首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of the reversible thermal unfolding, irreversible thermal unfolding, and reductive unfolding processes of bovine pancreatic ribonuclease A (RNase A) were investigated in NaCl/Pi solutions. Image parameters including Shannon entropy, Hamming distance, mutual information and correlation coefficient were used in the analysis of the CD and 1D NMR spectra. The irreversible thermal unfolding transition of RNase A was not a cooperative process, pretransitional structure changes occur before the main thermal denaturation. Different dithiothreitol (dithiothreitolred) concentration dependencies were observed between 303 and 313 K during denaturation induced by a small amount of reductive reagent. The protein selectively follows a major unfolding kinetics pathway with the selectivity can be altered by temperature and reductive reagent concentration. Two possible explanations of the selectivity mechanism were discussed.  相似文献   

2.
Previous studies have predicted five disulfide bonds in Aspergillus niger phytase (phy A). To investigate the role of disulfide bonds, intrinsic fluorescence spectra, far-ultraviolet circular dichroism (CD) spectra, and an enzyme activity assay were used to compare the differences of catalytic activity and conformational stability of phytase during denaturation in urea in the presence and absence of dithiothreitol (DTT). In the presence of 2 mM DTT, the inactivation and unfolding were greatly enhanced at the same concentration of denaturant. The fluorescence emission maximum red shift and decreases of ellipticity at 222 nm were in accord with the changes of catalytic activity. The kinetics of the unfolding courses were a biphasic process consisting of two first-order reactions in the absence of DTT and a monophasic process of a first-order reaction in the presence of DTT. The results suggested that the loss of enzymatic activity was most likely because of a conformational change, and that disulfide bonds played an important role in three-dimensional structure and catalytic activity.  相似文献   

3.
The inactivation and unfolding of aminoacyclase (EC 3.5.1.14) during denaturation by different concentrations of trifluoroethanol (TFE) have been studied. A marked decrease in enzyme activity was observed at low TFE concentrations. The kinetic theory of the substrate reaction during irreversible inhibition of enzyme activity described previously by Tsou [Tsou (1988),Adv. Enzymol. Related Areas Mol. Biol. 61, 381–436] was applied to study the kinetics of the inactivation course of aminoacyclase during denaturation by TFE. The inactivation rate constants for the free enzyme and substrate-enzyme complex were determined by Tsou's method. The inactivation reaction was a monophasic first-order reaction. The kinetics of the unfolding course were a biphasic process consisting of two first-order reactions. At 2% TFE concentration, the inactivation rate of the enzyme was much faster than the unfolding rate. At a higher concentration of TFE (10%), the inactivation rate was too fast to be determined by conventional methods, whereas the unfolding course remained as a biphasic process with fast and slow reactions occurring at measurable rates. The results suggest that the aminoacyclase active site containing Zn2+ ions is situated in a limited and flexible region of the enzyme molecule that is more fragile to the denaturant than the protein as a whole.  相似文献   

4.
The inactivation and conformational changes of the multifunctional fatty acid synthase (acyl-CoA:malonyl-CoA C-acyltransferase (decarboxylating, oxoacyl- and enoyl-reducing and thioester-hydrolyzing), EC 2.3.1.85) from chicken liver have been studied in urea solution. The results show that complete inactivation of the fatty acid synthase occurs before obvious conformational changes with regard to the overall, beta-ketoacyl reduction and acetoacetyl-CoA reduction reactions. Significant conformational changes indicated by the changes of the intrinsic fluorescence emission and the circular dichroism spectra occurred at higher urea concentrations. The kinetic rate constants for the two phase inactivation and unfolding reactions were measured and semilogarithmic plots of the activity versus time gave curves which could be resolved into two straight lines, indicating that both the inactivation and unfolding processes consisted of fast and slow phases as a first-order reaction. The results from Lineweaver-Burk plots indicated that urea is a competitive inhibitor for acetyl-CoA and malonyl-CoA, with K(m) increasing with increasing urea concentrations. However, urea is a noncompetitive inhibitor for NADPH, the substrate of the overall reaction and beta-ketoacyl reduction reaction, and acetylacetate, the substrate of the beta-ketoacyl reduction reaction. Activation by low concentrations of urea was observed although this activation was only temporarily induced in an early stage of inactivation. The aggregation phenomenon of the fatty acid synthase in a certain concentration range of urea (3-4 M) was also observed during unfolding. This result shows that this multifunctional enzyme unfolds with competition with misfolding in the folding pathway. Comparison of inactivation and conformational changes of the enzyme as well as aggregation imply that unfolding intermediates may exist during urea denaturation. The possible unfolding pathway of fatty acid synthase is also discussed in this paper.  相似文献   

5.
Vu DM  Myers JK  Oas TG  Dyer RB 《Biochemistry》2004,43(12):3582-3589
Fast relaxation kinetics studies of the B-domain of staphylococcal protein A were performed to characterize the folding and unfolding of this small three-helix bundle protein. The relaxation kinetics were initiated using a laser-induced temperature jump and probed using time-resolved infrared spectroscopy. The kinetics monitored within the amide I' absorbance of the polypeptide backbone exhibit two distinct kinetics phases with nanosecond and microsecond relaxation times. The fast kinetics relaxation time is close to the diffusion limits placed on protein folding reactions. The fast kinetics phase is dominated by the relaxation of the solvated helix (nu = 1632 cm(-1)), which reports on the fast relaxation of the individual helices. The slow kinetics phase follows the cooperative relaxation of the native helical bundle core that is monitored by both solvated (nu = 1632 cm(-1)) and buried helical IR bands (nu = 1652 cm(-1)). The folding rates of the slow kinetics phase calculated over an extended temperature range indicate that the core formation of this protein follows a pathway that is energetically downhill. The unfolding rates are much more strongly temperature-dependent indicating an activated process with a large energy barrier. These results provide significant insight into the primary process of protein folding and suggest that fast formation of helices can drive the folding of helical proteins.  相似文献   

6.
Using DTT(red) as the reducing agent, the kinetics of the reductive unfolding of onconase, a frog ribonuclease, has been examined. An intermediate containing three disulfides, Ir, that is formed rapidly in the reductive pathway, is more resistant to further reduction than the parent molecule, indicating that the remaining disulfides in onconase are less accessible to DTT(red). Disulfide-bond mapping of Ir indicated that it is a single species lacking the (30-75) disulfide bond. The reductive unfolding pattern of onconase is consistent with an analysis of the exposed surface area of the cysteine sulfur atoms in the (30-75) disulfide bond, which reveals that these atoms are about four- and sevenfold, respectively, more exposed than those in the next two maximally exposed disulfides. By contrast, in the reductive unfolding of the homologue, RNase A, there are two intermediates, arising from the reduction of the (40-95) and (65-72) disulfide bonds, which takes place in parallel, and on a much longer time-scale, compared to the initial reduction of onconase; this behavior is consistent with the almost equally exposed surface areas of the cysteine sulfur atoms that form the (40-95) and (65-72) disulfide bonds in RNase A and the fourfold more exposed cysteine sulfur atoms of the (30-75) disulfide bond in onconase. Analysis and in silico mutation of the residues around the (40-95) disulfide bond in RNase A, which is analogous to the (30-75) disulfide bond of onconase, reveal that the side-chain of tyrosine 92 of RNase A, a highly conserved residue among mammalian pancreatic ribonucleases, lies atop the (40-95) disulfide bond, resulting in a shielding of the corresponding sulfur atoms from the solvent; such burial of the (30-75) sulfur atoms is absent from onconase, due to the replacement of Tyr92 by Arg73, which is situated away from the (30-75) disulfide bond and into the solvent, resulting in the large exposed surface-area of the cysteine sulfur atoms forming this bond. Removal of Tyr92 from RNase A resulted in the relatively rapid reduction of the mutant to form a single intermediate (des [40-95] Y92A), i.e. it resulted in an onconase-like reductive unfolding behavior. The reduction of the P93A mutant of RNase A proceeds through a single intermediate, the des [40-95] P93A species, as in onconase. Although mutation of Pro93 to Ala does not increase the exposed surface area of the (40-95) cysteine sulfur atoms, structural analysis of the mutant reveals that there is greater flexibility in the (40-95) disulfide bond compared to the (65-72) disulfide bond that may make the (40-95) disulfide bond much easier to expose, consistent with the reductive unfolding pathway and kinetics of P93A. Mutation of Tyr92 to Phe92 in RNase A has no effect on its reductive unfolding pathway, suggesting that the hydrogen bond between the hydroxyl group of Tyr92 and the carbonyl group of Lys37 has no impact on the local unfolding free energy required to expose the (40-95) disulfide bond. Thus, these data shed light on the differences between the reductive unfolding pathways of the two homologous proteins and provide a structural basis for the origin of this difference.  相似文献   

7.
S H Lin  Y Konishi  B T Nall  H A Scheraga 《Biochemistry》1985,24(11):2680-2686
The kinetics of folding/unfolding of cross-linked Lys7-dinitrophenylene-Lys41-ribonuclease A were studied and compared to those of unmodified ribonuclease A (RNase A) at various concentrations of guanidine hydrochloride. The folding of the denatured cross-linked protein involved one fast-folding species (22 +/- 4%) and two slow-folding species, as observed in unmodified ribonuclease A. Also, a nativelike intermediate, analogous to that reported previously for unmodified ribonuclease A [Cook, K. H., Schmid, F. X., & Baldwin, R. L. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 6157], has been detected on the folding pathway of cross-linked ribonuclease A. The extrinsic cross-link between Lys7 and Lys41 did not affect the rate constants for the folding kinetics of these three species. The cross-link did, however, significantly affect the rate constant for unfolding of the native protein. The conformation of the protein in the transition state of the unfolding pathway was deduced from an analysis of the kinetic data. It appears that the 41 N-terminal residues are unfolded in the transition state of the unfolding pathway. Thus, the unfolding pathway of RNase A is sequential in that further unfolding (after the transition state) follows the unfolding of the 41 N-terminal residues. Also, the conformation of the 41 N-terminal residues does not play a role in the folding pathway. Presumably, if the cross-link were introduced instead between two other residues that are in the segment(s) involved in the rate-limiting step(s), it could increase the refolding rate constants and possibly the concentration of fast-folding species.  相似文献   

8.
A K Bhuyan  J B Udgaonkar 《Biochemistry》1999,38(28):9158-9168
The kinetics of the slow folding and unfolding reactions of barstar, a bacterial ribonuclease inhibitor protein, have been studied at 23(+/-1) degrees C, pH 8, by the use of tryptophan fluorescence, far-UV circular dichroism (CD), near-UV CD, and transient mixing (1)H nuclear magnetic resonance (NMR) spectroscopic measurements in the 0-4 M range of guanidine hydrochloride (GdnHCl) concentration. The denaturant dependences of the rates of folding and unfolding processes, and of the initial and final values of optical signals associated with these kinetic processes, have been determined for each of the four probes of measurement. Values determined for rates as well as amplitudes are shown to be very much probe dependent. Significant differences in the intensities and rates of appearance and disappearance of several resolved resonances in the real-time one-dimensional NMR spectra have been noted. The NMR spectra also show increasing dispersion of chemical shifts during the slow phase of refolding. The denaturant dependences of rates display characteristic folding chevrons with distinct rollovers under strongly native as well as strongly unfolding conditions. Analyses of the data and comparison of the results obtained with different probes of measurement appear to indicate the accumulation of a myriad of intermediates on parallel folding and unfolding pathways, and suggest the existence of an ensemble of transition states. The energetic stabilities of the intermediates estimated from kinetic data suggest that they are approximately half as stable as the fully folded protein. The slowness of the folding and unfolding processes (tau = 10-333 s) and values of 20.5 (+/-1.4) and 18 (+/-0.5) kcal mol(-)(1) for the activation energies of the slow refolding and unfolding reactions suggest that proline isomerization is involved in these reactions, and that the intermediates accumulate and are therefore detectable because the slow proline isomerization reaction serves as a kinetic trap during folding.  相似文献   

9.
The unfolding and inhibition study of mushroom tyrosinase have been studied in the presence of different denaturants such as sodium dodecyl sulfate (SDS), guanidine hydrochloride (GdnHCl), and urea. The kinetic two-phase rate constants were commonly measured from semilogarithmic plots of the activity versus time, which resolved into two straight lines, indicating that the inactivation process consisted of fast and slow phases as a first-order reaction. This result also implied that transient partially folded intermediate existed during tyrosinase unfolding pathway. Mushroom tyrosinase had different behaviors to denaturants in regard with: noncooperative binding manner by SDS while cooperative interactions by GdnHCl and urea; in equilibrium state, SDS-micelle never completely inactivated enzyme activity while GdnHCl has single step denaturation and urea induced a typical transition-like process. Various kinetic parameters for each denaturant were calculated and the possible unfolding pathway scheme was discussed.  相似文献   

10.
The equilibrium stability and conformational unfolding kinetics of the [C40A, C95A] and [C65S, C72S] mutants of bovine pancreatic ribonuclease A (RNase A) have been studied. These mutants are analogues of two nativelike intermediates, des[40-95] and des[65-72], whose formation is rate-limiting for oxidative folding and reductive unfolding at 25 degrees C and pH 8.0. Upon addition of guanidine hydrochloride, both mutants exhibit a fast conformational unfolding phase when monitored by absorbance and fluorescence, as well as a slow phase detected only by fluorescence which corresponds to the isomerizations of Pro93 and Pro114. The amplitudes of the slow phase indicate that the two prolines, Pro93 and Pro114, are fully cis in the folded state of the mutants and furthermore that the 40-95 disulfide bond is not responsible for the quenching of Tyr92 fluorescence observed in the slow unfolding phase, contrary to an earlier proposal [Rehage, A., and Schmid, F. X. (1982) Biochemistry 21, 1499-1505]. The ratio of the kinetic unfolding m value to the equilibrium m value indicates that the transition state for conformational unfolding in the mutants exposes little solvent-accessible area, as in the wild-type protein, indicating that the unfolding pathway is not dramatically altered by the reduction of the 40-95 or 65-72 disulfide bond. The stabilities of the folded mutants are compared to that of wild-type RNase A. These stabilities indicate that the reduction of des[40-95] to the 2S species is rate-limited by global conformational unfolding, whereas that of des[65-72] is rate-limited by local conformational unfolding. The isomerization of Pro93 may be rate-limiting for the reduction of the 40-95 disulfide bond in the native protein and in the des[65-72] intermediate.  相似文献   

11.
A model is proposed to account for the observation that the denaturation of small proteins apparently occurs in two kinetic phases. It is suggested that only one of these phases--the fast one--is actually an unfolding process. The slow phase is assumed to arise from the cis-trans isomerism of proline residues in the denaturated protein. From model compound data, it is shown that the expected rate for isomerism is in satisfactory agreement with the rates actually observed for protein folding. It is also shown that a simple model of protein unfolding based on the isomerism concept is very successful in accounting for many known experimental characteristics of the kinetics and thermodynamic of protein denaturation. Thus, the model is able to predict that two kinetic phases will be seen in the transition region while none are seen in the base-line regions, that both the fast and slow refolding phases lead to the native protein as the product, that the fast phase becomes the only observable phase for jumps ending far in the denatured base-line region, that most or all small proteins show a limiting low-temperature activation energy of ca. 20,000 cal, and that the relaxtion time for the slow phase seen in cytochrome c denaturation is much shorter than for all other small proteins. By utilizing "double-jump" experiments, it is shown directly that the slow phase is not part of the unfolding process but that it corresponds to a transition among two or more denatured forms which have identical spectroscopic (286.5 nm) properties. Thus, the slow relaxation is "invisible" except in the transition region where it couples to the fast unfolding equilibrium. Finally, since the present model assumes that only one of the major kinetic phases seen in denaturation reactions is concerned with the denaturation process per se, it is in agreement with numerous thermodynamic studies which show consistency with the two-state model for unfolding.  相似文献   

12.
Patra AK  Udgaonkar JB 《Biochemistry》2007,46(42):11727-11743
The mechanisms of folding and unfolding of the small plant protein monellin have been delineated in detail. For this study, a single-chain variant of the natively two-chain monellin, MNEI, was used, in which the C terminus of chain B was connected to the N terminus of chain A by a Gly-Phe linker. Equilibrium guanidine hydrochloride (GdnHCl)-induced unfolding experiments failed to detect any partially folded intermediate that is stable enough to be populated at equilibrium to a significant extent. Kinetic experiments in which the refolding of GdnHCl-unfolded protein was monitored by measurement of the change in the intrinsic tryptophan fluorescence of the protein indicated the accumulation of three transient partially structured folding intermediates. The fluorescence change occurred in three kinetic phases: very fast, fast, and slow. It appears that the fast and slow changes in fluorescence occur on competing folding pathways originating from one unfolded form and that the very fast change in fluorescence occurs on a third parallel pathway originating from a second unfolded form of the protein. Kinetic experiments in which the refolding of alkali-unfolded protein was monitored by the change in the fluorescence of the hydrophobic dye 8-anilino-1-naphthalenesulfonic acid (ANS), consequent to the dye binding to the refolding protein, as well as by the change in intrinsic tryptophan fluorescence, not only confirmed the presence of the three kinetic intermediates but also indicated the accumulation of one or more early intermediates at a few milliseconds of refolding. These experiments also exposed a very slow kinetic phase of refolding, which was silent to any change in the intrinsic tryptophan fluorescence of the protein. Hence, the spectroscopic studies indicated that refolding of single-chain monellin occurs in five distinct kinetic phases. Double-jump, interrupted-folding experiments, in which the accumulation of folding intermediates and native protein during the folding process could be determined quantitatively by an unfolding assay, indicated that the fast phase of fluorescence change corresponds to the accumulation of two intermediates of differing stabilities on competing folding pathways. They also indicated that the very slow kinetic phase of refolding, identified by ANS binding, corresponds to the formation of native protein. Kinetic experiments in which the unfolding of native protein in GdnHCl was monitored by the change in intrinsic tryptophan fluorescence indicated that this change occurs in two kinetic phases. Double-jump, interrupted-unfolding experiments, in which the accumulation of unfolding intermediates and native protein during the unfolding process could be determined quantitatively by a refolding assay, indicated that the fast unfolding phase corresponds to the formation of fully unfolded protein via one unfolding pathway and that the slow unfolding phase corresponds to a separate unfolding pathway populated by partially unfolded intermediates. It is shown that the unfolded form produced by the fast unfolding pathway is the one which gives rise to the very fast folding pathway and that the unfolded form produced by the slower unfolding pathway is the one which gives rise to the slow and fast folding pathways.  相似文献   

13.
Mukaiyama A  Takano K  Haruki M  Morikawa M  Kanaya S 《Biochemistry》2004,43(43):13859-13866
Equilibrium and kinetic studies were carried out under denaturation conditions to clarify the energetic features of the high stability of a monomeric protein, ribonuclease HII, from a hyperthermophile, Thermococcus kodakaraensis (Tk-RNase HII). Guanidine hydrochloride (GdnHCl)-induced unfolding and refolding were measured with circular dichroism at 220 nm, and heat-induced denaturation was studied with differential scanning calorimetry. Both GdnHCl- and heat-induced denaturation are very reversible. It was difficult to obtain the equilibrated unfolding curve of Tk-RNase HII below 40 degrees C, because of the remarkably slow unfolding. The two-state unfolding and refolding reactions attained equilibrium at 50 degrees C after 2 weeks. The Gibbs energy change of GdnHCl-induced unfolding (DeltaG(H(2)O)) at 50 degrees C was 43.6 kJ mol(-1). The denaturation temperature in the DSC measurement shifted as a function of the scan rate; the denaturation temperature at a scan rate of 90 degrees C h(-1) was higher than at a scan rate of 5 degrees C h(-1). The unfolding and refolding kinetics of Tk-RNase HII were approximated as a first-order reaction. The ln k(u) and ln k(r) values depended linearly on the denaturant concentration between 10 and 50 degrees C. The DeltaG(H(2)O) value obtained from the rate constant in water using the two-state model at 50 degrees C, 44.5 kJ mol(-1), was coincident with that from the equilibrium study, 43.6 kJ mol(-1), suggesting the two-state folding of Tk-RNase HII. The values for the rate constant in water of the unfolding for Tk-RNase HII were much smaller than those of E. coli RNase HI and Thermus thermophilus RNase HI, which has a denaturation temperature similar to that of Tk-RNase HII. In contrast, little difference was observed in the refolding rates among these proteins. These results indicate that the stabilization mechanism of monomeric protein from a hyperthermophile, Tk-RNase HII, with reversible two-state folding is characterized by remarkably slow unfolding.  相似文献   

14.
如何解释绿脓杆菌apoazurin变性过程的复杂机制是一个有争议的问题.最近的研究表明apoazurin的复杂变性机制可以归结为其天然态存在着至少两种构象.利用内源荧光发射谱和圆二色谱进一步研究了apoazurin的脲变性机制,发现其稳态脲变性符合表观的二态过程,但其动力学为双相过程.在高浓度脲中快反应在几秒钟内完成,而慢反应要经过几个小时.快反应和慢反应的mu值分别为2.24和2.45kJ·mol-1·M-1,去折叠活化能的差值为22kJ·mol-1.时间分辨的荧光发射谱和圆二色谱可以用天然态和完全变性态的谱图通过一个固定的比例参数进行重建.结果表明,过去被广泛接受的存在着变性中间体的机制是不正确的,而apoazurin在天然态存在至少两种构象的假设是合理的.  相似文献   

15.
The refolding and unfolding kinetics of the all-beta-sheet protein human basic fibroblast growth factor (hFGF-2) were studied by fluorescence spectroscopy. The kinetics of the unfolding transition are monophasic. The refolding reaction at high and low guanidinium chloride (GdmCl) concentrations is best described by mono- and biphasic folding, respectively. Refolding and unfolding of hFGF-2 (155 amino acids) is very slow compared with other non-disulfide-bonded monomeric proteins of similar size. For example, the rate constant for unfolding at 4.5 mol.liter(-1) GdmCl is 0.006 s(-1), and the refolding rate constants at 0.4 mol.liter(-1) GdmCl are 0.01 s(-1) and 0.0009 s(-1) (15 degrees C, pH 7.0). A characterization of the thermodynamic nature of the folding process using transition state theory revealed that the slow refolding is almost exclusively controlled by entropic factors, namely the strong loss of conformational freedom during refolding. The rate of the slow unfolding kinetics is mainly (and at low denaturant concentrations exclusively) controlled by the large positive change in enthalpy. hFGF-2 shows similar slow folding kinetics to that of its structural homolog interleukin-1beta. Since both proteins show very little sequence identity, it is suggested that their slow folding kinetics are determined by the complex beta-sheet arrangement of the native molecules.  相似文献   

16.
Chung HS  Tokmakoff A 《Proteins》2008,72(1):474-487
Transient thermal unfolding of ubiquitin is investigated using nonlinear infrared spectroscopy after a nanosecond laser temperature jump (T-jump). The abrupt change in the unfolding free energy surface and the ns time resolution allow us to observe a fast response on ns to micros time-scales, which we attribute to downhill unfolding, before a cross-over to ms kinetics. The downhill unfolding by a sub-population of folded proteins is induced through a shift of the barrier toward the native state. By adjusting the T-jump width, the effect of the initial (T(i)) and final (T(f)) temperature on the unfolding dynamics can be separated. From the amplitude of the fast downhill unfolding, the fractional population prepared at the unfolding transition state is obtained. This population increases with both T(i) and with T(f). A two-state kinetic analysis of the ms refolding provides thermodynamic information about the barrier height. By a combination of the fast and slow unfolding and folding parameters, a quasi-two-state kinetic analysis is performed to calculate the time-dependent population changes of the folded state. This calculation coincides with the experimentally obtained population changes at low temperature but deviations are found in the T-jump from 67 to 78 degrees C. Using temperature-dependent barrier height changes, a temperature Phi value analysis is performed. The result shows a decreasing trend of Phi(T) with temperature, which indicates an increase of the heterogeneity of the transition state. We conclude that ubiquitin unfolds along a well-defined pathway at low temperature which expands with increasing temperature to include multiple routes.  相似文献   

17.
A combined NMR and absorbance stopped-flow has been developed for monitoring the kinetics of biochemical reactions. We demonstrate its usefulness in following the alkaline denaturation of human hemoglobin. No glassblowing is required in the fabrication of the apparatus. Commercially available valves, syringes, tubing, and tubing connectors are employed whenever possible. Easily fabricated light guides are used to pipe light to and from the optical cell. The stopped-flow uses a 5-mm NMR tube followed by an optical cell with a 0.5-mm optical path length. This allows simultaneous measurements of NMR and absorbance changes. At a terminal flow velocity of 7.5 ml/s, the NMR and optical dead times were 60 and 260 ms, respectively. For the study reported here the oxyhemoglobin was labeled with a 19F probe attached to the beta-93 cysteine. The native protein at pH 7 has an NMR spectrum consisting of a singlet, and the fully denatured hemoglobin sample at pH 12 has a spectrum consisting of three singlets. During the denaturation process another NMR peak appears rapidly and then decays away over the time course of the reaction. The absorbance changes at the high concentration employed for the NMR study (2.08 mM in heme) follow very nearly first-order kinetics. The events monitored by NMR, though in the same time frame as the optical changes, are of much greater complexity, and show the utility of multiple probes for monitoring protein unfolding.  相似文献   

18.
Urea-induced protein denaturation can be effectively inhibited by trehalose, but the thermodynamic and kinetic behaviors are still unclear. Herein, the counteraction of trehalose on urea-induced unfolding of ferricytochrome c was studied. Thermodynamic parameters for the counteraction of trehalose were derived based on fluorescence spectroscopic data. Then the kinetics was emphatically investigated by stopped-flow fluorescence spectroscopy. Urea-induced unfolding of ferricytochrome c in 8.00 mol/L urea solution reveals two observable phases, including fast and slow phases following a burst phase. Trehalose has little influence on the burst phase amplitude. Nevertheless, the observable unfolding pathway is significantly affected by trehalose. At lower trehalose concentrations (<0.20 mol/L) in 8.00 mol/L urea, the unfolding pathways still keep to show two phases. However, the rate constant and amplitude for the fast phase diminish with increasing trehalose concentration. In contrast, the rate constant for the slow phase shows only a slight change with a significant increase of the amplitude. At higher trehalose concentrations (>0.30 mol/L), the unfolding pathway is transformed into a single slow phase. The rate constant and amplitude for the single phase also decrease with increasing trehalose concentration. The studies are expected to help our understanding of trehalose effects on protein stability.  相似文献   

19.
The kinetics of the refolding reactions of type lambda Bence Jones proteins from 4 M GuHCl were studied by CD, ultraviolet absorption, and fluorescence spectrophotometry. The kinetics were complex and consisted of at least three phases, an undetectable fast phase, a detectable fast phase, and a slow phase. The slow phase followed first-order kinetics and the three experimental methods used gave similar rate constants for all the Bence Jones proteins (about 3 X 10(-3) s-1). The refolding reaction of VL fragment was too fast to be measured in the present experiments. The refolding process of CL fragment was very similar to those of Bence Jones proteins except that the detectable fast phase was less significant. The rate constant of the slow phase observed for the CL fragment was similar to those of the slow phase observed for Bence Jones proteins. The activation energy of the slow phase was the same for a Bence Jones protein and its CL fragment. These results indicate that the refolding kinetics of the CL domain are very similar to those of isolated CL fragment and that refolding of the VL domain precedes refolding of the CL domain, even though both domains have similar immunoglobulin folds. However, the results of refolding experiments on Bence Jones proteins, and VL and CL fragments in the presence of ANS, as well as the other lines of evidence, indicate that the refolding kinetics of the Bence Jones protein molecule cannot be expressed as simple sum of the refolding reactions of isolated VL and CL fragments.  相似文献   

20.
Chatani E  Nonomura K  Hayashi R  Balny C  Lange R 《Biochemistry》2002,41(14):4567-4574
To clarify the structural role of Phe46 inside the hydrophobic core of bovine pancreatic ribonuclease A (RNase A), thermal and pressure unfolding of wild-type RNase A and three mutant forms (F46V, F46E, and F46K) were analyzed by fourth-derivative UV absorbance spectroscopy. All the mutants, as well as the wild type, exhibited a two-state transition during both thermal and pressure unfolding, and both T(m) and P(m) decreased markedly when Phe46 was replaced with valine, glutamic acid, or lysine. The strongest effect was on the F46K mutant and the weakest on F46V. Both unfolding processes produced identical blue shifts in the fourth-derivative spectra, indicating that the tyrosine residues are similarly exposed in the temperature- and pressure-induced unfolded states. A comparison of Gibbs free energies determined from the pressure and temperature unfoldings, however, gave DeltaG(p)/DeltaG(t) ratios (r) of 1.7 for the wild type and 0.92 +/- 0.03 for the mutants. Furthermore, the DeltaV value for each mutant was larger than that for the wild type. CD spectra and activity measurements showed no obvious major structural differences in the folded state, indicating that the structures of the Phe46 mutants and wild type differ in the unfolded state. We propose a model in which Phe46 stabilizes the hydrophobic core at the boundary between two structural domains. Mutation of Phe46 decreases protein stability by weakening the unfolding cooperativity between these domains. This essential function of Phe46 in RNase A stability indicates that it belongs to a chain-folding initiation site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号