. Therefore, strain X50T was proposed as a novel species and named Oceanobacillus kimchii. The type strain of the new species is X50T (=JCM 16803T =KACC 14914T =DSM 23341T).  相似文献   

16.
A Gram-stain-negative, non-motile, rod-shaped bacterial strain, JW-64-1T, capable of degrading methamidophos was isolated from a methamidophos-manufacturing factory in China, and was subjected to a polyphasic taxonomic investigation. Strain JW-64-1T produced circular, smooth, transparent, yellow-colored colonies (1.0–2.0 mm) on LB agar after 2 days incubation. It grew optimally at 25–30°C and pH 7.0 without the presence of NaCl. The G+C content of the total DNA was 63.6 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain JW-64-1T fell within the cluster comprising Luteibacter species. The 16S rRNA gene sequence of strain JW-64-1T was most closely related to Luteibacter rhizovicinus DSM 16549T (98.6%), followed by Luteibacter yeojuensis DSM 17673T (98.4%) and L. anthropi CCUG 25036T (98.2%). The major cellular fatty acids of strain JW-64-1T were iso-C15:0 (24.1%), iso-C17:0 (20.2%) and summed feature 9 comprising iso-C17:1 ω9c and/or C16:0 10-methyl (20.3%). The major isoprenoid quinine was Q-8 (98%), and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphoaminolipid, aminolipids-1, aminolipids-2, and phospholipids. The values for DNA–DNA relatedness between strain JW-64-1T and the closest phylogenetic relatives of L. rhizovicinus and Luteibacter yeojuensis were 34.8 ± 2.6 and 25.6 ± 3.1%, respectively. On the basis of the phenotypic, chemotaxonomic, DNA–DNA relatedness and phylogenetic analysis based on the 16S rRNA gene sequences, strain JW-64-1T represents a novel species of the genus Luteibacter, for which the name Luteibacter jiangsuensis sp. nov. is proposed. The type strain is JW-64-1T (=CGMCC 1.10133T = DSM 22396T).  相似文献   

17.
18.
A Gram-positive, moderately halophilic, facultatively alkaliphilic, catalase- and oxidase-positive, obligately aerobic, filamentous actinomycete strain, designated YIM 90022T, was isolated from saline soil collected from the Qaidam Basin, north-west China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the new isolate was a member of the genus Nocardiopsis and the sequence similarities between the isolate and the type strains of members of the genus Nocardiopsis were in the range of 95.1–98.7%. Phenotypic and chemotaxonomic properties of this organism also indicated that strain YIM 90022T was a member of the genus Nocardiopsis. The strain grew well on most of the media tested, producing yellow-white to deep brown substrate mycelium and white aerial mycelium. Light gray to deep brown diffusible pigments were produced. The substrate mycelium was well developed and fragmented with age; the aerial mycelium produced long, straight to flexuous spore chains with non-motile, smooth-surfaced, rod-shaped spores on them. The strain grew in the presence of 1–15% (w/v) total salts (optimum, 3–5%) and at pH 6.0–10.5 (optimum, pH 8.5) and 10–45°C (optimum, 30°C). Whole-cell hydrolysates of strain YIM 90022T contained meso-diaminopimelic acid and no diagnostic sugars. The predominant menaquinones were MK-10(H4), MK-9(H8), MK-10(H6) and MK-10(H8). Polar lipids comprised diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol and phosphatidylmethylethanolamine. The major cellular fatty acids were iso-C16:0, anteiso-C17:0, 10-methyl-C18:0 and 10-methyl-C17:0. The DNA G + C content of strain YIM 90022T was 71.5 mol%. The combination of phylogenetic analysis, DNA–DNA relatedness data, phenotypic characteristics and chemotaxonomic data supported the suggestion that strain YIM 90022T represents a new species of the genus Nocardiopsis, for which the name Nocardiopsis terrae sp. nov. is proposed. The type strain is YIM 90022T (=CCTCC AA 208011T =KCTC 19431T).  相似文献   

19.
An aerobic, Gram-negative bacterial strain, designated KU27E1T, which degrades phthalate and dimethylphthalate, was isolated from seawater obtained from the coastal region of Ishigaki Island, Japan. Cells are motile rods with polar flagella. Strain KU27E1T grew at 15–30°C, pH 6.0–8.0, in the presence of 1.0–2.0% (w/v) NaCl. The 16S rRNA gene sequence analysis revealed that this strain was affiliated with the family Rhodobacteraceae in the class Alphaproteobacteria, and was most closely related to Tropicibacter naphthalenivorans (96.8%). The predominant respiratory lipoquinone was ubiquinone-10, and the major cellular fatty acid was C18:1ω7c (88.5%). The G+C content of genomic DNA was 58.7 mol%. Based on the physiological, chemotaxonomic, and phylogenetic data, strain KU27E1T is suggested to represent a novel species of the genus Tropicibacter, for which the name Tropicibacter phthalicus sp. nov. is proposed. The type strain of Tropicibacter phthalicus is designated as KU27E1T (=JCM 17793T = KCTC 23703T).  相似文献   

20.
A marine bacterium designated strain IMCC4074T was isolated from surface seawater collected off Incheon Port, the Yellow Sea, and subjected to a polyphasic taxonomy. The strain was Gram-negative, chemoheterotrophic, slightly halophilic, strictly aerobic, and motile rods. Based on 16S rRNA gene sequence comparisons, the strain was most closely related to Marinobacterium litorale KCTC 12756T (93.9%) and shared low 16S rRNA gene sequence similarities with members of the genus Marinobacterium (91.8–93.9%) and the genus Neptunomonas (93.4%) in the order Oceanospirillales. Phylogenetic analyses showed that this marine isolate formed an independent phyletic line within the genus Marinobacterium clade. The DNA G+C composition of the strain was 56.0 mol% and the predominant constituents of the cellular fatty acids were C16:0 (28.0%), C16:1 ω7c and/or iso-C15:0 2-OH (19.3%), C18:1 ω7c (17.8%), and C17:1 cyclo (12.5%), which differentiated the strain from other Marinobacterium species. Based on the taxonomic data collected in this study, only a distant relationship could be found between strain IMCC4074T and other members of the genus Marinobacterium, thus the strain represents a novel species of the genus Marinobacterium, for which the name Marinobacterium marisflavi sp. nov. is proposed. The type strain of Marinobacterium marisflavi is IMCC4074T (= KCTC 12757T = LMG 23873T). The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain IMCC4074T is EF468717. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号