首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Two isozymes of diphosphopyridine nucleotide-linked glycerol-3-P dehydrogenase (E.C. 1.1.1.8) were studied with respect to their tissue distribution in chicken, their ontogeny in chicken liver, and their avian taxonomic distribution. These isozymes in chicken are designated liver type and muscle type based on the tissue of highest concentration.Electrophoretic analysis shows that the liver type is found in small amounts or is undetectable in all tissues studied exept liver. The muscle type is found in skeletal muscles and kidney. Presumptive hybrid enzymes occur at low levels in chicken liver and kidney.The tissue distribution of glycerol-3-P dehydrogenase in several birds capable of sustained flight is different than in chicken. A single electrophoretic form is predominant in both liver and breast muscle with the activity in liver about ten times greater than in breast muscle. Chicken liver and breast muscle extracts have similar levels of glycerol-3-P dehydrogenase activity.Glycerol-3-P dehydrogenase, solely of the liver type, appears simultaneously with liver formation in the chicken embryo and reaches peak concentrations in the liver between the 10th and 14th day of embryonic development. This embryonic pattern is quite different from the muscle type in breast muscle where the enzyme does not appear until after hatching.These observations, when correlated with the metabolism of lipids and carbohydrates in liver and breast muscle of chicken and birds capable of sustained flight, lend support to a hypothesis that the two isozymes have distinct physiological roles. The liver type is associated with the metabolism of the glycerol moiety of triglycerides and phospholipids whereas the muscle type operates in concert with muscle type lactate dehydrogenase to oxidize DPNH during anaerobic muscle glycolysis. The role of glycerol-3-P dehydrogenase in muscle appears to be essential for prolonging anaerobic glycolysis. It is proposed that the isozymes of glycerol-3-P dehydrogenase originated by gene duplication and then diverged via selective evolution to fulfill the metabolic roles proposed.This research was supported in part by Grant NSG-374 from the National Aeronautics and Space Administration, by Grant CA-03611 from the National Institute of Health, and by Grant P77 J from the American Cancer Society. Publication 810 from the Graduate Department of Biochemistry, Brandeis University.Recipient of Training Grant GM-0212 from the National Institute of General Medical Sciences.  相似文献   

2.
The NADP-dependent glycerol-3-phosphate dehydrogenase activity in liver, heart and skeletal muscle of rat was studied. The activity is found when glyceraldehyde-3-phosphate or ribose-5-phosphate in the presence of ATP are taken as substrates. The data obtained confirm that NADP-dependent glycerol-3-phosphate dehydrogenase exists in skeletal muscle and demonstrate that it is found in heart muscle as well.  相似文献   

3.
Dexamethasone addition to cultured hepatocytes caused a 90-fold increase in mRNA for 6-phosphofructo 2-kinase/fructose-2,6-bisphosphatase. Glucocorticoid administration in vivo also increased the enzyme's mRNA in skeletal muscle by 3-4-fold. The sequence of the 5'-flanking region of the enzyme's gene revealed at least one consensus glucocorticoid response element. The amino acid sequence derived from a partial cDNA clone for the rat skeletal muscle bifunctional enzyme was identical to that of the liver isozyme except for an undetermined amount of N-terminal sequence. It is concluded that the rat muscle and liver isozymes, which are postulated to be identical except for the N-terminal region, are both regulated by glucocorticoids.  相似文献   

4.
Dehydroepiandrosterone (DHEA) treatment of rats decreases gain of body weight without affecting food intake; simultaneously, the activities of liver malic enzyme and cytosolic glycerol-3-P dehydrogenase are increased. In the present study experiments were conducted to test the possibility that DHEA enhances thermogenesis and decreases metabolic efficiency via trans-hydrogenation of cytosolic NADPH into mitochondrial FADH2 with a consequent loss of energy as heat. The following results provide evidence which supports the proposed hypothesis: (a) the activities of cytosolic enzymes involved in NADPH production (malic enzyme, cytosolic isocitrate dehydrogenase, and aconitase) are increased after DHEA treatment; (b) cytosolic glycerol-3-P dehydrogenase may use both NAD+ and NADP+ as coenzymes; (c) activities of both cytosolic and mitochondrial forms of glycerol-3-P dehydrogenase are increased by DHEA treatment; (d) cytosol obtained from DHEA-treated rats synthesizes more glycerol-3-P during incubation with fructose-1,6-P2 (used as source of dihydroxyacetone phosphate) and NADP+; the addition of citratein vitro further increases this difference; (e) mitochondria prepared from DHEA-treated rats more rapidly consume glycerol-3-P added exogenously or formed endogenously in the cytosol in the presence of fructose-1,6-P2 and NADP+.  相似文献   

5.
During adipocyte differentiation of 3T3-L1 cells, glyburide increased the specific activity (mU/mg protein) of glycerol-3-P dehydrogenase (by at least 14-fold) and glutamine synthetase (by 5-fold). The glyburide-mediated increases in enzyme activities were greater in the presence than in the absence of insulin. Our data indicate that glyburide either potentiates or mimics the actions of insulin to increase the activity of glycerol-3-P dehydrogenase during adipocyte differentiation of cultured 3T3-L1 cells.  相似文献   

6.
The Saccharomyces cerevisiae glycerol pathway (GPD1 and GPP2) was evolved in vivo in Escherichia coli. The central metabolism of E. coli was engineered to link glucose consumption and glycerol production. The engineered strain was evolved in a chemostat culture and a high glycerol producer was rapidly obtained. The evolution of the strain was associated to a deletion between GPD1 and GPP2, resulting in the production of a fusion protein with both glycerol-3-P dehydrogenase and glycerol-3-P phosphatase activities. The higher efficiency of the fusion protein was due to partial glycerol-3-P channeling between the two active sites. The evolved strain produces glycerol from glucose at high yield, concentration and productivity.  相似文献   

7.
Mitochondrial glycerol-3-P dehydrogenase (EC 1.1.99.5) has been purified in 20% yield from both rabbit skeletal muscle and brain using a four step procedure involving osmotic shock, solubilization with Triton X-100, hydrophobic chromatography, gel filtration, and preparative column isoelectrofocusing. The active muscle and brain enzymes were found to be 95% and 80% homogeneous, respectively. Final purification was performed on the denatured subunit. The active enzyme from each of the tissues focused at pH 5.25 +/- 0.12 and each produced similar biphasic thermal inactivation plots at 50 degrees C. Mixtures of the purified brain and muscle enzymes co-migrated in discontinuous electrophoresis gels and each enzyme exhibited a single polypeptide component on sodium dodecyl sulfate (SDS) gels either when run separately or in mixtures. The subunit molecular weight was shown to be 76,000 +/- 3,000 by SDS-gel electrophoresis and gel filtration in 6 M guanidine HCl. One mole of noncovalently bound FAD and 1 mole of iron were measured per Mr = 100,000. The amino acid composition was determined based on the assumption of 70 aspartate residues per subunit to give a Mr = 76,000. The absorption spectrum has a maximum at 416 nm and a shoulder at 450 to 460 nm which is bleached on treatment with sodium dithionite. The maximum at 416 nm is removed by treatment with mersalyl.  相似文献   

8.
Two major enzyme forms of cytosolic NAD-linked glycerol-3-phosphate dehydrogenase in rabbit brain have been purified to apparent homogeneity. One major enzyme form designated I6.5 exhibits an iso-electric point at pH 6.5, and is indistinguishable from the major form I6.5 found in other tissues. The other major form, designated I5.9, has an isolectric point at pH 5.9, and by amino acid analysis is shown to be a true isoenzyme distinct from form I6.5. Form I5.9 appears to be closely related to or identical with the major enzyme characteristic of heart. Neither the brain enzyme form I5.9 nor the major heart isoenzyme are inhibited by antiserum to the muscle enzyme. Because of the high apparent Km for NADH, it is postulated that the brain isoenzyme I5.9 serves to maintain glycolysis when NADH levels rise under relatively anaerobic conditions especially during fetal and neonatal development.  相似文献   

9.
Fluoro-o-hydorxyacetone phosphate (fluoroacetol phosphate) has been prepared by oxidation of 1-fluoro-3-chloro-2-propanol to 1-fluoro-3-chloroacetone, phosphorylation with silver dibenzylphosphate, and the intermediate isolation of 1-fluoro-3-hydroxyacetone phosphate dibenzyl ester, followed by catalytic hydrogenation and preparation of the stable monosodium salt. The chloro analog as the pure, stable monosodium salt has been prepared by a similar route from 1,3-dichloroacetone. 1-Fluoro-3-hydroxyacetone-P is substrate for cytosolic NAD+-linked glycerol-3-P dehydrogenese (EC 1.1.1.8) from rabbit skeletal muscle with an apparent Km of 50 mM under conditions in which dihydroxyacetone-P exhibits an apparent Km of 0.15 mM. Under these conditions the fluoro analog is 85% hydrated wheras dihydroxyacetone-P has been shown by others to be 44% hydrated. The turnover numbers are 49,000 molecules of NADH oxidized per minute per molecule of enzyme at 25 degrees with the fluoro analog as substrate, and 60,000 with dihydrocyacetone-P as substrate. The product of the reduction of the fluoro analog has been identified as 1-fluorodeoxyglycerol-3-P. 1-Fluoro-3-hydroxyacetone-P is comparatively weak irreversible inhibitor at 4 degrees of rabbit muscle triosephosphate isomerase (EC 5.3.1.1) with second-order rate constant of 2.6 M minus 1 sec minus 1. Inhibition by pyrazole in vivo of alcohol dehydrogenese catalyzed oxidation of 1-fluorodeoxyglecerol-3-P indicates in mice the reduction of 1-fluoro-3-hydroxyacetone-P to -l-1-fluorodexoxyglycerol-3-P is not significant metabolic route, or that an alternative route exists when the alcohol dehydrogenase dependent pathway is inhibited.  相似文献   

10.
We studied the effects of a sublethal concentration of pyrethroid insecticide fenvalerate on metabolic enzymes, RNA and protein of brain, liver and skeletal muscle of the freshwater catfish, Clarias batrachus. Exposure to fenvalerate gradually decreased the activity of citrate synthase (CS), glucose 6-phosphate dehydrogenase (G6-PDH) and lactate dehydrogenase (LDH) in brain, liver and skeletal muscle up to 21 days. The maximum decrease in enzyme activity was 23-47%. Withdrawal of fenvalerate from the medium for 21 days restored enzyme activity to their control level in all three tissues. RNA and protein content in brain, liver and skeletal muscle decreased significantly with exposure of fenvalerate up to 21 days. The maximum decrease in RNA and protein was 22-32%. Withdrawal of fenvalerate from the medium for 21 days restored the RNA and protein contents to control levels. The present study suggests that fenvalerate impairs cellular metabolism and its biochemical effects are reversible after withdrawal of fenvalerate.  相似文献   

11.
The concentration of cytoplasmic NADP(+)-dependent isocitrate dehydrogenase increased 20.2-fold during gonadotropin-induced development of the immature rat ovary. Measurement was by protein (Western) blotting using polyclonal antibodies raised against purified enzyme from the porcine corpus luteum. The increase in enzyme concentration during development correlated well with the 18.5-fold increase observed for the specific activity of the enzyme in the cytosolic fraction. An immunochemical similarity was demonstrated between the cytoplasmic enzyme from the ovary, testes, placenta, skeletal muscle, brain, liver, kidney, mammary and adrenal gland. However the mitochondrial NADP(+)-dependent isocitrate dehydrogenase from these tissues was found to be immunochemically distinct from the cytoplasmic enzyme. The concentration of the substrate D(+/-)-threo-isocitrate in the ovaries was measured by fluorometry and found to increase 3.1-fold during hormone-induced development. The intracellular concentration of substrate was estimated to be of the same order of magnitude as the enzyme concentration. We conclude that the increase in cytoplasmic NADP(+)-dependent isocitrate dehydrogenase activity observed during the gonadotropin-stimulated development of the rat ovary is due to increased concentration of enzyme rather than to an activation of the enzyme. The activity of the enzyme in vivo appears to be regulated by the availability of the substrate D(+/-)-threo-isocitrate.  相似文献   

12.
Tissue distribution of the cytosolic and mitochondrial glycerol-3-phosphate dehydrogenase (cGPDH and mGPDH) activities in jerboa (Jaculus orientalis), a hibernator, shows the highest level of enzyme activity in skeletal muscle and brown adipose tissue, respectively. The effect of hibernation on cGPDH indicates an increase of activity in all tissues examined. In contrast, hibernation decreases mGPDH activity in all tissues, except skeletal muscle. The effect of thyroid hormones on GPDH activity was tissue specific: in kidneys, cGPDH activity doubled in euthermic jerboas treated with T4. In contrast, 6-n-propyl-2-thiouracil treatment provokes an increase of enzyme activity in brown adipose tissue, liver and brain. T4 treatment leads to a 2.7-fold increase in liver mGPDH activity. 6-n-propyl-2-thiouracil treatment decreases mGPDH activity in the skeletal muscle whereas the opposite effect was observed in brain. Dexamethasone stimulates cGPDH in all tissues examined, except skeletal muscle and kidneys. In the case of mGPDH activity, this increase was observed only for brown adipose tissue and brain. Our results suggest that hibernation, thyroid hormones and dexamethasone probably play a role in the regulation of cGPDH and mGPDH activities in jerboa. Our findings confirm that these enzymes are involved in metabolic adaptation to thermal stress in Jaculus orientalis.  相似文献   

13.
Shen W  Wei Y  Dauk M  Zheng Z  Zou J 《FEBS letters》2003,536(1-3):92-96
We report molecular characterization of an Arabidopsis gene encoding a mitochondrial FAD-dependent glycerol-3-phosphate dehydrogenase (FAD-GPDH) that oxidizes glycerol-3-phosphate (G-3-P) to dihydroxyacetone phosphate. We demonstrate through in vitro targeting assays that the encoded gene product can be imported into mitochondrial membrane systems. Enzyme activity of the protein was confirmed through heterologous expression in Escherichia coli. The Arabidopsis gene is expressed throughout plant development, but at the highest level during seed germination. We also show that expression of the Arabidopsis FAD-GPDH gene is coupled to oxygen consumption and affected by ABA and stress conditions. Together with an NAD(+)-dependent GPDH, this enzyme could form a G-3-P shuttle, as previously established in other eukaryotic organisms, and links cytosolic G-3-P metabolism to carbon source utilization and energy metabolism in plants.  相似文献   

14.
1. Four enzyme fractions which may be involved in the synthesis and breakdown of glycerate-2,3-P2 have been isolated from extracted skeletal muscle by gel-filtration and ion-exchange chromatography. 2. One of the fractions, corresponding to the glycerate-2,3-P2 dependent phosphoglycerate mutase, has been purified to homogeneity. In addition to the main enzymatic activity, it shows intrinsic glycerate-2,3-P2 synthase activity and glycerate-2,3-P2 phosphatase activity stimulable by glycolate-2-P. Its synthase activity represents about 10% of the total synthase activity of the tissue, and its phosphatase activity corresponds to about 60% of the total phosphatase activity. 3. Two of the fractions have glycerate-2,3-P2 synthase, glycerate-2,3-P2 phosphatase and phosphoglycerate mutase activities in a ratio similar to that of the glycerate-2,3-P2 synthase described in mammalian skeletal muscle. Their synthase activity corresponds to about 90% of the total synthase activity, and their phosphatase activity represents about 1% of the total phosphatase activity of the tissue. 4. The fourth fraction shows only glycerate-2,3-P2 phosphatase activity and represents about 40% of the total activity of the tissue. 5. It is suggested that in chicken skeletal muscle the metabolism of the glycerate-2,3-P2 is regulated in a way similar to that described in mammalian skeletal muscle.  相似文献   

15.
1. To compare glucose 1,6-bisphosphate synthesis in different types of cells, we partially purified (2000-fold) a glycerate 1,3 P2-dependent glucose 1,6-bisphosphate synthase from rabbit skeletal muscle. 2. In agreement with the results reported by others for mouse brain and pig skeletal muscle, the enzyme can be separated from bulk phosphoglucomutase (PGM) activity by DEAE-cellulose chromatography of crude cellular extract. This cannot be achieved on human hemolysates where glycerate 1,3-P2-dependent glucose 1,2-bisphosphate synthesis is displayed only by multifunctional PGM2 isoenzymes. 3. The Km values for glycerate 1,3-P2 (0.50 microM), glucose 1-phosphate (90 microM), Mg2+ (0.22 mM), and also pH optimum (7.8) and mol. wt (70,000) of the rabbit skeletal muscle enzyme are similar to those of the enzymes from mouse brain and human red blood cells, but they differ from those reported for the pig skeletal muscle enzyme.  相似文献   

16.
Previous studies have shown that cytosolic glycerol-3-phosphate dehydrogenase (GPDH; EC 1.1.1.8) can be induced by glucocorticoids in mammalian brain, mammary gland, and thymus, but it was thought that no induction occurred in liver. We report here that GPDH is induced by glucocorticoids in several lines of hepatoma cells and in rat hepatocytes cultured in vitro. When rat hepatoma cells of clone FU5AH were exposed to 3 μM hydrocortisone (HC) for 3 days, GPDH specific activity increased greater than sixfold over control. The rate and extent of induction were similar in exponentially growing and stationary-phase cultures of cells. Four other hepatoma cell lines were inducible to a lesser extent, and three lines were not inducible. GPDH was also induced by glucocorticoids in cultures of hepatocytes isolated from livers of 6-day-old rats. The enzyme was induced threeto fourfold by the synthetic glucocorticoid, dexamethasone, in the presence of 1 nM insulin, but the induction was not observed in the absence of insulin.  相似文献   

17.
Fructose-6-phosphate,2-kinase:fructose-2,6-bis-phosphatase from rat skeletal muscle has been purified to homogeneity, and its structure and kinetic properties have been determined. The Mr of the native enzyme was 100,000 and the subunit Mr was 54,000. The apparent Km values of fructose-6-P,2-kinase for Fru-6-P and ATP were 56 and 48 microM, respectively. The apparent Km value for Fru-2,6-P2 of fructose-2,6-bis-phosphatase was 0.4 microM, and the Ki for Fru-6-P was 12.5 microM. The enzyme was bifunctional, and the phosphatase activity was 2.5 times higher than the kinase activity. The enzyme was not phosphorylated by cAMP-dependent protein kinase. The amino acid composition of the skeletal muscle enzyme was similar to that of the rat liver enzyme, and the carboxyl terminus sequence (His-Tyr) was the same as that of the liver enzyme. The tryptic peptides generated from the liver and skeletal muscle enzymes were identical except for two peptides. A peptide corresponding to nucleotides 14-28 of the rat liver enzyme was not detected in the skeletal muscle enzyme. A peptide whose amino acid sequence was Thr-Ala-Ser-Ile-Pro-Gln-Phe-Thr-Asn-Ser-Pro-Thr-Met-Val-Ile-Met-Val-Gly-Leu-Pro - Ala-Arg was also isolated. This peptide was the same as that of rat liver enzyme (nucleotides 31-52) containing the phosphorylation site except in the muscle enzyme two amino terminus amino acids, Gly-Ser(P), have been altered to Thr-Ala. Thus, the rat skeletal muscle enzyme is very similar in structure to the rat liver enzyme except for the lack of possibly one peptide and the lack of a phosphorylation site by the substitution of the target Ser with Ala.  相似文献   

18.
Glycerol is effective in the treatment of brain oedema but it is unclear if this is due solely to osmotic effects of glycerol or whether the brain may metabolize glycerol. We found that intracerebral injection of [14C]glycerol in rat gave a higher specific activity of glutamate than of glutamine, indicating neuronal metabolism of glycerol. Interestingly, the specific activity of GABA became higher than that of glutamate. NMR spectroscopy of brains of mice given 150 micromol [U-13C]glycerol (0.5 m i.v.) confirmed this predominant labelling of GABA, indicating avid glycerol metabolism in GABAergic neurones. Uptake of [14C]glycerol into cultured cerebellar granule cells was inhibited by Hg2+, suggesting uptake through aquaporins, whereas Hg2+ stimulated glycerol uptake into cultured astrocytes. The neuronal metabolism of glycerol, which was confirmed in experiments with purified synaptosomes and cultured cerebellar granule cells, suggested neuronal expression of glycerol kinase and some isoform of glycerol-3-phosphate dehydrogenase. Histochemically, we demonstrated mitochondrial glycerol-3-phosphate dehydrogenase in neurones, whereas cytosolic glycerol-3-phosphate dehydrogenase was three to four times more active in white matter than in grey matter, reflecting its selective expression in oligodendroglia. The localization of mitochondrial and cytosolic glycerol-3-phosphate dehydrogenases in different cell types implies that the glycerol-3-phosphate shuttle is of little importance in the brain.  相似文献   

19.
Cytochrome oxidase, glycerol-3-phosphate dehydrogenase, and succinate dehydrogenase were measured in mitochondrial fractions obtained from rat soleus muscle of control and 8 week T3 + T4 treated animals. Under these conditions of prolonged treatment, there is a five-fold increase in the specific activities of both cytochrome oxidase and glycerole-3-phosphate dehydrogenase. Significant increases in total cellular mitochondrial content and enzyme activities were observed in T3 + T4 treated animals as compared to controls. These results indicate that thyrotoxicosis can induce selective changes in mitochondrial enzymes in slow twitch red (Type I) muscle fibers.  相似文献   

20.
Summary The effect of hypoxia was studied in cold (15°C) and warm (30°C) acclimated goldfish. The hypoxic thresholds, defined as the lowest sustainablePO2 were found to be 1.6 and 4.0 kPa O2 at, respectively, 15°C and 30°C. At these levels the fish did not loose either weight or appetite over a 2-months period. While during starvation under normonic conditions a significant weight loss and breakdown of lactate dehydrogenase (90%) was observed, no such changes were found in fed hypoxic animals. In red lateral muscle, white epaxial muscle and liver of goldfish from 4 differently acclimated groups the maximal activities were measured of: glycogen phosphorylase, hexokinase, malate dehydrogenase, glycerol-3-P dehydrogenase, glucose-6-P dehydrogenase, malic enzyme, succinate oxidase, pyruvate carboxylase, phosphoenol-pyruvate carboxykinase, fructose-bisphosphatase and glucose-6-phosphatase. Thermal compensation, according to Precht's typology, was predominantly observed in red muscle and to a lesser extent in white muscle. The liver glucose-6-P dehydrogenase showed a strong inverse response, which points to enhanced synthetic activity at the higher temperature. Hypoxia acclimation exerted weaker responses at 15°C than at 30°C. Changes in liver enzyme activities suggest depressed protein synthesis and enhanced gluconeogenesis in hypoxic animals. In muscle of 30°C-acclimated goldfish hypoxia induces a significant increase of succinate oxidase activity, indicating adaptation of the aerobic energy metabolism. The occurrence of pyruvate carboxylase, never before observed in vertebrate muscle, probably plays an important role in pyruvate catabolism. Because its action produces oxalo-acetate, the enzyme may stimulate pyruvate oxidation and thus prevent early lactate accumulation. Since all gluconeogenic enzymes were shown to be active in goldfish muscle, the possible occurrence of gluconeogenesis in muscle (albeit at low rate) must be accepted. Enzyme activities in goldfish muscle were compared with literature data for a number of other fish species. This comparison indicates that maximal glycolytic flux in goldfish muscle tissue is rather low, although muscular glycogen levels are very high. It is suggested that this is part of the gold-fish's strategy to cope with hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号