首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteriophage T4 capsid is an elongated icosahedron decorated with 155 copies of Hoc, a nonessential highly antigenic outer capsid protein. One Hoc monomer is present in the center of each major capsid protein (gp23*) hexon. We describe an in vitro assembly system which allows display of HIV antigens, p24-gag, Nef, and an engineered gp41 C-peptide trimer, on phage T4 capsid surface through Hoc-capsid interactions. In-frame fusions were constructed by splicing the human immunodeficiency virus (HIV) genes to the 5' or 3' end of the Hoc gene. The Hoc fusion proteins were expressed, purified, and displayed on hoc(-) phage particles in a defined in vitro system. Single or multiple antigens were efficiently displayed, leading to saturation of all available capsid binding sites. The displayed p24 was highly immunogenic in mice in the absence of any external adjuvant, eliciting strong p24-specific antibodies, as well as Th1 and Th2 cellular responses with a bias toward the Th2 response. The phage T4 system offers new direction and insights for HIV vaccine development with the potential to increase the breadth of both cellular and humoral immune responses.  相似文献   

2.
Bacteriophage T4 is a virus with well-known genetics, structure, and biology. Such techniques as X-ray crystallography, cryo-EM, and three-dimensional (3D) image reconstruction allowed describing its structure very precisely. The genome of this bacteriophage was completely sequenced, which opens the way for the use of many molecular techniques, such as site-specific mutagenesis, which was widely applied, e.g., in investigating the functions of some essential T4 proteins. The phage-display method, which is commonly applied in bacteriophage modifications, was successfully used to display antigens (PorA protein, VP2 protein of vvIBDV, and antigens of anthrax and HIV) on T4’s capsid platform. As first studies showed, the phage-display system as well as site-specific mutagenesis may also be used to modify interactions between phage particles and mammalian cells or to obtain phages infecting species other than the host bacteria. These may be used, among others, in the constantly developing bacteriophage therapy. All manipulations of this popular bacteriophage may enable the development of vaccine technology, phage therapy, and other branches of biological and medical science.  相似文献   

3.
《Gene》1997,195(2):303-311
A method was developed to clone linear DNAs by overexpressing T4 phage DNA ligase in vivo, based upon recombination deficient E. coli derivatives that carry a plasmid containing an inducible T4 DNA ligase gene. Integration of this ligase-plasmid into the chromosome of such E. coli allows standard plasmid isolation following linear DNA transformation of the strains containing high levels of T4 DNA ligase. Intramolecular ligation allows high efficiency recircularization of cohesive and blunt-end terminated linear plasmid DNAs following transformation. Recombinant plasmids could be constructed in vivo by co-transformation with linearized vector plus insert DNAs, followed by intermolecular ligation in the T4 ligase strains to yield clones without deletions or rearrangements. Thus, in vitro packaged lox-site terminated plasmid DNAs injected from phage T4 were recircularized by T4 ligase in vivo with an efficiency comparable to CRE recombinase. Clones that expressed a capsid-binding 14-aa N-terminal peptide extension derivative of the HOC (highly antigenic outer capsid) protein for T4 phage hoc gene display were constructed by co-transformation with a linearized vector and a PCR-synthesized hoc gene. Therefore, the T4 DNA ligase strains are useful for cloning linear DNAs in vivo by transformation or transduction of DNAs with nonsequence-specific but compatible DNA ends.  相似文献   

4.
After infection of Escherichia coli B with phage T4D carrying an amber mutation in gene 59, recombination between two rII markers is reduced two- to three-fold. This level of recombination deficiency persists even when burst size similar to wild type is induced by the suppression of the mutant DNA-arrest phenotype. In the background of two other DNA-arrest mutants in genes 46 and 47, a 10- to 11-fold reduction in recombination is observed. The cumulative effect of gene 59 mutation on gene 46-47 mutant suggests that complicated interactions must occur in the production of genetic recombinants. The DNA-arrest phenotype of gene 59 mutant can be suppressed by inhibiting the synthesis of late phage proteins. Under these conditions, DNA replicative intermediates similar to those associated with wild-type infection are induced. Synthesis of late phage proteins, however, results in the degradation of mutant 200S replicative intermediate into 63S DNA molecules even in the absence of capsid assembly. Although these 63S molecules are associated with membrane, they do not replicate. These results suggest a role for gene 59 product, in addition to a possible requirement of concatemeric DNA in late replication of phage T4 DNA.  相似文献   

5.
6.
It has previously been shown that T4 bacteriophage-coded dihydrofolate reductase is a capsid protein, specifically an element of the tail plate. This paper presents evidence that thymidylate synthetase is also a structural protein. Antiserum prepared against purified T4 thymidylate synthetase neutralizes T4 infectivity. Evidence is presented that structural thymidylate synthetase is the target of the antiphage component of the serum.The td gene in T4 codes for thymidylate synthetase. We have crossed the td gene from phage T6 into T4 and eliminated other T6 genetic material from the hybrid phage by extensive backcrossing. The hybrid phage, T4tdT6, is inactivated at 60 °C significantly more rapidly than the parent phage, T4D. Thus, the td gene is a determinant of a physical property of the virion, providing direct confirmation that thymidylate synthetase is a capsid protein. At present the role of the virion-bound enzyme is unknown.  相似文献   

7.
Bacteriophage T4 capsid is a prolate icosahedron composed of the major capsid protein gp23*, the vertex protein gp24*, and the portal protein gp20. Assembled on its surface are 810 molecules of the non-essential small outer capsid protein, Soc (10 kDa), and 155 molecules of the highly antigenic outer capsid protein, Hoc (39 kDa). In this study Soc, a "triplex" protein that stabilizes T4 capsid, is targeted for molecular engineering of T4 particle surface. Using a defined in vitro assembly system, anthrax toxins, protective antigen, lethal factor and their domains, fused to Soc were efficiently displayed on the capsid. Both the N and C termini of the 80 amino acid Soc polypeptide can be simultaneously used to display antigens. Proteins as large as 93 kDa can be stably anchored on the capsid through Soc-capsid interactions. Using both Soc and Hoc, up to 1662 anthrax toxin molecules are assembled on the phage T4 capsid under controlled conditions. We infer from the binding data that a relatively high affinity capsid binding site is located in the middle of the rod-shaped Soc, with the N and C termini facing the 2- and 3-fold symmetry axes of the capsid, respectively. Soc subunits interact at these interfaces, gluing the adjacent capsid protein hexamers and generating a cage-like outer scaffold. Antigen fusion does interfere with the inter-subunit interactions, but these interactions are not essential for capsid binding and antigen display. These features make the T4-Soc platform the most robust phage display system reported to date. The study offers insights into the architectural design of bacteriophage T4 virion, one of the most stable viruses known, and how its capsid surface can be engineered for novel applications in basic molecular biology and biotechnology.  相似文献   

8.
PY100 is a lytic bacteriophage with a broad host range within the genus Yersinia. The phage forms plaques on strains of the three human pathogenic species Yersinia enterocolitica, Y. pseudotuberculosis, and Y. pestis at 37°C. PY100 was isolated from farm manure and intended to be used in phage therapy trials. PY100 has an icosahedral capsid containing double-stranded DNA and a contractile tail. The genome consists of 50,291 bp and is predicted to contain 93 open reading frames (ORFs). PY100 gene products were found to be homologous to the capsid proteins and proteins involved in DNA metabolism of the enterobacterial phage T1; PY100 tail proteins possess homologies to putative tail proteins of phage AaΦ23 of Actinobacillus actinomycetemcomitans. In a proteome analysis of virion particles, 15 proteins of the head and tail structures were identified by mass spectrometry. The putative gene product of ORF2 of PY100 shows significant homology to the gene 3 product (small terminase subunit) of Salmonella phage P22 that is involved in packaging of the concatemeric phage DNA. The packaging mechanism of PY100 was analyzed by hybridization and sequence analysis of DNA isolated from virion particles. Newly replicated PY100 DNA is cut initially at a pac recognition site, which is located in the coding region of ORF2.  相似文献   

9.
The dimensions of bacteriophage T7 and T7 capsids have been investigated by small-angle x-ray scattering. Phage T7 behaves like a sphere of uniform density with an outer radius of 301 +/- 2 A (excluding the phage tail) and a calculated volume for protein plus nucleic acid of 1.14 +/- 0.05 x 10(-16) ml. The outer radius determined for T7 phage in solution is approximately 30% greater than the radius measured from electron micrographs, which indicates that considerable shrinkage occurs during preparation for electron microscopy. Capsids that have a phagelike envelope and do not contain DNA were obtained from lysates of T7-infected Escherichia coli (capsid II) and by separating the capsid component of T7 phage from the phage DNA by means of temperature shock (capsid IV). In both cases the peak protein density is at a radius of 275 A; the outer radius is 286 +/- 4 A, approximately 5% smaller than the envelope of T7 phage. The thickness of the envelope of capsid II is 22 +/- 4 A, consistent with the thickness of protein estimated to be 23 +/- 5 A in whole T7 phage, as seen on electron micrographs in which the internal DNA is positively stained. The volume in T7 phage available to package DNA is estimated to be 9.2 +/- 0.4 x 10(-17) ml. The packaged DNA adopts a regular packing with 23.6 A interplanar spacing between, DNA strands. The angular width of the 23.6 A reflection shows that the mean DNA-DNA spacing throughout the phage head is 27.5 +/- less than 2.2 A. A T7 precursor capsid (capsid I) expands when pelleted for x-ray scattering in the ultracentrifuge to essentially the same outer dimensions as for capsids II and IV. This expansion of capsid I can be prevented by fixing with glutaraldehyde; fixed capsid I has peak density at a radius of 247 A, 10% less than capsid II or IV.  相似文献   

10.
Complex viruses are assembled from simple protein subunits by sequential and irreversible assembly. During genome packaging in bacteriophages, a powerful molecular motor assembles at the special portal vertex of an empty prohead to initiate packaging. The capsid expands after about 10%-25% of the genome is packaged. When the head is full, the motor cuts the concatemeric DNA and dissociates from the head. Conformational changes, particularly in the portal, are thought to drive these sequential transitions. We found that the phage T4 packaging machine is highly promiscuous, translocating DNA into finished phage heads as well as into proheads. Optical tweezers experiments show that single motors can force exogenous DNA into phage heads at the same rate as into proheads. Single molecule fluorescence measurements demonstrate that phage heads undergo repeated initiations, packaging multiple DNA molecules into the same head. These results suggest that the phage DNA packaging machine has unusual conformational plasticity, powering DNA into an apparently passive capsid receptacle, including the highly stable virus shell, until it is full. These features probably led to the evolution of viral genomes that fit capsid volume, a strikingly common phenomenon in double-stranded DNA viruses, and will potentially allow design of a novel class of nanocapsid delivery vehicles.  相似文献   

11.
EGFR基因重组T7噬菌体疫苗抗Lewis肺癌的实验研究   总被引:1,自引:0,他引:1  
本研究中制备了表达表皮生长因子受体(EGFR)部分肽段的基因重组T7噬菌体疫苗,并开展了诱导小鼠产生内源性抗EGFR抗体的实验性抗肿瘤作用研究。由T7噬菌体展示系统将7个经筛选的异种属(人源、鸡源)EGFR膜外区片段展示在其壳体次要头蛋白(P10B)上,用所制备的基因重组噬茵体疫苗免疫小鼠,免疫4W后皮下接种Lewis肺癌细胞,10d后分离瘤体并称重,观察各实验组的抗肿瘤效果。Western Blot检测重组的融合壳蛋白均有EGFR抗原性:高表达EGFR的A431 细胞与免疫3W的小鼠抗血清结合并被荧光二抗标记,流式细胞仪检测法确认有抗EGFR抗体产生;各实验组肿瘤均重统计结果显示,P-CL1-670组、P-cp1-130组、P-cp2-136组、P-cp3-145组、 P-cp4-142组与空白噬菌体组差异性显著。说明表达EGFR的基因重组噬菌体疫苗诱导产生的内源性抗体.在一定程度上抑制了EGFR阳性肿瘤的生长.为诱导型内源性抗EGFR抗体的肿瘤靶向治疗研究开辟了新的途径。  相似文献   

12.
EGFR基因重组T7噬菌体疫苗抗Lewis肺癌的实验研究   总被引:2,自引:0,他引:2  
本研究中制备了表达表皮生长因子受体(EGFR)部分肽段的基因重组T7噬菌体疫苗,并开展了诱导小鼠产生内源性抗EGFR抗体的实验性抗肿瘤作用研究。由T7噬菌体展示系统将7个经筛选的异种属(人源、鸡源)EGFR膜外区片段展示在其壳体次要头蛋白(P10B)上,用所制备的基因重组噬菌体疫苗免疫小鼠,免疫4W后皮下接种Lewis肺癌细胞,10d后分离瘤体并称重,观察各实验组的抗肿瘤效果。WesternBlot检测重组的融合壳蛋白均有EGFR抗原性:高表达EGFR的A431细胞与免疫3W的小鼠抗血清结合并被荧光二抗标记.流式细胞仪检测法确认有抗EGFR抗体产生;各实验组肿瘤均重统计结果显示,P—CL1—670组、P—cp1-130组、P—cp2—136组、P—cp3—145组、P—cp4—142组与空白噬菌体组差异性显著。说明表达EGFR的基因重组噬菌体疫苗诱导产生的内源性抗体,在一定程度上抑制了EGFR阳性肿瘤的生长,为诱导型内源性抗EGFR抗体的肿瘤靶向治疗研究开辟了新的途径。  相似文献   

13.
We have studied the aberrant tubular polyheads of bacteriophages T4D and T2L as a model system for capsid maturation. Six different types of polyhead surface lattice morphology, and the corresponding protein compositions are reported and discussed. Using in vitro systems to induce transformations between particular polyhead types, we have deduced that the structural classes represent successive points in a transitional pathway. In the first step, coarse polyheads (analogous to the prohead τ-particle) are proteolytically cleaved by a phagecoded protease, a fragment of the gene 21 product. This cleavage of P23 to P231 induces a co-operative lattice transformation in the protein of the surface shell, to a conformation equivalent to that of T2L giant phage capsids. These polyheads (derived either from T4 or T2L lysates) can accept further T4-coded proteins. In doing so, they pass through intermediate structural states, eventually reaching an end point whose unit cell morphology is indistinguishable from that of the giant T4 capsids. At least one protein (called soc (Ishii & Yanagida, 1975)) is bound stoichiometrically to P231 in the end-state conformation. The simulation of several aspects of capsid maturation (cleavage of P23 to P231, stabilization, and lattice expansion) in the polyhead pathway suggest that it parallels the major events of phage T-even capsid maturation, decoupled from any involvement of DNA packaging.  相似文献   

14.
In complex DNA bacteriophages like lambda, T4, T7, P22, P2, the DNA is packaged into a preformed precursor particle which sometimes has a smaller size and often a shape different from that of the phage head. This packaging mechanism is different from the one suggested for the RNA phages, according to which RNA nucleates the shell formation. The different mechanisms could be understood by comparing the genomes to be packaged: single stranded fII RNA has a very compact structure with high helix content. It might easily form quasispherical structures in solution (as seen in the electron microscope by Thach & Thach (1973)) around which the capsid could assemble. Double stranded phage DNA, on the other hand, is a rigid molecule which occupies a large volume in solution and has to be concentrated 15-fold during packaging into the preformed capsid, and the change in the capsid structure observed hereby might provide the necessary DNA condensation energy.  相似文献   

15.
16.
17.
Lysates of bacteriophage λ, mutant in the head gene D, contain a minor amount of defective particles which can be isolated and complemented to infective particles by adding purified gene D product. The defective particles contain DNA with a specific infectivity in the helper assay of about 10% of phage DNA. This DNA is firmly held in the capsid and a tail is attached. Although the particles adsorb to sensitive bacteria, the DNA is not injected. The complemented, infectious particles differ from normal phage by having a lower density. After growing in a permissive host, phage particles of normal density are produced. The implications of the ability of gene D protein to bind to otherwise complete particles as a last step are discussed.  相似文献   

18.
V B Rao  L W Black 《Cell》1985,42(3):967-977
A phage T4 DNA packaging enzyme appears to arise as a processed form of the major T4 capsid structural protein gp23. The enzyme activity and antigen are missing from all head gene mutants that block the morphogenetic proteolytic processing reactions of the head proteins in vivo. The enzyme antigen can be formed in vitro by T4 (gp21) specific processing of gp23 containing extracts. Enzyme antigen is found in active processed proheads but not in full heads. The enzyme and the major capsid protein show immunological cross-reactivity, produce common peptides upon proteolysis, and share an assembly-conformation-dependent ATP binding site. The packaging enzyme and the mature capsid protein (gp23*) both appear to arise from processing of gp23, the former as a minor product of a specific gp23 structure in the prohead, acting in DNA packaging as a DNA-dependent ATPase, and a headful-dependent terminase.  相似文献   

19.
The transfer of the bacteriophage genome from the capsid into the host cell is a key step of the infectious process. In bacteriophage T5, DNA ejection can be triggered in vitro by simple binding of the phage to its purified Escherichia coli receptor FhuA. Using electrophoresis and cryo-electron microscopy, we measure the extent of DNA ejection as a function of the external osmotic pressure. In the high pressure range (7-16 atm), the amount of DNA ejected decreases with increasing pressure, as theoretically predicted and observed for λ and SPP1 bacteriophages. In the low and moderate pressure range (2-7 atm), T5 exhibits an unexpected behavior. Instead of a unique ejected length, multiple populations coexist. Some phages eject their complete genome, whereas others stop at some nonrandom states that do not depend on the applied pressure. We show that contrarily to what is observed for the phages SPP1 and λ, T5 ejection cannot be explained as resulting from a simple pressure equilibrium between the inside and outside of the capsid. Kinetics parameters and/or structural characteristics of the ejection machinery could play a determinant role in T5 DNA ejection.  相似文献   

20.
An extensive screening of coliphage T4 mutants has revealed two distinct classes defective, respectively, in the two sequential phage-induced phosphorylations of the host RNA polymerase, alteration and modification. The existence of these mutants proves that T4-specified functions are involved in both processes. The viabilities of these mutants demonstrate that neither alteration nor modification is essential for growth in Escherichia coli B/r. Physiological studies after infection of E. coli B/r have failed to reveal any abnormalities of phage deficient in alteration or modification. Both mutants normally inhibit host protein and stable RNA synthesis and normally express all classes of T4 genes. Thus, these specific phage-induced structural changes in the host RNA polymerase are not fundamental to the control of gene expression during T4 development. Alteration and modification may be required for growth in some strains of E. coli and hence be selectively advantageous because they extend the normal host range of the phage.Alteration appears to be catalyzed by a T4 function injected with the DNA. A polypeptide of molecular weight 61,000, which is probably cleaved during morphogenesis from a precursor of molecular weight 79,000, is missing in phage particles of alteration-deficient strains and may be the phage activity so injected. The T4 gene involved in alteration is named alt.Modification is controlled by a T4-replicative gene that has been mapped into a region of about 500 base-pairs between genes 39 and 56. These mapping data show that the defect in α modification defines a new T4 gene, named mod.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号