首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new high-resolution spectrofluorimetric probe and an automatic water-quality monitoring station (AWQMS) have been used to record seasonal variations in the spatial distribution of three functional groups of phytoplankton in a Mediterranean water-supply reservoir. In comparison with classical methods, the combined use of these innovative techniques enables development of faster and less laborious spatial distribution surveys, thus favouring higher-frequency and spatially more detailed measurements, and, consequently, a better understanding of phytoplankton dynamics. The results show that the observed variations can be explained by the interaction between the buoyancy properties of the phytoplankton and the mixing characteristics of the reservoir. During the winter, when the lake was isothermal and the phytoplankton was dominated by diatoms, there was no significant spatial variation. In the spring, when the phytoplankton was dominated by chlorophytes there was also very little variation but some motile species formed patches when the wind speed was low. The most pronounced non-uniform distributions of phytoplankton were observed during the summer when the phytoplankton community was dominated by positively buoyant cyanobacteria. Then there was a very strong link between the vertical and horizontal gradients which were also related to the prevailing meteorological conditions.  相似文献   

2.
Summer heatwaves promote blooms of harmful cyanobacteria   总被引:13,自引:0,他引:13  
Dense surface blooms of toxic cyanobacteria in eutrophic lakes may lead to mass mortalities of fish and birds, and provide a serious health threat for cattle, pets, and humans. It has been argued that global warming may increase the incidence of harmful algal blooms. Here, we report on a lake experiment where intermittent artificial mixing failed to control blooms of the harmful cyanobacterium Microcystis during the summer of 2003, one of the hottest summers ever recorded in Europe. To understand this failure, we develop a coupled biological–physical model investigating how competition for light between buoyant cyanobacteria, diatoms, and green algae in eutrophic lakes is affected by the meteorological conditions of this extreme summer heatwave. The model consists of a phytoplankton competition model coupled to a one-dimensional hydrodynamic model, driven by meteorological data. The model predicts that high temperatures favour cyanobacteria directly, through increased growth rates. Moreover, high temperatures also increase the stability of the water column, thereby reducing vertical turbulent mixing, which shifts the competitive balance in favour of buoyant cyanobacteria. Through these direct and indirect temperature effects, in combination with reduced wind speed and reduced cloudiness, summer heatwaves boost the development of harmful cyanobacterial blooms. These findings warn that climate change is likely to yield an increased threat of harmful cyanobacteria in eutrophic freshwater ecosystems.  相似文献   

3.
Phytoplankton communities in lakes and reservoirs are seldom homogeneously distributed but usually aggregate in patches and gradients. In this study we have combined the use of in vivo spectrofluorometry and acoustic Doppler current profiling to investigate the effect of water movements on the spatial distribution of cyanobacteria and diatoms in a thermally stratified reservoir in SW Spain. The distinctive canyon‐shaped morphometry of the reservoir (El Gergal) favoured the development of a “conveyor belt” pattern of circulation aligned with the long axis of the reservoir. Under non‐regulated conditions, the spatial distribution of phytoplankton was almost entirely dependent on the interactions between advective transport and the buoyancy properties of the different functional groups of phytoplankton. The positively‐buoyant cyanobacteria accumulated near the surface and were then transported downwind by the surface drift currents. In contrast, the negatively‐buoyant diatoms sank in the water column and were transported upwind by the sub‐surface return currents. When deep water was abstracted from the reservoir, these distribution patterns were modified. The results are discussed in relation to the problem of acquiring representative water samples from the reservoir and the application of a simple empirical model to optimize the location of the station used for routine cyanobacteria sampling on the reservoir. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The maximum quantum yield of photosystem II was estimated from variable chlorophyll a fluorescence in samples of phytoplankton collected from the Taihu Lake in China to determine the responses of different phytoplankters to irradiance and vertical mixing. Meteorological and environmental variables were also monitored synchronously. The maximum quantum yield of three phytoplankton groups: cyanobacteria, chlorophytes, and diatoms/dinoflagellates, showed a similar diurnal change pattern. F v/F m decreased with a significant depth-dependent variation as irradiance increased during the morning and increased as irradiance declined in the afternoon. Furthermore, the rates of F v/F m depression were dependent upon the photon flux density, whereas the rates of recovery of F v/F m were dependent upon the historical photon density. Moreover, photoinhibition affected the instantaneous growth rates of phytoplankton. Although at noon cyanobacteria had a higher photoinhibition value (up to 41%) than chlorophytes (32%) and diatoms/dinoflagellates (34%) at the surface, no significant difference in diurnal growth rates among the three phytoplankton groups were observed indicating that cyanobacteria could photoacclimate better than chlorophytes and diatoms/dinoflagellates. In addition, cyanobacteria had a higher nonphotochemical quenching value than chlorophytes and diatoms/dinoflagellates at the surface at noon, which indicated that cyanobacteria were better at dissipating excess energy. The ratios of enclosed bottle samples F v/F m to free lake samples F v/F m showed different responses for the three phytoplankton groups to irradiance and vertical mixing when wind speed was approximately constant at about 3.0 m s−1. When wind speed was lower than 3.0 m s−1, cyanobacteria accumulated mainly at the surface and 0.3 m, because of their positive buoyancy, where diurnal growth rates of phytoplankton were relatively higher than those at 0.6 m and 0.9 m. Chlorophytes were homogenized completely by vertical mixing, while diatoms/dinoflagellates avoided active high irradiance by moving downward at noon, and then upward again when irradiance decreased. These results explain the dominance of cyanobacteria in Taihu Lake. Handling editor: L. Naselli-Flores  相似文献   

5.
Spatial and temporal variation in phytoplankton community structure within a large flood-control reservoir (Sardis Reservoir, MS, USA) was investigated in relation to variation in physicochemical properties, location within the reservoir, hydraulic residence time (HRT), nutrient concentrations, temperature, and light conditions over a 14-month period. During periods of short HRT, phytoplankton communities throughout the reservoir were homogeneous in biomass, composition, and production. With a gradual increase in HRT from spring to summer, spatially heterogeneous phytoplankton communities developed along the longitudinal axis of the reservoir. During this period of longer HRT, diatoms and chlorophytes were a larger proportion of total phytoplankton biomass at shallow and more turbid locations near the head of the reservoir, whereas cyanobacteria were a larger proportion of the community at deeper and less turbid locations closer to the outflow. Seasonal succession of the phytoplankton community was represented by high abundance of diatoms in spring, increasing biomass of cyanobacteria through summer, and a secondary bloom of diatoms in fall. Species of Cyclotella, Asterionella, Nitzschia, and Ankistrodesmus were among the first colonizers in the early growing season, closely followed by Aulacoseira, whereas species of Staurastrum and Tetraedron appeared later in the spring. Species of Synedra, Crucigenia, Selenastrum, Scenedesmus, and Merismopedia occurred throughout the sampling period. As the diatoms started to decrease during mid-spring, cryptophytes increased, prior to dominance of species of Pseudanabaena in summer. Reservoir management of HRT, in combination with spatial variation in reservoir morphology and seasonal variation in temperature and riverine nutrient inputs, creates seasonally variable yet distinct spatial patterns in phytoplankton community biomass, composition, and production. Handling editor: L. Naselli-Flores  相似文献   

6.
Phytoplankton abundance and community structure were determined routinely over an annual period and intensively during two storm-runoff events in a small suburban reservoir in northern Virginia, U.S.A. Traditional graphical techniques and a multivariate approach (Principal Components Analysis) were used to demonstrate a seasonal pattern of phytoplankton succession with greens and blue-greens dominant in summer, diatoms and chrysophytes in spring and fall, and cryptophytes in winter. Spatial variations were minor over horizontal and vertical dimensions during spring mixis, but depth variations were substantial during summer stratification. Storm runoff had little effect on phytoplankton composition during the stable summer period, but was associated with a substantial perturbation in community structure during the spring to summer transition.  相似文献   

7.
青岛棘洪滩水库浮游藻类状况及水质评价   总被引:10,自引:0,他引:10  
2003年5月至2004年5月对棘洪滩水库藻类的群落结构进行了研究。共发现藻类49属63种。水库进水口、水库中心、出水口藻类的种类组成没有明显差异,群落季节变化明显,冬春季以硅藻、隐藻为主,其优势种分别为小环藻和尖尾蓝隐藻。金藻有短时大规模出现,主要是分歧锥囊藻。夏秋季以蓝藻、绿藻为主。藻类周年变动模式为单峰型,藻类细胞密度最低值出现在1月份出水口,为0.05×106ind./L,主要是硅藻类的小环藻和隐藻,占总数的92.8%;最高值出现在10月份进水口,为196.7×106ind/L,主要是丝状蓝藻包括伪鱼腥藻、颤藻等占总数的81.2%。藻类生物量在0.34-7.77mg/L内变动,最低值出现在1月份出水口,此时硅藻门的小环藻占69.6%;最高值出现在8月份进水口,其中丝状蓝藻占71.44%;年均值进水口为1.82mg/L,出水口为1.09mg/L。Shannon-Weaver多样性指数变化范围为0.93-3.30,最低值和最高值分别出现在2004年1月进水口和2003年11月水库中心。年均值进水口为1.88,出水口为2.15。水质总体状况较好,处于中营养,但有向富营养转变的趋势,应注意加强对水源及水库的管理和保护。    相似文献   

8.
The phytoplankton community of a eutrophic reservoir   总被引:1,自引:0,他引:1  
The dynamics of the phytoplankton community of a eutrophic reservoir are described for a two year period. Fifty-eight species were recorded, 25 of them common. Bacillariophyta dominated during the winter and early spring and Chlorophyta during late spring, to be replaced by a bloom of Cyanophyta. The mean and peak biomass of phytoplankton was 8.6 mg 1–1 and 40.8 mg 1–1 in 1981, and 8.3 mg 1–1 and 37.6 mg 1–1 in 1982. Temperature accounted for 67.3% and pH for 8% of the variation in total phytoplankton biomass over the two year period, using a multiple regression technique.Both horizontal and vertical patchiness, measured as an index of mean crowding, were recorded in the reservoir. Horizontal aggregations were associated with spring blooms of Chlorophyta and summer blooms of Cyanophyta, while vertical aggregations were most marked during the summer bloom of Cyanophyta. Concentrations of phytoplankton were influenced by wind, the prevailing southwesterly wind accumulating algae in the northeasterly arm of the reservoir during much of the year.  相似文献   

9.
1. A number of planktonic cyanobacteria species form resting stages that survive in the sediments of lakes. The significance of this life history strategy to the ecology of new planktonic populations was investigated in Esthwaite Water, a mesotrophic lake in the English Lake District.
2. A simple trapping technique was used to quantify vertical movements of five species of buoyant gas-vacuolate cyanobacteria from close to the sediments, along a depth transect.
3. 'Recruitment' from the sediments was found to be widespread amongst the cyanobacteria species associated with the summer phytoplankton community.
4. Estimates of the vertical upward fluxes of cyanobacteria based upon trap catches could not account for observed increases in the planktonic populations suggesting that 'recruitment' was not a significant source of biomass.
5. Vertical upward movements of Anabaena solitaria were recorded prior to this species becoming established in the plankton suggesting that benthic populations might be a source of cells for initial pelagic growth of populations of this species.
6. Low numbers of vegetative filaments of Anabaena flos-aquae , Aphanizomenon flos-aquae and Oscillatoria agardhii were observed in the plankton through the winter. These small overwintering populations appeared to be the primary source of inocula for the large summer populations of these species.  相似文献   

10.
The spatial distribution of phytoplankton cell abundance, carbon(C) biomass and chlorophyll a (Chl a) concentration was analysedduring three summers (1996, 1997 and 1999) in a seasonal sea-icearea, west of the Antarctic Peninsula. The objective of thestudy was to assess interannual variability in phytoplanktonspatial distribution and the mechanisms that regulate phytoplanktonaccumulation in the water column. Phytoplankton C biomass andChl a distributions were consistent from year to year, exhibitinga negative on/offshore gradient. The variations in C concentrationhad a close and non-linear relationship with the upper mixedlayer depth, suggesting that the vertical mixing of the watercolumn is the main factor regulating phytoplankton stock. Themagnitude of C gradients was 5-fold higher during 1996 thanduring 1997 and 1999. This was ascribed to interannual variationsin the concentration of diatom blooms in the region influencedby sea-ice melting. Vertical distribution of the phytoplankton,as estimated from Chl a profiles, also varied along an on/offshoregradient: Chl a was distributed homogeneously in the upper mixedlayer in coastal and mid-shelf stations and concentrated inthe deep layer (40–100 m) occupied by the winter waters(WW, remnants of the Antarctic surface waters during summer)in more offshore stations. The region with a deep Chl a maximumlayer (DCM layer) was dominated by a phytoplankton assemblagecharacterized by a relatively high concentration of diatoms.The extent of this region varied from year to year: it was restrictedto pelagic waters during 1996, extended to the shelf slope during1997 and occupied a major portion of the area during 1999. Itis hypothesized that iron depletion in near surface waters dueto phytoplankton consumption, and a higher concentration inWW, regulated this vertical phytoplankton distribution pattern.Furthermore, we postulate that year-to-year variations in thespatial distribution of the DCM layer were related to interannualvariations in the timing of the sea-ice retreat. The similaritybetween our results and those reported in literature for otherareas of the Southern Ocean allows us to suggest that the mechanismsproposed here as regulating phytoplankton stock in our areamay be applicable elsewhere.  相似文献   

11.
Long-term changes in phytoplankton (1954–1981) and chlorophyll (1969–1984) and their spatial distribution in summer 1989 were studied in the Rybinsk reservoir (second largest reservoir of the Volga River, North-West Russia). Estimation of trophic status and saprobity of the reservoir was based on phytoplankton biomass and species composition and chlorophyll content. The most eutrophic waters were found to occupy the peripheral areas in littoral zone and river inflows of the reservoir, while the waters in the central part of the basin were less eutrophic. Long-term changes of the phytoplankton biomass, chlorophyll, chlorophyll/biomass-ratio and saprobity index observed in the central part of the reservoir were analyzed by statistical methods. An increase in saprobity and an inverse relationship between chlorophyll/biomass-ratio and water transparency demonstrate progressive eutrophication in the central part of the reservoir. Two distinct periods (1954–1970 and 1971–1984) could be discerned on the basis of annual mean phytoplankton biomass values. For the earlier period a relationship between biomass and climatic factors (solar radiation and wind velocity) could be established, but no such correlation could be found for the latter period. There was no significant increase in the phytoplankton biomass during the monitoring period, but a definite increase in the proportion of small-sized species of centric diatoms, cryptomonads and blue-greens. These forms are considered as r-strategists in the community, and their increase is interpreted as a sign of eutrophication.  相似文献   

12.
1. Wind is considered the dominant factor controlling phytoplankton distribution in lentic environments. In canyon‐shaped reservoirs, wind tends to blow along the main axis generating internal seiches and advective water movements that jointly with biological features of algae can produce a heterogeneous phytoplankton distribution. Turbulence generated by wind stress and convection will also affect the vertical distribution of algae, depending on their sinking properties. 2. We investigated the vertical and horizontal distribution of phytoplankton during the stratification period in Sau Reservoir (NE Spain). Sites along the main reservoir axis were sampled every 4 h for 3 days, and profiles of chlorophyll‐a and temperature were made using a fluorescent FluoroProbe, which can discriminate among the main algal groups. Convective and wind shear velocity scales, and energy dissipation were calculated from meteorological data, and simulation experiments were performed to describe non‐measured processes, like vertical advection and sinking velocity of phytoplankton. 3. Wind direction changed from day to night, producing a diel thermocline oscillation and an internal seiche. Energy dissipation was moderate during the night, and mainly attributed to convective cooling. During the day the energy dissipation was entirely attributed to wind shear, but values indicated low turbulence intensity. 4. The epilimnetic algal community was mainly composed of diatoms and chlorophytes. Chlorophytes showed a homogeneous distribution on the horizontal and vertical planes. Diatom horizontal pattern was also homogeneous, because the horizontal advective velocities generated by wind forcing were not high enough to develop phytoplankton gradients along the reservoir. 5. Diatom vertical distribution was heterogeneous in space and time. Different processes dominated in different regions of the reservoir, due to the interaction between seiching and the daily cycle of convective‐mediated turbulence. As the meteorological forcing followed a clear daily pattern, we found very different diatom sedimentation dynamics between day and night. Remarkably, these dynamics were asynchronous in the extremes of the seiche, implying that under the same meteorological forcing a diatom population can show contrasting sedimentation dynamics at small spatial scales (approximately 103 m). This finding should be taken into account when interpreting paleolimnological records from different locations in a lake. 6. Vertical distribution of non‐motile algae is a complex process including turbulence, vertical and horizontal advection, variations in the depth of the mixing layer and the intrinsic sinking properties of the organisms. Thus, simplistic interpretations considering only one of these factors should be regarded with caution. The results of this work also suggest that diatoms can persist in stratified water because of a synergistic effect between seiching and convective turbulence.  相似文献   

13.
To determine longitudinal changes in phytoplankton composition and biomass in the Warnow River (Germany), single water parcels were followed during their downstream transport in August and October 1996 and April 1997. In summer, the phytoplankton assemblage was dominated by centric diatom and cyanobacteria species. Stephanodiscus hantzschii, Pseudanabaena limnetica, Planktothrix agardhii and Aulacoseira granulata var. angustissima were the most frequent species. In autumn, small centric diatoms dominated the whole river course. Irrespective of the season, in the fluvial lakes of the upper river, a substantial increase of phytoplankton biomass was observed. Shallow upstream river stretches were associated with large biomass losses. In the deep, slow flowing lower regions, total biomass remained constant. Longitudinal changes in biomass reflected downstream variations in flow velocity and river morphology. Cyanobacteria, cryptophytes and diatom species were subjected to large biomass losses along fast flowing, shallow river sections, whereas chlorophytes were favoured. Diatoms and cryptophytes benefited from low flow velocity and increased water depth in the downstream river. Changes in water depth and flow velocity have been found as key factors that cause the longitudinal differences in phytoplankton composition and biomass in small rivers.  相似文献   

14.
洋河水库浮游植物组成及优势种演替规律研究   总被引:1,自引:0,他引:1  
在洋河水库设置6个采样点, 对浮游植物进行了周年研究, 并在夏季进行了每周一次的加密采样, 以揭示水华期间藻类优势种演替规律。结果表明洋河水库全年共检测到浮游植物8门41属49种, 群落季节变化与温度密切相关。春季隐藻门的啮齿隐藻(Cryptomonas erosa)为优势, 夏季初期表层水温在25℃以下时, 绿藻门的波吉卵囊藻(Oocystis borgei)占主要优势; 当表层水温升至25℃以上, 微囊藻(Microcystis spp.)迅速取代其成为绝对优势。秋季硅藻门的克洛脆杆藻(Fragiaria crotomensis)和隐藻门的啮齿隐藻(C. erosa)为优势。空间分布上水库北部浅水区域隐藻和硅藻生物量普遍高于南部; 受东南风影响, 蓝藻生物量在西洋河口S2点位最大。CCA分析表明夏季水华主体微囊藻的生物量与氮浓度正相关, 螺旋鱼腥藻在夏季仅作为第二优势种短暂出现于西洋河口处, 其出现与否受到磷营养盐的限制。    相似文献   

15.
Recent global warming reduces surface water salinity around the Antarctic Peninsula as a result of the glacial meltwater runoff, which increases the occurrence and abundance of certain phytoplankton groups, such as cryptophytes. The dominance of this particular group over diatoms affects grazers, such as Antarctic krill, which preferentially feed on diatoms. Using three late summer data sets from the Bransfield Strait (2008–2010), we observed variations in the dominant phytoplankton groups determined by HPLC/CHEMTAX pigment analysis and confirmed by microscopy. Results indicate that the dominance of diatoms, particularly in 2008 and 2009, was associated with a deeper upper mixed layer (UML), higher salinity and warmer sea surface temperature. In contrast, cryptophytes, which were dominant in 2010, were associated with a shallower UML, lower salinity and colder sea surface temperatures. The low diatom biomass observed in the summer of 2010 was associated with high nutrient concentration, particularly silicate, and low chlorophyll a (summer monthly average calculated from satellite images). The interannual variability here observed suggests a delayed seasonal succession cycle of phytoplankton in the summer of 2010 associated with a cold summer and a late ice retreat process in the region. This successional delay resulted in a notable decrease of primary producers’ biomass, which is likely to have impacted regional food web interactions. This study demonstrates the susceptibility of the Antarctic phytoplankton community structure to air temperature, which directly influences the timing of ice melting and consequently the magnitude of primary production and succession pattern of phytoplankton groups.  相似文献   

16.
17.
Heo  Woo-Myung  Kim  Bomchul 《Hydrobiologia》2004,524(1):229-239
The effects of artificial destratification on limnological conditions and on phytoplankton were surveyed for 6 years (1995-2000) in Lake Dalbang (South Korea), a water supply reservoir receiving nutrients from agricultural non-point sources. In order to reduce odor problems caused by cyanobacterial blooms, six aerators were installed in 1996 and operated regularly during the warm season. Aeration destratified the water column of the reservoir and produced homogeneous physical and chemical parameters. The maximum surface temperature in summer decreased from 28.9 °C before aeration to 20.0-26.4 °C after aeration, whereas the maximum hypolimnetic temperature increased from 8.0 to 17.0-23.7 °C. Despite these changes, surface water concentrations of total phosphorus (TP) and chlorophyll a(CHLA) and their seasonal patterns did not change with destratification. Phosphorus loading was concentrated in heavy rain events during the summer monsoon, and TP and CHLA reached maximal concentrations in late summer after the monsoon. Because the hypolimnion was never anoxic prior to aeration, internal loading did not seem to be substantial. Cyanobacteria were the dominant phytoplankton in summer before aeration, but diatoms replaced them after operation of the aerator. Cyanobacteria blooms were eliminated. In contrast, total algal biomass in the water column (as CHLA integrated over depth) increased from 190 mg m–2 in 1995 to 1150, 300, 170, and 355 mg m–2 in 1997, 1998, 1999, and 2000, respectively. The increased ratio of mixing depth to euphotic depth to 2.5 may have resulted in a net reduction in the amount of underwater irradiance experienced by phytoplankton cells, and this may have favored the switch to diatom dominance. Furthermore, the mixing may have allowed diatoms to flourish in summer by lowering their settling loss that would be critical in stratified water columns. In conclusion, the destratification in this reservoir was effective in preventing cyanobacteria blooms, but not in reducing the total algal standing crop.  相似文献   

18.
Jan Köhler 《Hydrobiologia》1994,289(1-3):73-83
The River Spree (Germany) flows through an impoundment and several shallow lakes in its middle and lower course. In this river-lake system, the seasonal and longitudinal dynamics of dominant phytoplankton populations were studied in relation to retention time of water, mixing conditions and nutrient supply from 1988–92. Some phytoplankton species populated the same river section for weeks or months each year at their season. Such stable populations have to origin from river zones functioning like mixed reactors. In the Spree system, centric diatoms originated from an impoundment and filamentous cyanobacteria from a flushed lake with longer retention time of water. Downstream, biomass and composition of phytoplankton altered nearly simultaneously along the system.The fate of planktonic organisms washed from mixed reactors into the flow depended on the conditions at the zones of origin. During spring, populations dominating phytoplankton communities of the well-mixed lakes grew further under river conditions. However the biomass of summer species, adapted to intermittent stratification, was halved along the river course. These seasonal differences were probably caused by lower maximum growth rates of summer species and enhanced losses (photorespiration, sedimentation or grazing of benthic filter feeders, but not of zooplankton) of algal populations under river conditions in summer.Phytoplankton assimilation, settlement of diatoms, or denitrification caused declining (probably growth limiting) concentrations of dissolved inorganic phosphorus (spring), silicon (early summer) or nitrogen (summer) along the river course, respectively. The minimum content of DRP was often followed by a clear-water phase. Reduced DSi supply selected against diatoms and additional DIN shortage favoured N2-fixing cyanobacteria in the last lake of the system.R-strategists (sensu Reynolds) were selected in both the flushed, shallow lakes and the lowland river. In general, the biomass of cyanobacteria increased within the lakes and declined along the river course. Some diatom populations grew in the river, but were grazed or settled down in the lakes. Beside this general picture, different populations from the same phylogenetic group did not necessarily perform in similar ways.  相似文献   

19.
V. Kannan  S. V. Job 《Hydrobiologia》1980,69(3):267-271
The phytoplankton biomass was estimated in terms of chlorophyll in Sathiar reservoir. The chlorophyll values were high during the low water phase in the reservoir which was also the period of summer. Following the rains and increase in water depth phytoplankton biomass decreases on account of (a) dilution, (b) loss from the reservoir through the outlets and (c) settling to the bottom along with silt. The diel variations of chlorophyll showed that the peak value was reached mostly at 12 noon due to the migration of phytoplankton to the surface.  相似文献   

20.
This study was conducted to analyse vertical dynamics of phytoplankton distribution in Shira Lake during the summer stratification regime. From late June to September phytoplankton in Shira Lake were stratified with the maximum in the lower part of the thermocline, at a depth of 8–12 m, with a chlorophyll concentration up to 23 g and biomass up to 5 mg l–1. Maxima of chlorophyll and biomass of cyanobacteria and green algae were in different layers. From June to September a major part of chlorophyll a was in green algae, while under ice – in cyanobacteria. The variable fluorescence proves high photosynthetic activity of algae in the depth assemblage. Epifluorescent analysis disclosed that additional light-harvesting pigments were better developed in cells from the depth maximum. The maximum of gross primary production calculated from fluorescence corresponded to the depth maximum of phytoplankton. Primary production over a season was 2.7 gO2 m–2. Formation mechanisms of the depth maximum of phytoplankton are discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号