首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The explosive spread of the common ragweed induced by disturbance of the natural habitats in the postwar years created an ideal vacant niche for acclimation of North American phytophagous insects introduced to the South of Russia in the 1960–70s. The propagation of these species resulted in restoration of natural succession periodicity and promoted the subsequent acclimation of the predatory stink bug Perillus bioculatus, an extremely important agent of biological control of the Colorado potato beetle. Besides the economic effect, the studies of these introduction events were significant from the theoretical viewpoint, revealing the phenomenon of a solitary population wave (SPW) of the ragweed leaf beetle. The theoretical concept of an SPW as the key factor of efficiency of the biological control of weeds underlies the method of suppression of the common ragweed which consists in inducing SPWs by establishing local refuges for the initial buildup of the beetle population.  相似文献   

2.
Abstract  Various factors can influence the population dynamics of phytophages post introduction, of which climate is fundamental. Here we present an approach, using a mechanistic modelling package (CLIMEX), that at least enables one to make predictions of likely dynamics based on climate alone. As biological control programs will have minimal funding for basic work (particularly on population dynamics), we show how predictions can be made using a species geographical distribution, relative abundance across its range, seasonal phenology and laboratory rearing data. Many of these data sets are more likely to be available than long-term population data, and some can be incorporated into the exploratory phase of a biocontrol program. Although models are likely to be more robust the more information is available, useful models can be developed using information on species distribution alone. The fitted model estimates a species average response to climate, and can be used to predict likely geographical distribution if introduced, where the agent is likely to be more abundant (i.e. good locations) and more importantly for interpretation of release success, the likely variation in abundance over time due to intra- and inter-year climate variability. The latter will be useful in predicting both the seasonal and long-term impacts of the potential biocontrol agent on the target weed. We believe this tool may not only aid in the agent selection process, but also in the design of release strategies, and for interpretation of post-introduction dynamics and impacts. More importantly we are making testable predictions. If biological control is to become more of a science making and testing such hypothesis will be a key component.  相似文献   

3.
Plant-mediated indirect interactions among herbivores (arthropods and pathogens) are common and extensively reported in the ecological literature. However, they are not well-documented with respect to weed biological control. Such interactions between biological control agents can have net positive or negative impacts on total weed suppression depending on the strength of the interaction(s), the relative importance of the agent indirectly impacted, and the combined weed suppression that results. A better understanding of plant-mediated interactions may improve decision-making about which agents to introduce in classical biological control programs for greatest impact on invasive weeds. This paper reviews the subject, including examples from the biological control literature; outlines the need for research on indirect effects of herbivores on other herbivores; discusses how such knowledge may strengthen classical biological control programs for invasive weeds; and provides recommendations for the kind of studies that should be done and how information about plant-mediated interactions could be integrated into agent evaluation protocols, to assist in decision-making about agents for importation and release.  相似文献   

4.
The success of biological control efforts to reduce weed density through release of insects may depend as much on the distribution of insect attacks among individual plants or plant parts as on the mean level of infestation. We used an index of dispersion to describe the distribution of Urophora quadrifasciata (Diptera: Tephritidae) galls among squarrose knapweed (Centaurea virgata) flowerheads at 18 west central Utah sites in the first 5 years following introduction of the biological control agent. Two thirds of the samples showed a significantly aggregated distribution of galls among flowerheads. Statistical analysis showed that site and year accounted for relatively small proportions of the variance in the index of dispersion. The degree of gall aggregation among flowerheads was positively correlated with the mean flowerhead quality (mean number of seeds per flowerhead; P = 0.013) and tended to be negatively correlated with the mean fly density per flowerhead at a site in a given year (P = 0.097). Our data suggest that higher quality flowerheads, and possibly higher quality plants, are preferentially attacked by U. quadrifasciata and therefore are more heavily subject to reduced reproductive potential through biological control. However, an aggregated distribution of fly attacks may undercut the potential of the fly to reduce seed production by the weed population as a whole. Understanding both the distribution of insect attacks among individual plants and the behavioral mechanisms producing such distribution patterns is important to the biological control of weeds.  相似文献   

5.
Abstract  Between 1992 and 2000, seven insect agents were released in Australia for the biological control of Onopordum spp. thistles. This paper describes the protocol used for the selection of these agents, starting with the development of a preliminary strategy, based on the ecology and population dynamics of the target weed. The strategy informed the surveys for natural enemies in the native range of Onopordum , targeting insects that attacked key transitional stages of the weed's life cycle. Ongoing studies of Onopordum populations in both Australia and Europe, plus experimental studies on the ecology, potential impact and preliminary host specificity of the agents, led to the refinement of the strategy and the selection and prioritisation of the agents. It is argued that development of an explicit strategy prior to release should be encouraged, as it forces researchers to revisit the rationale for and aims of particular biological control projects, ensuring that the process of agent selection remains focused. It also provides a tool to improve the process of agent selection, as subsequent results can be measured against the strategy and agent success or failure evaluated against the a priori expectations.  相似文献   

6.
Post-release monitoring of biological control agents to determine impact on the target weed has recently received increased priority. Several methods are available to measure the impact of a biological control agent by manipulating the agent population while measuring fitness of the weed. Brazilian peppertree, Schinus terebinthifolia is one of the most damaging weeds in subtropical areas of Florida and Hawaii. A biological control agent, the thrips, Pseudophilothrips ichini is a sap-feeder that shows high levels of specificity and causes severe distortion of leaf tips of the weed. Thrips populations of this species and a generalist thrips, the red banded thrips Selenothrips rubrocinctus were experimentally manipulated by applications of the systemic insecticide acephate by both foliar applications and by an inserted encapsulated formulation. Foliar applications protected plants against red banded thrips for 29 days and against the biological control thrips, P. ichini for 22 days after treatment. Control with inserts were initially low but was achieved after 60 days and this control continued for 182 days after treatment. Manipulation of these biological control thrips populations with foliar or inserted formulations will assist in the determination of biological control agent impact.  相似文献   

7.
The flea beetle (Agasicles hygrophila) was imported to Florida, USA and then introduced from Florida into China in 1987 as a biological control agent for the invasive plant alligator weed (Alternanthera philoxeroides). The initial beetle population was subsequently used for sequential introductions in other areas of China, but little is known about the genetic consequences of the introductions. In this study, the genetic diversity and population structure of five beetle populations, the source Florida population, three intentionally introduced China populations and one accidentally dispersed China population, were examined using amplified fragment length polymorphisms. The results showed a clear pattern of decreasing genetic diversity with the sequential introductions. The diversity was highest in the Florida population followed by the first introduction to Chongqing and then in Kunming and Fuzhou. The lowest diversity was found in the accidentally dispersed Guangzhou population that was first recorded in 1996. Both loci parameters and Nei's genetic diversity showed a high variation among these populations. Genetic differentiation among populations was further verified by the GST statistic (0.136–0.432). Beetles in Kunming had the highest gene flow with those in Guangzhou, and therefore lowest differentiation and closest genetic distance. These data show that sequential introduction influenced the genetic diversity of populations in China. Genetic diversity should be considered in planning introduction and long‐term maintenance of populations.  相似文献   

8.
The evolution of introduced biological control agents is largely un-explored. Although much is theorized, there is little empirical evidence quantifying the evolutionary dynamics of a biocontrol agent after release into a new environment. In this study we use Diachasmimorpha tryoni, a purposefully introduced biocontrol agent of Ceratitis capitata, to model and quantify spatial, temporal, and host-related evolutionary patterns. This parasitoid has undergone a host shift in its introduced environment, Hawaii, to the gall forming weed biocontrol agent, Eutreta xanthochaeta, an interaction likely mediated by competition for C. capitata with the egg-larval parasitoid Fopius arisanus. To elucidate potential evolutionary patterns we analyzed microsatellites and sequence data extracted from Hawaii and Australian population clusters defined by Structure, in Genepop, Canoco, and IBDWS. Our analysis revealed structuring of Hawaiian D. tryoni populations as defined by significant historic influences related to temporal structure, geographic space, host guild, and augmentative releases. The host-shift parasitoids were not genetically distinct from other Hawaii populations. There were small changes in microsatellite DNA at the population level, but only between Australia and Hawaii populations, not at the host level. These results show that D. tryoni has not undergone host-mediated evolution since introduction to Hawaii, despite the fact that they have expanded their host range in Hawaii to include the gall-forming E. xanthochaeta. To our knowledge this is the first study to quantify genetic differentiation of a biological control agent over geographic space and time using contemporary and museum specimens.  相似文献   

9.
Due to the long-standing emphasis on only releasing host-specific agents, classical biological control of weeds has an enviable track record of few direct impacts to nontargets. However, even an agent whose host-range is restricted solely to the target weed can have indirect impacts. Such indirect impacts are most likely if, after release, the populations of the agent build up to high numbers without causing accompanying declines in the populations of the target weed. Therefore, it is advisable, prior to release, to demonstrate that the candidate agent is not only host-specific, but that it has clear potential to depress populations of the target weed. Prerelease efficacy assessments (PREA) of potential weed biocontrol agents are not yet common, and are most easily done in the region where both the target and the potential agent are native. We present an example of a PREA performed under strict containment conditions of an approved quarantine facility. A gall-forming fly, Parafreutreta regalis, from South Africa is being considered for release in California to control Cape-ivy, Delairea odorata. We conducted two trials exposing test Cape-ivy plants to two different densities of this fly, and, after approximately two months, comparing the growth of the galled vines to similar vines that had not been exposed to flies. Under both the high density (10 pairs of flies/plant) and low density (2 pairs/plant) treatments, the galled vines exhibited visible stunting, and the ungalled stems were longer, and had more nodes and larger leaves. These trials confirmed that relatively subtle, sublethal impacts on the target can be quantified, even under strict containment conditions, and this should encourage others to assess, prior to release, the potential impact of prospective agents on their proposed target.  相似文献   

10.
Weed biological control in California, USA began in 1940 with the release of a native scale insect on native Opuntia spp. on Santa Cruz Island, just offshore from mainland California. Since then, a total 39 weed species have been targets of biological control releases in California. Releases on 11 weed targets were transfer experiments where agents from related weed hosts were released on a new host. Most of the transfer experiment introductions failed but one weed was successfully controlled. Of the other 28 weeds, release sites for three species were destroyed and for six species releases are too recent to score, but for 19 weeds, their level of control was rated as: complete control (three species), substantial control (five species), and partial (six species), and negligible control (five species). Overall, 42% of the projects provide successful control, a result lower than observed in other countries worldwide. Since 1940, 77 species of agents have been released: 54 species established, 12 species failed to establish, six species had their release sites destroyed, and five species are too early to determine. Establishment rate was 82% but the rate differed among taxonomic orders. Individual agents were scored according to level of impact on their host and Coleoptera obtained the highest average impact score and Diptera the lowest. Mean impact scores over time showed a substantial drop in the 1980s but later increased. Future research efforts that emphasize introduction of high impact agents will further support development of this critical weed control method for California.  相似文献   

11.
China has become one of the countries most seriously affected by invasive alien weeds in the world. Weeds impact agriculture, the environment and human health, and conventional control methods such as herbicides are expensive, damaging to human health and unsustainable. As the impacts and costs of weed control in China increase, there is an urgent need to manage some of the more important weeds through more sustainable methods. Classical biological control of invasive alien weeds is environmentally-friendly and sustainable. Biological control in China began in the 1930s with the introduction of two agents into Hong Kong for the control of Lantana camara. Since then, a further seven biological control agents have been introduced into China to control four weed species. In addition, 11 biological control agents targeting seven weed species have naturally spread into China. Together, these biological control agents are helping to control some of China's worst weeds. However, these efforts are only a small portion of the weeds that could be targeted for weed biological control. This paper reviews the current status of weed biological control efforts against introduced weeds in ten provinces and regions in southern China and provides a platform to identify the most effective and appropriate weed biological control opportunities and programmes to pursue in the future. Introducing additional safe and effective biological control agents into China to help manage some of the worst weeds in the region should reduce the use of herbicides and impacts on human health and the environment, while increasing productivity and food security.  相似文献   

12.
New biological control agents are required in order to reach and sustain an adequate level of control of the declared environmental weed Pereskia aculeata Miller (Cactaceae) in South Africa. Identifying the origin of weed genotypes has been important in a number of biological control programmes and is likely to be of importance for the control of P. aculeata due to its disjunct native distribution and morphological polymorphisms between plants from different regions of the native and introduced distribution. DNA sequencing of the trnL chloroplastic intron and the phyC nuclear gene indicate that the South African weed population’s origin was in the southern region of native distribution. Inter-Simple Sequence Repeats (ISSRs) confirmed this result and added resolution to the analysis indicating that the native plants with the closest genetic distance to the South African weed population were found in Rio de Janeiro Province, Brazil. The relationship between the South African weed population and garden variety plants as well as the large genetic distance between the South African plants and the native plants suggests that the South African population may be the progeny of escaped garden variety plants that have been cultivated and possibly hybridized. The low levels of genetic variation within the South African population and the monophyly of the South African plants indicates that these plants are the progeny of a single introduction or multiple introductions from the same source. Rio de Janeiro Province in Brazil is the most appropriate region in which to survey for new biological control agents.  相似文献   

13.
In classical weed biological control, assessing weed response to simulated herbivory is one option to assist in the prioritization of available agents and prediction of their potential efficacy. Previously reported simulated herbivory studies suggested that a specialist herbivore in the leaf-feeding guild is desirable as an effective biological control agent for cat's claw creeper Macfadyena unguis-cati (Bignoniaceae), an environmental weed that is currently a target for biological control. In this study, we tested (i) whether the results from glasshouse-based simulated herbivory can be used to prioritise potential biological control agents by evaluating the impact of a leaf-sucking tingid bug Carvalhotingis visenda (Drake & Hambleton) (Hemiptera: Tingidae) in quarantine; and (ii) the likely effectiveness of low- and high-densities of the leaf-sucking tingid after its release in the field. The results suggest that a single generation of C. visenda has the potential to reduce leaf chlorophyll content significantly, resulting in reduced plant height and leaf biomass. However, the impact of one generation of tingid herbivory on below-ground plant components, including the roots and tuber size and biomass, were not significant. These findings are consistent with results obtained from a simulated herbivory trial, highlighting the potential role of simulated herbivory studies in agent prioritisation.  相似文献   

14.
This paper contributes to the relatively sparse literature on the effects of insect herbivory on the population dynamics of plants and is probably unique in that it reports the long-term effects of combinations of three insect herbivore species on the population densities of a moderately long-lived tree species. The tree is Sesbania punicea, a leguminous perennial from South America that has been the target of a biological control programme in South Africa for almost 20 years. Sixteen infestations of the weed have been monitored for periods of up to 10 years to determine changes in the density of the mature, reproductive plants under the influence of different combinations of three biological control agents (i.e. with one, two or three of the agent species present in the weed infestation). The three biological control agents, all weevil species, include Trichapion lativentre, which primarily destroys the flower-buds, Rhyssomatus marginatus, which destroys the developing seeds, and Neodiplogrammus quadrivittatus, whose larvae bore into the trunk and stems of the plants. While T. lativentre occurs throughout the range of the weed in South Africa, the other two species are less mobile, more recent introductions and are largely confined to the vicinity of selected release sites. There has been a significant decline in the density of mature S. punicea in areas where two or more of the agents are established. The decline of the weed has been most evident where N. quadrivittatus is active and particularly so where both of the other two weevil species are also present. Received: 2 April 1997 / Accepted: 30 November 1997  相似文献   

15.
Azolla filiculoides (red waterfern) is a small, floating fern native to South America, that has invaded aquatic habitats, predominantly water resevoirs in southern Africa. A frond-feeding weevil, Stenopelmus rufinasus Gyllenhal (Coleoptera: Curculionidae), was imported from Florida, USA, and released as a biological control agent against this weed in South Africa at the end of 1997. To date, 24,700 weevils have been released, which has resulted in local extinction of red waterfern at 81% of the 112 release sites. The weevil has not failed to control a single site. Several sites were, however, lost due to flooding or drainage of dams. The surface area of weed controlled totalled 203.5 ha. On average, A. filiculoides was controlled in infested sites in 6.9 (±4.3) months. The weed recolonized at 22 of the sites (through either spore germination or dispersal by waterfowl), but the weevils subsequently spread to all of these sites and successfully caused local extinction of the weed at 18 of the sites. Five years after the release of the weevil, the weed no longer poses a threat to aquatic systems in southern Africa. In comparison to other biological control programs of aquatic weeds, the program against A. filiculoides in southern Africa ranks among the most successful cases anywhere in the world.  相似文献   

16.
Abstract:  Classical biological control of insect pests and weeds may lead to potential conflicts, where insect pests are closely related to weed biological control agents. Such a conflict may occur in the classical biological control of the cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) in North America, which belongs to the same subfamily, Ceutorhynchinae, as a number of agents introduced or proposed for introduction against non-indigenous invasive weed species. We propose a step-by-step procedure to select non-target species and thereby to develop a non-target species test list for screening candidate entomophagous biological control agents of a herbivore pest insect in a way that would simultaneously evaluate non-target potential on weed biological control agents and other non-target species. Using these recommendations, we developed a non-target test list for host specificity evaluations in the area of origin (Europe) and the area of introduction (North America) for cabbage seedpod weevil parasitoids. Scientifically based predictions on expected host–parasitoid interactions and ecological information about the ecological host range in the area of origin can help avoid conflicts, while still allowing the introduction of safe and effective agents against both insect pests and weeds.  相似文献   

17.
Abstract:  Cat's claw creeper, Macfadyena unguis-cati , a major environmental weed in coastal and sub-coastal areas of Queensland and New South Wales, Australia is a target for classical biological control. Host specificity of Hypocosmia pyrochroma Jones (Lep., Pyralidae), as a potential biological control agent was evaluated on the basis of no-choice and choice larval feeding and survival, and adult oviposition preference tests, involving 38 plant species in 10 families. In no-choice tests, larval feeding and development occurred only on cat's claw creeper. In choice tests, oviposition and larval development was evident only on cat's claw creeper. The results support the host-specificity tests conducted in South Africa, and suggest that H. pyrochroma is a highly specific biological control agent that does not pose any risk to non-target plants tested in Australia. This agent has been approved for field release by relevant regulatory authorities in Australia.  相似文献   

18.
The goals in selecting classical biological control agents for weeds are to identify agents that will be both safe for release and effective in controlling their target plants. The release of ineffective agents should be avoided, as these add to the costs and risks of biological control without contributing to its benefits. While the principles of host-specificity testing and risk assessment for weed biological control agents have been extensively debated and refined, there has been less attention given to assessing the probable efficacy of agents prior to release. This reluctance to undertake pre-release efficacy assessment (PREA) is probably based on concerns that it will both add to the cost of screening biological control agents and introduce a risk of wrongly rejecting effective agents. We used a project simulation model to investigate the implications of using PREA as an additional filter in the agent selection process. The results suggest that, if it can be done at a lower cost than host-specificity testing, the use of PREA as the first filter can make agent selection more cost-effective than screening based on host-specificity alone. We discuss examples of PREA and potential approaches. The impact of biocontrol agents is a function of their range, abundance, and per-capita damage. While it will always be difficult to predict the post-release abundance of biological control agents from pre-release studies, some estimates of potential range can be obtained from studies of climatic adaptation. For agents that affect the vegetative growth or survival of their target weeds, experimental measurement of per-capita damage is feasible and can contribute to a reduction in the numbers of ineffective agents released. The Anna Karenina principle states that success in complex undertakings does not depend on a single factor but requires avoiding many separate causes of failure. We suggest that, in biological control of weeds, the use of agents that are not sufficiently damaging is one such cause that can be partially avoided by the use of pre-release efficacy assessment.  相似文献   

19.
【背景】莲草直胸跳甲是外来入侵杂草空心莲子草的专一性天敌,其田间种群密度直接影响对空心莲子草的控制效果。研究莲草直胸跳甲的种群动态和扩散速度对于适时和适量投放莲草直胸跳甲防治空心莲子草具有重要意义。【方法】2008年5月底,在湿地环境的空心莲子草上释放不同密度的莲草直胸跳甲后,对其进行了持续至12月的种群动态调查。【结果】莲草直胸跳甲种群在6~7月和10~11月分别出现2个明显的高峰期。在湿地、旱地和水田3种生境的空心莲子草上释放莲草直胸跳甲后的扩散动态调查表明,莲草直胸跳甲在旱地的扩散能力强于湿地和水田,放虫后18d,距释放中心点6m处,旱地生境的种群数目大于湿地生境和水田生境。【结论与意义】应用莲草直胸跳甲防治空心莲子草的释放适期为早春5~6月,在不同生境进行释放时,需根据其扩散能力确定适宜的释放点密度和释放量。  相似文献   

20.
李保平  孟玲 《生态学报》2007,27(8):3513-3520
传统生物防治是治理外来入侵杂草危害切实可行的有效策略和途径,近来对传统生物防治的批评主要集注于,引进的生防作用物攻击威胁本土非靶标生物。引进的生防作用物可能对本土非靶标生物产生直接和间接影响,这类影响通过不同营养级生物之间的取食关系,以及通过同一营养级内生物间的竞争关系,而影响本土非靶标生物群落。列举若干杂草生物防治案例对以上影响方式及其发生途径进行了评述。就防范杂草生防作用物对非靶标生物的负面影响,提出了以下对策:(i)把引进天敌防治外来入侵生物作为最后的有效手段;(ii)适当增加对非靶标生物潜在影响的生态学评估;(iii)选择寄主专一性强而且能有效控制靶标杂草的天敌;(iv)加强对杂草传统生物防治的生态学研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号