首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apparent amylose content (AAC) is a key determinant of eating and cooking quality in rice and it is mainly controlled by the Wx gene which encodes a granule-bound starch synthase (GBSS). In this study, sixteen single-segment substitution lines harboring the Wx gene from 16 different donors and their recipient HJX74 were used to detect the naturally occurring allelic variation at the Wx locus. The AAC in the materials varied widely and could be grouped into glutinous, low, intermediate, and two high AAC sub-classes, high I (24.36?C25.20%) and high II (25.81?C26.19%), under different experimental environments, which showed a positive correlation with the enzymatic activity of GBSS. One insertion/deletion (InDel) and three single nucleotide polymorphisms in the Wx gene were detected and their combinations resulted in the variation of five classes of AAC. Based on the results of AAC phenotypes, GBSS activities and cDNA sequences, five Wx alleles, wx, Wx t, Wx g1, Wx g2, and Wx g3, were identified, two of which, Wx g2 and Wx g3, are separated for the first time in this study. Under different cropping seasons, the AAC differed significantly for the Wx t and Wx g1 alleles, with higher AAC in the fall season than in the spring season, but did not differ significantly for the wx, Wx g2, and Wx g3 alleles. In conclusion, the present results might contribute to our understanding of the naturally occurring allelic variation at the Wx locus and will facilitate the improvement of rice quality by marker-assisted selection.  相似文献   

2.
Nelson OE 《Genetics》1975,79(1):31-44
The effect of heterozygosity for structural rearrangements on recombination between two wx heteroalleles (C and 90) and the pattern of flanking markers in the resultant Wx gametes has been examined. The rearrangements are Tp9, an insertional translocation in which a segment of chromosome 3 has been inserted into the short arm of chromosome 9 close to the wx locus; In9a, a long pericentric inversion with wx in the inverted segment; and Rearr 9, a complex rearrangement of chromosome 9. Heterozygosity for rearrangements decreases the frequency of Wx gametes to varying degrees.—Heterozygosity for Tp9 enhances the proportion of Wx gametes that are apparent convertants and allows the conclusion that such gametes do not normally arise from an exchange in the wx locus plus a second exchange distal to wx. Heterozygosity for In9a markedly decreases the frequency of Wx gametes that are recombinant for outside markers but does not decrease the frequency of convertants.—Heterozygosity for Rearr 9 permits a low frequency of Wx gametes, all of which are apparent convertants.—A high proportion of the convertants have the flanking markers that entered the cross with C so recombination is polarized in normal homologs and in heterozygotes for all rearrangements.  相似文献   

3.
Marker-assisted selection (MAS) for qualitative traits such as grain quality and resistance to certain diseases has proven to be highly effective. Multiple genes responsible for various quality components and disease resistances can be simultaneously stacked to boost the performance and to lengthen the commercial lifespan of high-yield varieties. Grain quality genes (fgr and Wx) and three disease resistance genes (Pita, Pik and Xa23) have been well characterized and used in MAS breeding. However, stacking all of them together into a single variety has not been reported. We reported here the stacking of the five genes into elite lines in rice. We achieved this through the development of functional markers from causal mutations at fgr, Wx and Pita, a gene-targeted marker at Pik and the use of a linked marker for Xa23. We employed and optimized the high-resolution melting (HRM) analysis method for use as the genotyping platform of fgr, Wx, Pik and Pita. By combining high-throughput DNA isolation, multiplex and nested-PCR methods, we showed that HRM could serve as cost-effective, highly automated, moderate-throughput and reliable non-gel genotyping platform for a small-scale MAS program.  相似文献   

4.
5.
6.
In wheat seeds, starch synthase I or the Waxy protein is an enzyme involved in amylose synthesis. The gene encoding this enzyme is Wx and in this study, eight novel Wx alleles were identified in three diploid Taeniatherum species. The variability of these alleles was evaluated, and their nucleotide sequences were compared with those of homologous alleles from wheat. Two types of Taeniatherum Wx alleles were detected in three diploid species Ta. caput-medusae, Ta. asperum, and Ta. crinitum. A phylogenetic analysis indicates that the Taeniatherum Wx alleles were more closely related to Wx alleles from Aegilops species with C, D, M, and U genomes than to Wx alleles of other species. These alleles represent a potential genetic resource that may be useful in wheat breeding programs.  相似文献   

7.
Development of high-yielding cereal crops could meet increasing global demands for food, feed and bio-fuels. Wheat is one of the world??s most important cereal crops. The biosynthesis of starch is the major determinant of yield in wheat. Two starch biosynthesis genes, the waxy (Wx) genes and the starch synthase IIa (SSIIa) genes, were amplified and sequenced in 92 diverse wheat genotypes using genome-specific primers. Nucleotide diversity, haplotype analysis and association mapping were performed. The first exon (5??-UTR) and the first intron of the three homoeologous Wx genes were isolated using expressed sequence tag sequences. The Wx genes contained 12 exons separated by 11 introns. SNP (single nucleotide polymorphism) frequency ranged from 1 SNP/3,648?bp for Wx-D1 to 1 SNP/135?bp for SSIIa-A1, with an average of 1 SNP/230?bp. The average SNP frequencies in exon and intron regions were 1 SNP/322?bp and 1 SNP/228?bp, respectively. Thirty, 23 and 5 SNPs were identified and formed five, six and five haplotypes for SSIIa-A1, SSIIa-B1 and SSIIa-D1, respectively. However, no association was found between these SNPs and seven yield-related traits. Twenty-two, 15 and 1 SNPs were detected and formed nine, five and two haplotypes for Wx-A1, Wx-B1 and Wx-D1, respectively. Three unique nucleotides C+A+T at SNP5, SNP6 and SNP12 formed Wx-B1-H3, which was significantly associated with increased grain weight, thousand kernel weight, and total starch content in three spring wheat genotypes and five winter wheat genotypes. Cost-effective and co-dominant SNP markers were developed using temperature-switch (TS)-PCR and are being used for marker-assisted selection of doubled haploid lines with enhanced grain yield and starch content in winter wheat breeding programs.  相似文献   

8.
9.
The granule-bound starch synthase (GBSS) proteins were widely considered as one of the most important enzymes in plant amylose synthesis. However, understanding of the molecular basis of the GBSS protein in lotus remains fragmented. In this work, a lotus Wx gene, encoding a GBSS (GenBank accession no. EU938541), was isolated and characterized. This gene comprises 13 exons and 12 introns and covers 4152?bp (GenBank accession no. FJ602702). The exons of Wx gene have similar lengths, while the introns vary greatly. Phylogenetic tree indicated that the lotus GBSS protein belongs to a GBSS I subgroup. The expression of the Wx gene varies in different organs of the lotus during its development process and is also expressed differently in different cultivars. The Wx gene is expressed at a higher level in the rhizomes of cultivar Meirenhong than in those of cultivar Elian 4. This study elucidates more molecular information about the Wx gene in lotus and provides a theoretical foundation for the genes regulation and the modification of starch quality.  相似文献   

10.
The Wx gene encodes the granule-bound starch synthase I or waxy protein, which is the sole enzyme responsible for amylose synthesis in wheat seeds. Triticum urartu and einkorn (T. monococcum L. ssp. monococcum), which are related to the A genome of bread wheat, could be important sources of variation for this gene. This study evaluated the Wx gene variability in 52 accessions of these species and compared their nucleotide sequences with the Wx-A1a allele of bread wheat. The level of polymorphism found was high, although not distributed equally between the two species. Five different alleles were found in T. urartu, of which four were novel (Wx-A u 1b, -A u 1c, -A u 1d and -A u 1e). All einkorn accessions had the same allele, which was also novel and was named Wx-A m 1a. A comparison between the proteins deduced from the novel alleles and the Wx-A1a protein showed that there were up to 33 amino acid changes in both the transit peptide and the mature protein. These results showed that these species, especially T. urartu, are a potential source of novel waxy variants.  相似文献   

11.
12.
13.
Viral Hemorrhagic Septicemia virus (VHSv) is an RNA rhabdovirus, which causes one of the world''s most serious fish diseases, infecting >80 freshwater and marine species across the Northern Hemisphere. A new, novel, and especially virulent substrain—VHSv-IVb—first appeared in the Laurentian Great Lakes about a decade ago, resulting in massive fish kills. It rapidly spread and has genetically diversified. This study analyzes temporal and spatial mutational patterns of VHSv-IVb across the Great Lakes for the novel non-virion (Nv) gene that is unique to this group of novirhabdoviruses, in relation to its glycoprotein (G), phosphoprotein (P), and matrix (M) genes. Results show that the Nv-gene has been evolving the fastest (k = 2.0x10-3 substitutions/site/year), with the G-gene at ~1/7 that rate (k = 2.8x10-4). Most (all but one) of the 12 unique Nv- haplotypes identified encode different amino acids, totaling 26 changes. Among the 12 corresponding G-gene haplotypes, seven vary in amino acids with eight total changes. The P- and M- genes are more evolutionarily conserved, evolving at just ~1/15 (k = 1.2x10-4) of the Nv-gene’s rate. The 12 isolates contained four P-gene haplotypes with two amino acid changes, and six M-gene haplotypes with three amino acid differences. Patterns of evolutionary changes coincided among the genes for some of the isolates, but appeared independent in others. New viral variants were discovered following the large 2006 outbreak; such differentiation may have been in response to fish populations developing resistance, meriting further investigation. Two 2012 variants were isolated by us from central Lake Erie fish that lacked classic VHSv symptoms, having genetically distinctive Nv-, G-, and M-gene sequences (with one of them also differing in its P-gene); they differ from each other by a G-gene amino acid change and also differ from all other isolates by a shared Nv-gene amino acid change. Such rapid evolutionary differentiation may allow new viral variants to evade fish host recognition and immune responses, facilitating long-time persistence along with expansion to new geographic areas.  相似文献   

14.
Common non-waxy (Wx) rice cultivars contain two different alleles at the waxy locus, designated Wx a and Wx b, which encode different levels of granule-bound starch synthases and are hence involved in the control of endosperm amylose content. The Wx a allele was predominant in non-waxy indica cultivars, whereas the Wx b allele was common to the non-waxy japonica variety. Recently, some of the molecular mechanisms underlying the differentiation of Wx a from Wx b have been characterized. One structural difference between these two alleles was shown to be due to alternative splicing caused by a single-base substitution (AGGT to AGTT) at a donor site of the first intron within the Wx gene. In the case of waxy (wx) rice, it was not possible to distinguish whether the each wx allele was derived from Wx a or Wx b alleles by phenotypic analysis. However, we succeeded in developing a derived cleaved amplified polymorphic sequence (dCAPS) marker for the detection of the one-base splicing mutation without the need for sequencing. A mismatch primer was used to generate a restriction site in the Wx a allele (AGGT) but not in the Wx b allele (AGTT). Three hundred fifty-three waxy rice strains that are widely found in Asia were then employed for analysis using this dCAPS marker. Our findings suggested that waxy rice strains have both Wx a- and Wx b-derived alleles, but that the Wx b-derived allele was predominant, and its distribution was independent of indica-japonica differentiation. The wild relatives of cultivated rice all possessed the AGGT allele. It was concluded that the waxy mutations, and the corresponding rice cultivation, originated from japonica during the evolution and domestication process of rice and was preferentially selected by most Asian peoples.Communicated by J. Heslop-Harrison  相似文献   

15.
Emmer wheat is a neglected crop that could be used in the breeding of modern durum wheat for quality, one important aspect of which is the starch composition that is related to the waxy proteins. A collection of 87 accessions of Spanish emmer wheat was analysed for waxy protein composition by SDS?CPAGE. No polymorphism was found for the Wx-A1 gene. However, for the Wx-B1 gene, three alleles were detected, two of them new. The whole gene sequence of these alleles was amplified by PCR in three fragments, which were digested with several endonucleases to determine internal differences in the sequence. These variants were also compared with the Wx alleles present in durum wheat. Differences in size and restriction sites were detected. DNA sequence analysis confirmed that the alleles found in emmer wheat are different from those in durum wheat. The first data suggested that these alleles showed a different influence on the amylose content of these lines. The variation found could be used to enlarge the gene pool of durum and emmer wheat, and design new materials with different amylose content.  相似文献   

16.

Key message

We discovered four QTLs that maintain proper rice amylose content at high temperature by increasing the splicing efficiency of Wx gene.

Abstract

Amylose content mainly controlled by Wx gene is a key physicochemical property for eating and cooking quality in rice. During the grain filling stage, high temperature can harm rice grain quality by significantly reducing the amylose content in many rice varieties. Here, we provide genetic evidences between Wx gene expression and rice amylose content at high temperature, and identified several quantitative trait loci (QTLs) in this pathway. We performed a genome-wide survey on a set of chromosome segment substitution lines (CSSLs) which carried chromosomal segments from the heat resistant indica 9311 in the heat-sensitive japonica Nipponbare background. Four QTLs, qHAC4, qHAC8a, qHAC8b and qHAC10, which can reduce the deleterious effects of amylose content at high temperature, were identified and mapped to chromosome 4, 8, 8 and 10, respectively. The major QTL qHAC8a, with the highest LOD score of 6.196, was physically mapped to a small chromosome segment (~300 kb). The CSSLs carrying the qHAC8a, qHAC8b and/or qHAC4 from 9311 have the high pre-mRNA splicing efficiency of Wx gene and likely lead to stable amylose content at high temperature. Thus, increasing pre-mRNA processing efficiency of Wx gene could be an important regulation mechanism for maintaining stable amylose content in rice seeds at high temperature. In addition, our results provide a theoretical basis for breeding heat-stable grain in rice.  相似文献   

17.
18.
The 165-kb megaplasmid pAO1 of Arthrobacter nicotinovorans carries two large gene clusters, one involved in nicotine catabolism (nic-gene cluster) and one in carbohydrate utilization (ch-gene cluster). Here, we propose that both gene clusters were acquired by A. nicotinovorans by horizontal gene transfer mediated by pAO1. Protein–protein blast search showed that none of the published Arthrobacter genomes contains nic-genes, but Rhodococcus opacus carries on its chromosome a nic-gene cluster highly similar to that of pAO1. Analysis of the nic-genes in the two species suggested a recombination event between their nic-gene clusters. Apparently, there was a gene exchange between pAO1, or a precursor plasmid, and a nic-gene cluster of an as yet unidentified Arthrobacter specie or other soil bacterium, possibly related to Rhodococcus, leading to the transfer by pAO1 of this catabolic trait to A. nicotinovorans. Analysis of the pAO1 ch-gene cluster revealed a virtually identical counterpart on the chromosome of Arthrobacter phenanthrenivorans. Moreover, the sequence analysis of the genes flanking the ch-gene cluster suggested that it was acquired by pAO1 by Xer-related site directed recombination and transferred via the plasmid to A. nicotinovorans. The G+C content, the level of sequence identity, gene co-linearity of nic- and ch-gene clusters as well as the signs of recombination events clearly supports the notion of pAO1 and its precursor plasmids as vehicles in HGT among Gram + soil bacteria.  相似文献   

19.
Stable and unstable mutations in aberrant ratio stocks of maize   总被引:4,自引:1,他引:3       下载免费PDF全文
Aberrant Ratio (AR) stocks of maize were tested for transposition activity. Lines exhibiting AR and homozygous for the dominant alleles at the Sh Bz and Wx loci in the short arm of chromosome 9 were crossed as males to a sh bz wx tester. Among a population of 346,201 kernels, eight mutations of sh and two of bz were recovered. Eight of the ten mutations survived and none was as vigorous as its normal sibs. At least five of the sh mutants appear to be unstable in F2 and subsequent generations. An unexpected observation was the high incidence of somatic loss of chromosome 9 markers (Sh Bz and Wx), indicating chromosome breakage or nondisjunction. Southern blot hybridization analysis of the sh alterations indicate that all but one mutant are associated with structural DNA rearrangements at the shrunken locus. Possible mechanisms by which these alterations arose are discussed.  相似文献   

20.
Differential regulation of waxy gene expression in rice endosperm   总被引:36,自引:0,他引:36  
Summary In order to examine the effects of different alleles on the gene expression at the waxy locus, the Wx gene product which controls the synthesis of amylose was isolated from endosperm starch of rice plants and analysed by electrophoretic techniques. The major protein bound to starch granules was absent in most of waxy strains and increased with the number of Wx alleles in triploid endosperms, suggesting that the major protein is the Wx gene product. In addition to wx alleles which result in the absence or drastic reduction of the Wx gene product and amylose, differentiation of Wx alleles seemed to have occurred among nonwaxy rice strains. At least two Wx alleles with different efficiencies in the production of the major protein as well as amylose were detected. These alleles are discussed in relation to regulation of the gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号