首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen sulfide (H2S) has proved to be a multifunctional signaling molecule in plants and animals. Here, we investigated the role of H2S in the decay of fresh-cut pears (Pyrus pyrifolia). H2S gas released by sodium hydrosulfide (NaHS) prolonged the shelf life of fresh-cut pear slices in a dose-dependent manner. Moreover, H2S maintained higher levels of reducing sugar and soluble protein in pear slices. H2S significantly reduced the accumulation of hydrogen peroxide (H2O2), superoxide radicals (•O2 ) and malondialdehyde (MDA). Further investigation showed that H2S fumigation up-regulated the activities of antioxidant enzymes ascorbate peroxidase (APX), catalase (CAT), and guaiacol peroxidase (POD), while it down-regulated those of lipoxygenase (LOX), phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO). Furthermore, H2S fumigation effectively inhibited the growth of two fungal pathogens of pear, Aspergillus niger and Penicillium expansum, suggesting that H2S can be developed as an effective fungicide for postharvest storage. The present study implies that H2S is involved in prolonging postharvest storage of pears by acting as an antioxidant and fungicide.  相似文献   

2.
The inhibitory effect of heat treatment (HT) on Botrytis cinerea, a major postharvest fungal pathogen, and the possible mode of action were investigated. Spore germination and germ tube elongation of B. cinerea were both increasingly and significantly inhibited by HT (43 °C) for 10, 20 or 30 min. HT-induced gene expression of NADPH oxidase A, resulted in the intracellular accumulation of reactive oxygen species. HT-treated B. cinerea spores exhibited higher levels of oxidative damage to proteins and lipids, compared to the non-HT control. These findings indicate that HT resulted in oxidative damage which then played an important role in the inhibitory effect on B. cinerea. In the current study, HT was effective in controlling gray mold, caused by B. cinerea, in pear fruits. Understanding the mode of action by which HT inhibits fungal pathogens will help in the application of HT for management of postharvest fungal diseases of fruits and vegetables.  相似文献   

3.
To determine the relationship between dietary selenium (Se) deficiency or excess and liver hydrogen peroxide (H2O2) metabolism in chickens, 1-day-old chickens received insufficient Se (0.028 mg Se per kg of diet) or excess Se (3.0 or 5.0 mg Se per kg of diet) in their diets for 8 weeks. Body and liver weight changes, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, H2O2 content, and activities and mRNA levels of enzymes associated with H2O2 metabolism (catalase (CAT) and superoxide dismutase (SOD) 1–3) were determined in the liver. This study showed that Se deficiency or excess Se intake elicited relative severe changes. Se deficiency decreased growth, while Se excess promoted growth in chickens. Both diets vastly altered the liver function, but no obvious histopathological changes were observed in the liver. Se deficiency significantly lowered SOD and CAT activities, and the H2O2 content in the liver and serum increased. Se excess (3.0 mg/kg) decreased SOD and CAT activities with changes in their mRNA levels, and the H2O2 content increased. The larger Se excess (5.0 mg/kg) showed more serious effects but was not fatal. These results indicated that the H2O2 metabolism played a destructive role in the changes in bird liver function induced by Se deficiency or excess.  相似文献   

4.
Two Aureobasidium pullulans strains (L1 and L8), effective against some fruit postharvest pathogens were evaluated for VOCs production as a part of their modes of action towards five pathogens (Botrytis cinerea, Colletotrichum acutatum, Penicillium expansum, Penicillium digitatum and Penicillium italicum). The VOCs were assayed with a double petri dish assay against conidia germination of target pathogens. Results obtained showed that the VOCs generated by the antagonists inhibited significantly the conidia germination of all pathogens compared to the control. In particular, the conidia germination of all Penicillium was completely inhibited by VOCs produced by L1 and L8. In in vivo tests, apples and oranges were artificially inoculated with pathogen conidia and then biofumigated with VOCs emitted by both antagonists. The antagonistic treatment controlled significantly pathogen infection, confirming the results obtained in vitro tests. The best L1 and L8 VOCs activity was observed on apple inoculated with B. cinerea where the lesion diameter reduction observed was greater than the 88%. The compounds emitted by L1 and L8 strains were identified with the solid-phase microextraction (SPME)–gas chromatographic technique. Compounds as 2-phenyl, 1-butanol-3-methyl, 1-butanol-2-methyl and 1-propanol-2-methyl belonging to the group of alcohols were mainly produced for both strains, in the first 96 h of growth. These compounds were confirmed by comparison with standards. The pure compounds of VOCs cited above were used to determine the EC50 values for conidia germination of pathogens. The 1-propanol-2-methyl was the VOC least active against all tested fungi, with the EC50 values over 0.8 μl ml−1, while the 2-phenethyl alcohol was the most active with EC50 values lower than 0.8 μl ml−1, except for the C. acutatum (1.97 μl ml−1). The present study demonstrated, for the first time, that the production of VOCs could play an essential role in the antagonistic activity of two A. pullulans strains against five fruit postharvest pathogens.  相似文献   

5.
Initial microbial adhesion to surfaces is a complicated process that is affected by a number of factors. An important property of a solution that may influence adhesion is pH. The surface properties of the cedar wood were characterized by the sessile drop technique. Moreover, the interfacial free energy of surface adhesion to the cedar wood was determined under pH values (2, 3, 5, 7, 9 and 11). The results showed that cedar wood examined at different pH levels could be considered hydrophobic ranged from Giwi = ?13.1 mJ/m2 to Giwi = ?75 mJ/m2. We noted that the electron-donor character of cedar wood was important at both basic and limit acidic conditions (pH 11 and pH 3) and it decreased at intermediate pH (pH 5). The cedar wood substratum presents a weak electron acceptor under various pH’s. In addition, the adhesion of conidia from Penicilllium expansum to the cedar wood surfaces at different pH values (2, 3, 5, 7, 9 and 11) was investigated using Environmental Scanning Electron Microscopy and image analysis was assessed with the Mathlab® program. The data analysis showed that the conidia from P. expansum were strongly influenced by the pH. The maximum adhesion occurs in the pH 11 and pH 3 and decreased to 24% at pH 5.  相似文献   

6.
Antifungal activities of zinc oxide nanoparticles (ZnO NPs) and their mode of action against two postharvest pathogenic fungi (Botrytis cinerea and Penicillium expansum) were investigated in this study. ZnO NPs with sizes of 70 ± 15 nm and concentrations of 0, 3, 6 and 12 mmol l−1 were used. Traditional microbiological plating, scanning electron microscopy (SEM), and Raman spectroscopy were used to study antifungal activities of ZnO NPs and to characterize the changes in morphology and cellular compositions of fungal hyphae treated with ZnO NPs. Results show that ZnO NPs at concentrations greater than 3 mmol l−1 can significantly inhibit the growth of B. cinerea and P. expansum. P. expansum was more sensitive to the treatment with ZnO NPs than B. cinerea. SEM images and Raman spectra indicate two different antifungal activities of ZnO NPs against B. cinerea and P. expansum. ZnO NPs inhibited the growth of B. cinerea by affecting cellular functions, which caused deformation in fungal hyphae. In comparison, ZnO NPs prevented the development of conidiophores and conidia of P. expansum, which eventually led to the death of fungal hyphae. These results suggest that ZnO NPs could be used as an effective fungicide in agricultural and food safety applications.  相似文献   

7.
The paper evaluated the effects of Se application time and rate on physiological traits, grain Se content, and yield of winter wheat by field experiment. Se application significantly increased grain Se content and yield, and the increased amount treated with 20 and 30 mg Se?L?1 was the highest. At blooming–filling stage, Se application significantly increased grain Se content, but did not affect yield. Chlorophyll content was increased by Se application, and the increased amount at heading–blooming stage was higher than that in wheat leaves at the other stages. At four development stages, Se treatments (except for 10 mg Se?L?1 at jointing–heading stage) significantly decreased the rate of superoxide (O2 ?) radical production. At heading–blooming (except for 50 mg Se?L?1) and blooming–filling stages, hydrogen peroxide (H2O2) content was significantly decreased by Se treatments. The rate of O2 ? production and H2O2 content at 20 and 30 mg Se?L?1 was the lowest. Se treatments (except for 10 mg Se?L?1 at regreening–jointing and blooming–filling stages) also induced an evident decrease in malondialdehyde content. Proline content induced by Se treatments at jointing–heading and heading–blooming stages was higher than that in wheat leaves at regreening–jointing and blooming–filling stages. At four development stages, Se treatments all significantly increased glutathione peroxidase activity, and the treatments with 20 and 30 mg Se?L?1 also evidently increased reduced glutathione content. These results suggested that Se application at different development stages increased antioxidant capacity of wheat, reduced oxidant stress to some extent, and the effects of Se treatments was the best if Se concentration ranged between 20 and 30 mg Se?L?1. In addition, Se application time was more beneficial for Se accumulation and yield in wheat grain at heading–blooming stage.  相似文献   

8.
In this study, we investigated the pathogenicity and patulin production by ten strains of Penicillium expansum on various fruits (apples, apricots, kiwis, plums and peaches) at two (4°C and 25°C) different temperature regimes. All strains caused the infectious rots on all fruits at 4 and 25°C except one strain (PEX 09) at 4°C. Two strains (PEX 20 and PEX 12) out of ten produced the highest amounts of patulin on all fruits tested. The patulin production by P. expansum is high at 25°C compared to 4°C. All strains of P. expansum accumulated patulin ranging from 100–13,200 μg/kg and nine strains ranging from 100–12,100 μg/kg in all fruits at 25°C and 4°C, respectively. Among ten strains of P. expansum, strain PEX 20 produced the greatest amount of patulin on apricots (13,200 μg/kg of rotten fruit) and on apples (12,500 μg/kg) at 25°C after 9 days of incubation. At 4°C, this strain produced 12,100, 12,000, 2,100 and 1,200 μg/kg of patulin on apricots, apples, plums and peaches, respectively, after 45 days of incubation. Strain PEX 12 produced the highest amount of patulin on kiwis (10,700 μg/kg) at 25°C and 10,300 μg/kg at 4°C. Patulin production by P. expansum on peaches and plums at both temperatures were lower than other fruits. The results of this study showed that careful removal of rotten fruits is essential to produce patulin-free fruit juice, since high patulin levels in apricots, apples and kiwis could result in a level greater than 50 μg/kg of this mycotoxin in finished fruit juices, when one contaminated fruit occurs in 264, 250 and 214 fruits, respectively. So, the fruit processors should take care in not using rotten fruits for juice production to avoid the patulin problem worldwide, since this study proved that most important fruits being used for juice production and direct human consumption are susceptible to P. expansum and subsequent patulin production even at low temperatures. This is the first comprehensive report regarding patulin production by different strains of P. expansum on various fruits from Italy at different temperature regimes.  相似文献   

9.
Twenty local isolates of entomopathogenic fungi were determined for control of the larvae and adults of Culex quinquefasciatus. In a laboratory experiment, a Penicillium sp. CM-010 caused 100 % mortality of third-instar larvae within 2 h using a conidial suspension of 1 × 106 conidia ml?1. Its LC50 was 3 × 105 conidia ml?1, and the lethal time (LT50) was 1.06 h. Cloning and sequencing of its internal transcribed spacer region indicated that this Penicillium species is Penicillium citrinum (100 % identity in 434 bp). Mortality of the adult was highest with Aspergillus flavus CM-011 followed with Metarhizium anisopliae CKM-048 from 1 × 109 conidia ml?1. P. citrinum CM-010 at 1 × 106 conidia ml?1 killed 100 % larvae within 2 h while Bacillus thuringiensis var. israelensis at 5 ITU ml?1 required 24 h. This P. citrinum CM-010 also greatly reduced survival of C. quinquefasciatus larvae in an unreplicated field test. Light and transmission electron micrographs showed that the fungal conidia were ingested by the larvae and deposited in the gut. The metabolite patulin was produced by P. citrinum CM-010 instead of citrinin.  相似文献   

10.
It has been widely suggested that selenium (Se) deficiency play an important role in the pathophysiology of epilepsy. It has been reported that Se provides protection against the neuronal damage in patients and animals with epilepsy by restoring the antioxidant defense mechanism. The neuroprotective effects of topiramate (TPM) have been reported in several studies but the putative mechanism of action remains elusive. We investigated effects of Se and TPM in neuronal PC12 cell by evaluating Ca2+ mobilization, lipid peroxidation and antioxidant levels. PC12 cells were divided into eight groups namely control, TPM, Se, H2O2, TPM + H2O2, Se + H2O2, Se + TPM and Se + TPM + H2O2. The toxic doses and times of H2O2, TPM and Se were determined by cell viability assay which is used to evaluate cell viability. Cells were incubated with 0.01 mM TPM for 5 h and 500 nM Se for 10 h. Then, the cells were exposed to 0.1 mM H2O2 for 10 h before analysis. The cells in all groups except control, TPM and Se were exposed to H2O2 for 15 min before analysis. Cytosolic Ca2+ release and lipid peroxidation levels were higher in H2O2 group than in control, Se and TPM combination groups although their levels were decreased by incubation of Se and TPM combination. However, there is no difference on Ca2+ release in TPM group. Glutathione peroxidase activity, reduced glutathione and vitamin C levels in the cells were lower in H2O2 group than in control, Se and TPM groups although their values were higher in the cells incubated with Se and TPM groups than in H2O2 groups. In conclusion, these results indicate that Se induced protective effects on oxidative stress in PC12 cells by modulating cytosolic Ca2+ influx and antioxidant levels. TPM modulated also lipid peroxidation and glutathione and vitamin C concentrations in the cell system.  相似文献   

11.
《Fungal biology》2023,127(3):949-957
Black spot rot caused by Alternaria alternata is one of the major postharvest disease of apple fruit during logistic. This study evaluated in vitro inhibitory effect of 2-hydroxy-3-phenylpropanoic acid (PLA) at various concentrations on A. alternata and the possible mechanisms involved in its action. Results showed that different concentrations of PLA inhibited conidia germination and mycelial growth of A. alternata in vitro, and 1.0 g L−1 was the lowest effective concentration to suppress A. alternata growth. Moreover, PLA significantly reduced relative conductivity and increased malondialdehyde and soluble protein contents. PLA also increased H2O2 and dehydroascorbic acid contents, but reduced ascorbic acid content. Additionally, PLA treatment inhibited catalase, ascorbate peroxidase, monodehydroascorbate acid reductase, dehydroascorbic acid reductase and glutathione reductase activities, whereas promoted superoxide dismutase activity. All these findings suggest that the possible mechanisms involved in the inhibitory effect of PLA on A. alternata included damaging the cell membrane integrity to cause electrolyte leakage and destroying reactive oxygen species balance.  相似文献   

12.
Erwinia carotovora subsp. carotovora (Ecc), the causal agent of bacterial soft rot, is one of the destructive pathogens of postharvest vegetables. In this study, a bacterial isolate (BGP20) from the vegetable farm soil showed strong antagonistic activity against Ecc in vitro, and its twofold cell-free culture filtrate showed excellent biocontrol effect in controlling the postharvest bacterial soft rot of potatoes at 25 °C. The anti-Ecc metabolites produced by the isolate BGP20 had a high resistance to high temperature, UV-light and protease K. Based on the colonial morphology, cellular morphology, sporulation, and partial nucleotide sequences of 16S rRNA and gyrB gene, the isolate BGP20 was identified as Bacillus amyloliquefaciens subsp. plantarum. Further in vivo assays showed that the BGP20 cell culture was more effective in controlling the postharvest bacterial soft rot of green peppers and Chinese cabbages than its twofold cell-free culture filtrate. In contrast, the biocontrol effect and safety of the BGP20 cell culture were very poor on potatoes. In the wounds of potatoes treated with both the antagonist BGP20 and the pathogen Ecc, the viable count of Ecc was 31,746 times that of BGP20 at 48 h of incubation at 25 °C. But in the wounds of green peppers, the viable count of BGP20 increased 182.3 times within 48 h, and that of Ecc increased only 51.3 %. In addition, the treatment with both BGP20 and Ecc induced higher activity of phenylalanine ammonia-lyase (PAL) than others in potatoes. But the same treatment did not induce an increase of PAL activity in green peppers. In conclusion, the present study demonstrated that the isolate BGP20 is a promising candidate in biological control of postharvest bacterial soft rot of vegetables, but its main mode of action is different among various vegetables.  相似文献   

13.
Rewatering after drought is beneficial to plants subjected to moderate drought stress, and selenium (Se) could increase the tolerance of plants to stressful environment. The role of Se in rewatering of drought-treated wheat seedlings (Triticum aestivum L., cv Hengmai5229) was studied. The objective was to elucidate whether Se could improve recovery of wheat seedlings at rewatering after drought stress. Drought stress induced a significant reduction in growth parameters, total chlorophyll and soluble protein contents, and increased the rate of superoxide radical (O 2 ·? ) production, MDA content, and the activities of peroxidase, catalase (CAT), and superoxide dismutase in wheat seedlings. Rewatering after drought did not significantly affect biomass accumulation of seedlings over drought treatment, although it decreased the rate of O 2 ·? production and MDA content. However, the combined treatment of rewatering and Se evidently promoted biomass accumulation of seedlings over drought treatment and rewatering alone; and the rate of O 2 ·? production, MDA content, soluble protein content and CAT activity were recovered to the control values. This indicates that Se improved recovery of wheat seedlings at rewatering after drought stress.  相似文献   

14.
Concerns about food safety as well as the development of resistance to many fungicides by major postharvest pathogens have increased recently. Biological control, using microorganisms antagonistic to the fungal plant pathogens, appears to be promising as an alternative to fungicides. The microbial biocontrol agent has to be produced on an industrial scale, maintaining its biocontrol efficacy. The purpose of the current study was to optimize the conditions for microbial biomass production of the biocontrol agent Pantoea agglomerans PBC-1 in a 2-l mechanically stirred reactor (STR), defining mixing and mass transfer technological parameters and the growth kinetics for different saccharides. In the batch mode, different impellers and spargers were tested. Despite the oxygen mass transfer improvement achieved with marine propeller combined with porous sparger, the biomass did not increase, if compared with the use of a Rushton turbine and L-sparger, pointing out the relevance of a radial flux for better broth homogenization. Different carbon sources were used: sucrose, glucose and fructose; each of which led to viable populations 3.9 × 109, 1.4 × 109, 3.9 × 109 c.f.u/ml, respectively, after 20 h of incubation. Fed-batch technology allows the maintenance of high cell viability for longer periods of time in the stationary growth phase, which can be crucial for the scale-up of biocontrol agent production process that is achieved together with a reduction of 85% on the incidence caused by the pathogens, brought about by fresh microbial biomass preparation on artificially wounded apples or oranges, stored for 7 days at 25°C against Penicillium expansum and Penicillium digitatum.  相似文献   

15.
Selenium (Se) can play a protective role against heavy metal toxicity. This experiment aims to evaluate the effect of Se supplementation at different doses on the chicken brains. Oxidative stress was induced in the chicken brains by chromium(VI). A total of 105 Hyland brown male chickens were randomly divided into seven groups, including the control group, poisoned group [6%LD50 K2Cr2O7 body weight (B.W.)], and detoxification groups K2Cr2O7 (6%LD50) + Se (0.31, 0.63, 1.25, 2.50, and 5.00 Na2SeO3 mg/kg B.W.) orally in water for 42 days. The chickens were detected by the activities of mitochondrial membrane potential, 2′-benzoyloxycinnamaldehyde, superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), and Ca2+-ATPase. Cr(VI) administration caused histopathological damage. In addition, changes in oxidative stress indicators were observed in the chicken’s brains. Se supplement increased the levels of GSH, mitochondrial membrane potential (MMP), and Ca2+-ATPase and reduced MDA activity in the detoxification groups. However, the high-dose Se supplementation groups of 2.50 and 5.00 mg/kg reduced the activities of GSH, MMP, and Ca2+-ATPase; increased the brain–body ratio; and increased SOD activity. In conclusion, Cr(VI) exposure caused oxidative stress. Se exerted a remission effect on toxic responses in the chicken brains. However, a high Se concentration was synergistic to the toxic effect of Cr(VI).  相似文献   

16.
Reactive oxygen species play a dual role in host-pathogen interaction. They impede the spread of biotrophic pathogens via stimulating cell death and hypersensitive response (HR), and, on the other hand, they provide access to nutrients for necrotrophic pathogens feeding on dead tissues and facilitate their colonizing the host. The participation of ROS in defending plants from pathogens with a combined lifestyle (hemibiotrophs) is not yet understood, and it varies in its dependence on the particular host-pathogen combination. In the present study, we inoculated rapeseed plants (Brassica napus) with a hemibiotrophic fungus, Leptosphaeria maculans, and manipulated the H2O2 content in cotyledons by infiltrating catalase and/or H2O2 into tissues. The action of catalase resulted in a significant decrease in lesions development, but when H2O2 was applied instead, lesion formation was only moderately stimulated compared to the untreated control. When H2O2 toxicity to L. maculans was tested in vitro, concentrations above 5 mM and 10 mM H2O2 were lethal for germinating conidia and growing mycelia of L. maculans, respectively. We can assume that L. maculans behaves as a necrotroph during this early stage of infection even though its resistance to H2O2 does not exceed standard concentrations. To investigate antioxidant mechanisms implicated in the response of B. napus to L. maculans, the cotyledons were both inoculated with conidia and treated with L. maculans elicitor. Increased activities of guaiacol peroxidase, ascorbate peroxidase, glutathione reductase and superoxide dismutase were recorded both in L. maculans-infected and elicitor-treated cotyledons. The results indicate the importance of these enzymes for ROS scavenging in B. napus-L. maculans interaction.  相似文献   

17.
The aim of this study was to assess the oxidative stress status in rheumatoid arthritis (RA) by measuring markers of free radical production, systemic activity of disease, and levels of antioxidant. 52 RA patients and 30 healthy controls were included in the study, and clinical examination and investigations were performed and disease activity was assessed. Peripheral blood samples were used for all the assays. We assessed the markers of oxidative stress, including plasma levels of index of lipid peroxidation-thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), superoxide anion radical (O2 ?), nitric oxide (NO), and superoxide dismutase activity (SOD), catalase activity (CAT) and glutathione levels in erythrocytes. In the RA group, levels of H2O2, O2 ?, and TBARS were significantly higher than in controls (4.08 ± 0.31 vs. 2.39 ± 0.13 nmol/l, p < 0.01; 8.90 ± 1.28 vs. 3.04 ± 0.38 nmol/l, p < 0.01, 3.65 ± 0.55 vs. 1.06 ± 0.17 μmol/l, p < 0.01). RA patients had significantly increased SOD activity compared with healthy controls (2,918.24 ± 477.14 vs. 643.46 ± 200.63UgHbx103, p < 0.001). Patients had significantly higher levels of pro-oxidants (O2 ?, H2O2, and TBARS) compared to controls, despite significantly higher levels of SOD. Significant differences were also observed in serum levels of NO in patients with high-diseases activity. Our findings support an association between oxidative/nitrosative stress and RA. Stronger response in samples with higher diseases activity suggests that oxidative/nitrosative stress markers may be useful in evaluating the progression of RA as well as in elucidating the mechanisms of disease pathogenesis.  相似文献   

18.
We investigated the protective role of selenium (Se) in minimizing high temperature-induced damages to rapeseed (Brassica napus L. cv. BINA Sarisha 3) seedlings. Ten-day-old seedlings which had been supplemented with Se (25 μM Na2SeO4) or not were grown separately under control temperature (25 °C) or high temperature (38 °C) for a period of 24 or 48 h in nutrient solution. Heat stress caused decrease in chlorophyll and leaf relative water content (RWC) and increased malondialdehyde (MDA), hydrogen peroxide (H2O2), proline (Pro), and methylglyoxal (MG) contents. Ascorbate (AsA) content decreased at any duration of heat treatment. The content of reduced glutathione (GSH) increased only at 24 h of stress, while glutathione disulfide (GSSG) markedly increased at both duration of heat exposure with associated decrease in GSH/GSSG ratio. Upon heat treatment the activities of ascorbate peroxidase (APX), glutathione S-transferase (GST) and glyoxalase I (Gly I) were increased, while the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and catalase (CAT) were decreased. The activities of glutathione reductase (GR) and glutathione peroxidase (GPX) remained unchanged under heat stress. However, heat-treated seedlings which were supplemented with Se significantly decreased the lipid peroxidation, H2O2, and MG content and enhanced the content of chlorophyll, Pro, RWC, AsA, and GSH as well as the GSH/GSSG ratio. Selenium supplemented heat-treated seedlings also showed enhanced activities of MDHAR, DHAR, GR, GPX, CAT, Gly I, and Gly II as compared to heat-treated seedlings without Se supplementation. This study concludes that exogenous Se application confers heat stress tolerance in rapeseed seedlings by upregulating the antioxidant defense mechanism and methylglyoxal detoxification system.  相似文献   

19.
Mycoinsecticides application within Integral Pest Management requires high quantities of conidia, with the proper quality and resistance against environmental conditions. Metarhizium anisopliae var. lepidiotum conidia were produced in normal atmospheric conditions (21 % O2) and different concentrations of oxygen pulses (16, 26, 30, and 40 %); conidia obtained under hypoxic conditions showed significantly lower viability, hydrophobicity, and virulence against Tenebrio molitor larvae or mealworm, compared with those obtained under normal atmospheric conditions. Higher concentrations of oxygen (26 and 30 %) improved conidial production. However, when a 30 % oxygen concentration was applied, maximal conidial yields were obtained at earlier times (132 h) relative to 26 % oxygen pulses (156 h); additionally, with 30 % oxygen pulses, conidia thermotolerance was improved, maintaining viability, hydrophobicity, and virulence. Although conidial production was not affected when 40 % oxygen pulses were applied, viability and virulence were diminished in those conidia. In order to find a critical time for mycelia competence to respond to these oxidant conditions, oxygen pulses were first applied either at 36, 48, 60, and 72 h. A critical time of 60 h was determined to be the best time for the M. anisopliae var. lepidiotum mycelia to respond to oxygen pulses in order to increase conidial production and also to maintain the quality features. Therefore, oxygen-enriched (30 %) pulses starting at 60 h are recommended for a high production without the impairment of quality of M. anisopliae var. lepidiotum conidia.  相似文献   

20.
The periparturient period represents a stressful time for dairy cows as they transition from late gestation to early lactation. Oxidation stress occurs during this period owing to the increased metabolic activity. Antioxidants supplementation slightly above the suggested requirements may be beneficial in relieving this kind of stress. The objective of this study was to determine whether supplementing selenium (Se) yeast to diets with adequate Se concentrations affects Se status, oxidative stress, and antioxidant status in dairy cows during the periparturient period. Twenty multiparous Holstein cows were randomly divided into two groups with ten replicates in each group. During the last 4 weeks before calving, cows were fed Se-yeast at 0 (control) or 0.3 mg Se/kg dry matter (Se-yeast supplementation), in addition to Na selenite at 0.3 mg Se/kg dry matter in their rations. The concentrations of Se, reactive oxygen species (ROS), hydrogen peroxide (H2O2), hydroxyl radical, malonaldehyde (MDA), α-tocopherol and glutathione (GSH), the activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT), and the total antioxidant capacity (T-AOC) in plasma or erythrocyte of dairy cows were measured at 21 and 7 days prepartum, and at 7 and 21 days postpartum. Cows fed Se-yeast supplement during the last 4 weeks of gestation had higher plasma Se and lower MDA concentrations at 7 days prepartum, and at 7 and 21 days postpartum, and had higher whole blood Se and lower plasma ROS and H2O2 concentrations at 7 and 21 days postpartum compared with control cows. Se-yeast supplementation increased plasma and erythrocyte GSH-Px activities and erythrocyte GSH concentration at 7 days postpartum as compared to Se-adequate control cows. Compared with control cows, the enhanced SOD and CAT activities, increased α-tocopherol and GSH concentrations, and improved T-AOC in plasma at 7 and 21 days postpartum in Se-yeast-supplemented cows were also observed in this study. The results indicate that feeding Se-adequate cows a Se-yeast supplement during late gestation increases plasma Se status, improves antioxidant function, and relieves effectively oxidative stress occurred in early lactation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号