首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The size of the spring barley root system was studied on the basis of its electric capacity in plants grown in nutrient solutions either lacking or containing nitrogen in the form of nitrate or ammonium. Root electric capacity changed in dependence on nutrition from Day 12 after emergence, when F values increased in the root systems of plants exposed to nitrate and ammonium salts. In plants grown in H2O, the values of electric capacity statistically significantly decreased on Days 15 to 17, in plants grown in PK solution lacking nitrogen on Day 20. Root electric capacity of plants grown in full nutrient solution gradually increased on Day 18 after emergence. Then a marked increase in root electric capacity values followed with no statistically significant differences between NH4 + and NO3 - nutrition. Nitrate nutrition of barley plants only resulted in an increased root to shoot mass ratio.  相似文献   

2.
We have proposed a mechanism of coherent modulations of the P* state in the transient absorption spectra of the reaction centers isolated from purple bacteria. Two water molecules, located between special pair, Ba, Bb chlorophylls and histidine L175 and M202, are supposed to be the ortho-H2O and para-H2O isomers with different magnetic properties. The distinctive modulation frequencies were labeled as rotational resonances of the ortho-H2O. According to our assumption, the interaction of rotational modes of water isomers with the charge transfer states is a reason of coherent modulations of kinetics. We have modified the system Hamiltonian in order to take into account the rotational modes of ortho-H2O. Evolution of the density matrix was calculated in the Liouville space. The relaxation Redfield theory for molecular aggregates was used to model kinetics up to 3 ps.  相似文献   

3.
4.
The effects of fusicoccin (FC) on the early growth processes in sorghum (Sorghum vulgare M.) seeds germinated in water and in 0.1 M or 0.2 M NaCl solutions were investigated. We studied the rate of seed imbibition, the onset of radicle protrusion, the occurrence of the first mitoses, the mitotic index, the distribution of cells according to the phases of the cell cycle, as well as the length and weight of roots. Seed imbibition was considerably accelerated by treating them with 5 × 10–6 M FC for 1 h. In these FC-treated seeds placed on NaCl solutions, FC stimulated water influx into seeds, radicle protrusion, and occurrence of the first mitoses. FC pretreatment did not affect substantially the distribution of meristematic cells according to the periods of the cell cycle after 72 h of seed germination on water or 0.1 M NaCl. Root growth was inhibited by 0.1 M NaCl, but it was partially recovered in the presence of FC. 0.2 M NaCl caused a decrease in the mitotic index and in the number of cells in the S phase, an accumulation of cells in the G2 period and in the prophase, as well as a considerable inhibition of root growth. FC pretreatment of seeds subsequently germinated on 0.2 M NaCl resulted in an increase in the number of cells in the G1 period, in the mitotic index, and in the root-growth rate. FC virtually did not affect the growth of sorghum in the absence of salt. Pretreatment of seeds with FC followed by salinization resulted in an increase in the water content in seeds. It is suggested that a FC-induced increase in the water content of seeds accelerated metabolic processes in seeds germinating on NaCl solutions, thus regulating ionic homeostasis and thereby stimulating the initial growth processes.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 3, 2005, pp. 378–383.Original Russian Text Copyright © 2005 by Lutsenko, Marushko, Kononenko, Leonova.  相似文献   

5.
An obligate requirement for selenium is demonstrated in axenic culture of the coastal marine diatom Thalassiosira pseudonana (clone 3H) (Hust.) Hasle and Heimdal grown in artificial seawater medium. Selenium deficiency was characterized by a reduction in growth rate and eventually by a cessation of cell division. The addition of 10−10 M Na2eO3 to nutrient enriched artifical seawater resulted in excellent growth of T. pseudonana and only a slight inhibition of growth occurred at Na2SeO3 concentrations of 10−3 and 10-2 M. By contrast, Na2SeO4 failed to support growth of T. pseudonana when supplied at concentrations less than 10−7 M and the growth rate at this concentration was only one quarter of the maximum growth rate. The addition of 10−3 and 10−2 M Na2SeO4 to the culture medium was toxic and cell growth was completely inhibited. Eleven trace elements were tested for their ability to replace the selenium requirement by this alga and all were without effect. In selenium-deficient and selenium-starved cultures of T. pseudonana cell volume increased as much as 10-fold as a result of an increase in cell length (along the pervalvar axis) but cell width was constant. It is concluded that selenium is an indispensable element for the growth of T. pseudonana and it should be included as a nutrient enrichment to artificial seawater medium when culturing this alga.  相似文献   

6.
Shigella sonnei was frozen at -20 C in saline, nutrient broth, and milk, and plated, after thawing, upon synthetic medium, nutrient agar, and blood heart infusion agar. There was a difference in the numbers of cells recovered when the frozen and thawed cells were grown on different media. The synthetic medium was unable to recover cells injured by freezing or did so only poorly compared to the complex media. The addition of meat extract, peptone, or Casamino acids to the synthetic medium improved its ability to recover injured cells as measured by bacterial colony counts. This is suggestive of metabolic injury caused by the freezing processes since the cells which survived freezing required an enriched medium for growth. In this paper the term metabolic injury is used to express a change in the nutritional requirements of the organisms which resulted in an increase in growth factor requirements. Freezing the cells in saline resulted in greater injury compared to cells frozen in nutrient broth or milk; this suggested that these suspending agents possessed some protective quality. The metabolic injury increased with an increase in the length of time the cells were held in the frozen state.  相似文献   

7.
8.
An obligate requirement for selenium is demonstrated in axenic culture of the coastal marine diatom Thalassiosira pseudonana (clone 3H) (Hust.) Hasle and Heimdal grown in artificial seawater medium. Selenium deficiency was characterized by a reduction in growth rate and eventually by a cessation of cell division. The addition of 10−10 M Na2SeO3 to nutrient enriched artificial seawater resulted in excellent growth of T. pseudonana and only a slight inhibition of growth occurred at Na2SeO3 concentrations of 10−3 and 10−2 M. By contrast, Na2SeO4 failed to support growth of T. pseudonana when supplied at concentrations less than 10−7 M and the growth rate at this concentration was only one quarter of the maximum growth rate. The addition of 10−3 and 10−2 M Na2SeO4 to the culture medium was toxic and cell growth was completely inhibited. Eleven trace elements were tested for their ability to replace the selenium requirement by this alga find all were without effect. In selenium-deficient and selenium-starved cultures of T. pseudonana cell volume increased as much as 10-fold as a result of an increase in cell length (along the pervalvar axis) but cell width was constant. It is concluded that selenium is an indispensable element for the growth of T. pseudonana and it should be included as a nutrient enrichment to artificial seawater medium when culturing this alga.  相似文献   

9.
A. F. Bunkin 《Biophysics》2012,57(6):709-715
The novel method of nonlinear laser spectroscopy — low frequency spectroscopy of four-photon scattering of laser radiation was applied to detect a considerable growth of ortho-H2O spin isomer and also H2O2 molecule concentration in a hydrate layer at the interface between water and DNA, denatured DNA molecules and α-chymotrypsin. Spectra of rotational resonances of ortho/para-H2O spin isomers were observed in aqueous solutions of different biopolymers and also in distilled water in the range from zero to 100 cm?1 with the spectral resolution of 0.05–0.1 cm?1. The fitting of four-wave mixing spectra shows notable growth of the H2O2 concentration and rotational line’s amplitude by a factor of ~3 in DNA solutions due to denaturizing. Besides, we studied the four-photon scattering spectra of α-chymotrypsin aqueous solutions at protein concentrations between 0 and 20 mg/cm3 in the range of ±7 cm?1. We found that the velocity of sound in the protein aqueous solution measured by the shift of the Mandelstam-Brillouin scattering spectrum components was a cubic dependence on the protein concentration and reached the value of about 3000 m/s at 20 mg/cm3.  相似文献   

10.
Abundant evidences demonstrate that deuterium oxide (D2O) modulates various secretory activities, but specific mechanisms remain unclear. Using AtT20 cells, we examined effects of D2O on physiological processes underlying β-endorphin release. Immunofluorescent confocal microscopy demonstrated that 90% D2O buffer increased the amount of actin filament in cell somas and decreased it in cell processes, whereas β-tubulin was not affected. Ca2+ imaging demonstrated that high-K+-induced Ca2+ influx was not affected during D2O treatment, but was completely inhibited upon D2O washout. The H2O/D2O replacement in internal solutions of patch electrodes reduced Ca2+ currents evoked by depolarizing voltage steps, whereas additional extracellular H2O/D2O replacement recovered the currents, suggesting that D2O gradient across plasma membrane is critical for Ca2+ channel kinetics. Radioimmunoassay of high-K+-induced β-endorphin release demonstrated an increase during D2O treatment and a decrease upon D2O washout. These results demonstrate that the H2O-to-D2O-induced increase in β-endorphin release corresponded with the redistribution of actin, and the D2O-to-H2O-induced decrease in β-endorphin release corresponded with the inhibition of voltage-sensitive Ca2+ channels. The computer modeling suggests that the differences in the zero-point vibrational energy between protonated and deuterated amino acids produce an asymmetric distribution of these amino acids upon D2O washout and this causes the dysfunction of Ca2+ channels.  相似文献   

11.
The BCL2 family of proteins regulate apoptosis by controlling mitochondrial outer membrane permeability. However, the effects on mitochondrial structure and bioenergetics have also been reported. Here we comprehensively characterized the effects of BCL2 and BCL(X)L on cellular energetics in MCF7 breast cancer cells using time-lapse confocal single-cell imaging and mitochondrial and cytosolic FRET reporters. We found that BCL2 and BCL(X)L increase the metabolic robustness of MCF7 cells, and that this was associated with increased mitochondrial NAD(P)H and ATP levels. Experiments with the F1F0 synthase inhibitor oligomycin demonstrated that BCL2 and in particular BCL(X)L, while not affecting ATP synthase activity, more efficiently coupled the mitochondrial proton motive force with ATP production. This metabolic advantage was associated with an increased resistance to nutrient deprivation and enhanced clonogenic survival in response to metabolic stress, in the absence of profound effects on cell death. Our data suggest that a primary function of BCL(X)L and BCL2 overexpression in tumor cells is to increase their resistance to metabolic stress in the tumor microenvironment, independent of cell death signaling.Subject terms: Cancer metabolism, Cancer metabolism  相似文献   

12.
We found a two-fold increase in the productivity of baker’s yeast grown on a nutrient mixture prepared in light water with a D2O content (127 ppm) smaller than in the distilled water (150 ppm). The number of water monomers that provides the biosynthetic activity (water transport through membrane channels) of yeast cells with an increased CO2 yield was determined for the first time. We established that the selectivity of cell membrane channels in water of different composition depends not only on the motion of ortho-and para-spin H2O isomers in solution, as was shown earlier, but also on the concentration of D2O.  相似文献   

13.
The effect of SO2 fumigation on free and bound putrescine andspermidine has been investigated in pea plants grown in nitrate-basedand ammonium-containing nutrient solutions. Both amines increasesignificantly more in response to SO2 fumigation when 50% ofthe nitrate nitrogen is substituted by ammonium. Amine levelsare also increased in the unfumigated, ammonium-supplied plantsrelative to the exclusively nitrate-supplied ones. Since bothSO2 pollution and ammonium nutrition increase the H+ ion concentrationof the cells and cause a shift in the cation/anion ratio, itis concluded that with both treatments amines are synthesizedto bind these H+ ions and to compensate the relative cationdeficit. The importance of this mode of metabolic bufferingis discussed and its effectiveness calculated.  相似文献   

14.
The construction and operation of a continuous culture system for the propagation of cell suspensions from Chenopodium rubrum under photoautotrophic conditions has been described. A dilution rate of 0.16/day gave an equilibrium culture density of 1,100,000 cells/ml and a mean doubling time of 150 hours. During continuous culture steady state conditions with respect to nutrient uptake, cell protein and chlorophyll content, starch accumulation, in vitro activities of enzymes related to different metabolic pathways could be established. Photosynthetic CO2 assimilation of steady state cells was about 100 mol CO2/mg chlorophyll x hour. Dark CO2 fixation was 3% of the light values.  相似文献   

15.
An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-LFFLv (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells, TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs.  相似文献   

16.
A continuous rise in the global demand for palm oil has resulted in the large‐scale expansion of oil palm plantations and generated environmental controversy. Efforts to increase the sustainability of oil palm cultivation include the recycling of oil mill and pruning residues in the field, but this may increase soil methane (CH4) emissions. This study reports the results of yearlong field‐based measurements of soil nitrous oxide (N2O) and CH4 emissions from commercial plantations in North Sumatra, Indonesia. One experiment investigated the effects of soil‐water saturation on N2O and CH4 emissions from inorganic fertilizers and organic amendments by simulating 25 mm rainfall per day for 21 days. Three additional experiments focused on emissions from (a) inorganic fertilizer (urea), (b) combination of enriched mulch with urea and (c) organic amendments (empty fruit bunches, enriched mulch and pruned oil palm fronds) applied in different doses and spatial layouts (placed in inter‐row zones, piles, patches or bands) for a full year. The higher dose of urea led to a significantly higher N2O emissions with the emission factors ranging from 2.4% to 2.7% in the long‐term experiment, which is considerably higher than the IPCC standard of 1%. Organic amendments were a significant source of both N2O and CH4 emissions, but N2O emissions from organic amendments were 66%–86% lower than those from inorganic fertilizers. Organic amendments applied in piles emitted 63% and 71% more N2O and CH4, respectively, than when spread out. With twice the dose of organic amendments, cumulative emissions were up to three times greater. The (simulated) rainwater experiment showed that the increase in precipitation led to a significant increase in N2O emissions significantly, suggesting that the time of fertilization is a critical management option for reducing emissions. The results from this study could therefore help guide residue and nutrient management practices to reduce emissions while ensuring better nutrient recycling for sustainable oil palm production systems.  相似文献   

17.
Elevated atmospheric partial pressure of CO2 and plant growth   总被引:4,自引:0,他引:4  
Cotton plants were grown in late spring under full sunlight in glasshouses containing normal ambient partial pressure of CO2 (32±2Pa) and enriched partial pressure of CO2 (64±1.5Pa) and at four levels of nitrogen nutrition. Thirty-five days after planting, the total dry weights of high CO2-grown plants were 2- to 3.5-fold greater than plants grown in normal ambient CO2 partial pressure. Depending on nitrogen nutrition level, non-structural carbohydrate content (mainly starch) in the leaves of plants grown in normal CO2 was between 4 and 37% of the total leaf dry weight compared to 39 to 52% in the leaves of high CO2-grown plants. Specific leaf weight calculated using total dry weight was 1.6- to 2-fold greater than that based on structural dry weight. In high CO2-grown plants the amount of non-structural carbohydrate translocated from the leaves at night was between 10 and 20% of the level at the end of the photoperiod. This suggests that the plant was unable to utilize all the carbohydrate it assimilated in elevated CO2 atmosphere. While there was a 1.5-fold enhancement in the rate of CO2 assimilation in plants grown in 64 Pa CO2, there was, however, some evidence to suggest that the activities of other metabolic pathways in the plants were not stimulated to the same extent by the enriched CO2 atmosphere. This resulted in massive accumulation of non-structural carbohydrate, particularly at low level of nitrogen nutrition.Abbreviations A rate of CO2 assimilation - PPFD photosynthetic photo flux density - NAR net assimilation rate - pCO2 partial pressure of CO2 - RGR relative growth rate  相似文献   

18.
Young bean plants (Phaseolus vulgaris L. var Saxa) were fed with 3.5 or 10 millimolar N in either the form of NO3 or NH4+, after being grown on N-free nutrient solution for 8 days. The pH of the nutrient solutions was either 6 or 4. The cell sap pH and the extractable activities of phosphoenolpyruvate carboxylase and of pyruvate kinase from roots and primary leaves were measured over several days.

The extractable activity of phosphoenolpyruvate carboxylase (based on soluble protein) from primary leaves increased with NO3 nutrition, whereas with NH4+ nutrition and on N-free nutrient solution the activity remained at a low level. Phosphoenopyruvate carboxylase activity from the roots of NH4+-fed plants at pH 4 was finally somewhat higher than from the roots of plants grown on NO3 at the same pH. There was no difference in activity from the root between the N treatments when pH in the nutrient solutions was 6. The extractable activity of pyruvate kinase from roots and primary leaves seemed not to be influenced by the N nutrition of the plants.

The results are discussed in relation to the physiological function of both enzymes with special regard to the postulated functions of phosphoenolpyruvate carboxylase in C3 plants as an anaplerotic enzyme and as part of a cellular pH stat.

  相似文献   

19.
We have measured the exchange of 18O between CO2 and H2O in stirred suspensions of Chlorella vulgaris (UTEX 263) using a membrane inlet to a mass spectrometer. The depletion of 18O from CO2 in the fluid outside the cells provides a method to study CO2 and HCO3 kinetics in suspensions of algae that contain carbonic anhydrase since 18O loss to H2O is catalyzed inside the cells but not in the external fluid. Low-CO2 cells of Chlorella vulgaris (grown with air) were added to a solution containing 18O enriched CO2 and HCO3 with 2 to 15 millimolar total inorganic carbon. The observed depletion of 18O from CO2 was biphasic and the resulting 18C content of CO2 was much less than the 18O content of HCO3 in the external solution. Analysis of the slopes showed that the Fick's law rate constant for entry of HCO3 into the cell was experimentally indistinguishable from zero (bicarbonate impermeable) with an upper limit of 3 × 10−4 s−1 due to our experimental errors. The Fick's law rate constant for entry of CO2 to the sites of intracellular carbonic anhydrase was large, 0.013 per second, but not as great as calculated for no membrane barrier to CO2 flux (6 per second). The experimental value may be explained by a nonhomogeneous distribution of carbonic anhydrase in the cell (such as membrane-bound enzyme) or by a membrane barrier to CO2 entry into the cell or both. The CO2 hydration activity inside the cells was 160 times the uncatalyzed CO2 hydration rate.  相似文献   

20.

Backgrounds and aims

In Mediterranean frequently burnt areas, the decrease of soil fertility leads to regressive vegetation dynamics. Organic amendments could help to accelerate post-fire ecosystem resilience, by improving soil properties and plant nutrition. This study was conducted to assess the potential of a composted biosolid to restore an early post-fire shrubland.

Methods

About 50 Mg.ha?1 of fresh co-composted sewage sludge and green wastes were surface applied 7 months after fire on a silty-clayey soil. We monitored over a 2-year period organic matter and nutrient transfers to soil, nutrient responses of dominant plant species, and ecosystem contamination by potentially toxic trace elements.

Results

Over the experimental survey, compost rapidly and durably improved soil P2O5, MgO and K2O content, and temporarily increased N-(NO3 ? + NO2 ?) content. Plant nutrition was improved more or less durably depending species. The most positive compost effect was on plant and soil phosphorus content. Plant nutrient storage was not improved 2 years after amendment, suggesting luxury consumption. No contamination by trace elements was detected in soil and plant.

Conclusions

The use of compost after fire could help for rapidly restoring soil fertility and improving plant nutrition. The increase of soil nutrient pools after amendment emphazised the diversity of plant nutritional traits. Eutrophication risk could occur from high compost and soil P2O5 content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号