首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A thermophilic Bacillus sp. strain AN-7, isolated from a soil in India, produced an extracellular pullulanase upon growth on starch–peptone medium. The enzyme was purified to homogeneity by ammonium sulfate precipitation, anion exchange and gel filtration chromatography. The optimum temperature and pH for activity was 90 °C and 6.0. With half-life time longer than one day at 80 °C the enzyme proves to be thermostable in the pH range 4.5–7.0. The pullulanase from Bacillus strain lost activity rapidly when incubated at temperature higher than 105 °C or at pH lower than 4.5. Pullulanase was completely inhibited by the Hg2+ ions. Ca2+, dithiothreitol, and Mn2+ stimulated the pullulanase activity. Kinetic experiments at 80 °C and pH 6.0 gave Vmax and Km values of 154 U mg−1 and 1.3 mg ml−1. The products of pullulan were maltotriose and maltose. This proved that the purified pullulanase (pullulan-6-glucanohydrolase, EC 3.2.1.41) from Bacillus sp. AN-7 is classified under pullulanase type I. To our knowledge, this Bacillus pullulanase is the most highly thermostable type I pullulanase known to date.  相似文献   

2.
Thermostable pullulanase was purified to homogeneity on sodium dodecyl sulfate-polyacrylamide gel from the culture supernatant of Bacillus stearothermophilus TRS128. However, multiformity of the pullulanase was suggested by activity staining on a pullulan-reactive red plate. The thermostability of the enzyme was tested. In the presence of Ca2+, the optimum temperature of the pullulanase was 75°C, and nearly 100% of the enzyme activity was retained even after treatment at 68°C for 60 min. Since the thermostable pullulanase gene (pulT) has been cloned, the nucleotide sequence was determined. Although the DNA sequence revealed only one large open reading frame, two possible pairs of SD sequence and initiation codon were found in the frame. To analyze the regulatory region, several mutations (deletion, insertion and substitution of nucleotides) were introduced in the flanking region of pulT, using site-directed mutagenesis. A putative promoter, SD sequence and initiation codon were inferred. The pulT gene was composed of 1974 bases and 658 amino acid residues (molecular weight 75,375). The deduced amino acid sequence of the thermostable pullulanase exhibited a fairly low homology with that of the thermolabile pullulanase from Klebsiella aerogenes. However, four consensus sequences containing catalytic and/or substrate binding sites for amylolytic enzymes were also found in the thermostable pullulanase and the thermolabile enzyme.  相似文献   

3.
Pullulanase was immobilized on tannic acid and TEAE-cellulose, and β-amylase was covalently immobilized on p-aminobenzylcellulose. Both the immobilized enzymes showed similar properties in pH and temperature optima and heat stability. On passing the pullulan solution at high temperature (50°C) through a column packed with immobilized pullulanase, only maltotriose was obtained for ten days and the half-life was about 15 days. In a continuous reaction using immobilized multienzyme, starch was completely converted into maltose at 50°C and at a space velocity of 1.2, a comparative longer half-life (20 days) was obtained. It was concluded that starch was smoothly converted into maltose with the aid of α-amylase contaminated in the immobilized pullulanase and the operational stability of the column increased with 2-5mM Ca2+.  相似文献   

4.
Summary Two highly alkalophilic bacteria, and potent producers of alkaline pullulanase, were isolated from Korean soils. The two isolates, identified asBacillus sp. S-1 andMicrococcus sp. Y-1, grow on starch under alkaline conditions and effectively secrete extracellular pullulanases. The two isolates were extremely alkalophilic since bacterial growth and enzyme production occurred at pH values ranging from pH 6.0 to 12.0 forMicrococcus sp. Y-1 and pH 6.0 to 10.0 forBacillus sp. S-1. Both strains secrete enzymes that possess amylolytic and pullulanolytic acitivities. Extracellular crude enzymes of both isolates gave maltotriose as the major product formed from soluble starch and pullulan hydrolysis. Compared to other alkalophilic microbes such asMicrococcus sp. (0.57 units ml–1),Bacillus sp. KSM-1876 (0.56 units ml–1) andBacillus No. 202-1 (1.89 units ml–1) these isolates secreted extremely high concentrations (7.0 units ml–1 forBacillus sp. S-1 and 7.6 units ml–1 forMicrococcus sp. Y-1) of pullulanases in batch culture. The pullulanase activities from both strains were mostly found in the culture medium (85–90%). The extracellular enzymes of both bacteria were alkalophilic and moderately thermoactive; optimal activity was detected at pH 8.0–10.0 and between 50 and 60°C. Even at pH 12.0, 65% of original Y-1 pullulanase activity and 10% of S-1 pullulanase activity remained. The two newly isolated strains had broad pH ranges and moderate thermostability for their enzyme activities. These result strongly indicate that these new bacterial isolates have potential as producers of pullulanases for use in the starch industry.  相似文献   

5.
Summary Extracellular pullulanase (pullulan 6-glucanohydrolase, EC 3.2.1.41) was purified from cell free culture supernatants of Thermoanaerobium Tok6-B1 by ammonium sulphate precipitation, affinity precipitation, gel exclusion and ion exchange chromatography. A final purification factor of over 1600 was achieved. A molecular weight of 120 kD was determined by steric exclusion HPLC. Enzyme activity was specifically directed towards the 1–6 glucosidic linkages of pullulan resulting in 100% conversion to maltotriose and also possessed activity towards 1–4 linkages of starch, amylopectin and amylose producing maltooligosaccharides (DP2-DP4) as products. Maltotetraose was slowly hydrolysed to maltose. Values of K m (% w/v) were 7.3×10-3 for pullulan, 2.7×10-3 for amylopectin and 4.7×10-3 for Lintner's starch. Pullulanase activity was resistant to 6 M urea and was thermostable at temperatures up to 80°C (t 1/2 in the order of hours). Above 80°C thermal denaturation was significant (t 1/2=17 min at 85°C; 5 min at 90°C) but became less so in the presence of substrate (pullulan or starch). Thermostability was greatest at the pH activity optimum (pH 5.5) and was promoted by Ca2+ ions.Abbreviations BSA bovine serum albumin - EDTA ethylenediamine tetracetic acid - HPLC high performance liquid chromatography - MES 2-[N-Morpholino] ethanesulphonic acid - MOPS 3-[N-Morpholino] propanesulphonic acid - Tris tris-(hydroxymethyl)methylamine  相似文献   

6.
A thermophilic Bacillus sp. strain AN-7, isolated from a soil in India, produced an extracellular pullulanase upon growth on starch–peptone medium. The enzyme was purified to homogeneity by ammonium sulfate precipitation, anion exchange and gel filtration chromatography. The optimum temperature and pH for activity was 90 °C and 6.0. With half-life time longer than one day at 80 °C the enzyme proves to be thermostable in the pH range 4.5–7.0. The pullulanase from Bacillus strain lost activity rapidly when incubated at temperature higher than 105 °C or at pH lower than 4.5. Pullulanase was completely inhibited by the Hg2+ ions. Ca2+, dithiothreitol, and Mn2+ stimulated the pullulanase activity. Kinetic experiments at 80 °C and pH 6.0 gave Vmax and Km values of 154 U mg−1 and 1.3 mg ml−1. The products of pullulan were maltotriose and maltose. This proved that the purified pullulanase (pullulan-6-glucanohydrolase, EC 3.2.1.41) from Bacillus sp. AN-7 is classified under pullulanase type I. To our knowledge, this Bacillus pullulanase is the most highly thermostable type I pullulanase known to date.  相似文献   

7.
Summary A new thermophilic Bacillus strain 3183 (ATCC 49341) was isolated from hot-spring sediments. The organism grew on pullulan as a carbon source and showed optimum pH and temperature at pH 5.5 and 62° C, respectively, for growth. The strain reduced nitrate to nitrite both aerobically and anaerobically. It produced extracellular thermostable pullulanase and saccharidase activities which degraded pullulan and starch into maltotriose, maltose, and glucose. Medium growth conditions for pullulanase production were optimized. The optimum pH and temperature for pullulanase activity were at pH 6.0 and 75° C, respectively. The enzyme was stable at pH 5.5-7.0 and temperature up to 70° C in the absence of substrate. The K m for pullulan at pH 6.0 and 75° C was 0.4 mg/ml. The pullulanase activity was stimulated and stabilized by Ca2+. It was inhibited by ethylenediaminetetraacetate (EDTA), beta and gamma-cyclodextrins but not by alpha-cyclodextrin and reagents that inhibit essential enzyme SH-groups. Offprint requests to: B. C. Saha  相似文献   

8.
Extracellular pullulanases were purified from cell-free culture supernatants of the marine thermophilic archaea Thermococcus litoralis (optimal growth temperature, 90°C) and Pyrococcus furiosus (optimal growth temperature, 98°C). The molecular mass of the T. litoralis enzyme was estimated at 119,000 Da by electrophoresis, while the P. furiosus enzyme exhibited a molecular mass of 110,000 Da under the same conditions. Both enzymes tested positive for bound sugar by the periodic acid-Schiff technique and are therefore glycoproteins. The thermoactivity and thermostability of both enzymes were enhanced in the presence of 5 mM Ca2+, and under these conditions, enzyme activity could be measured at temperatures of up to 130 to 140°C. The addition of Ca2+ also affected substrate binding, as evidenced by a decrease in Km for both enzymes when assayed in the presence of this metal. Each of these enzymes was able to hydrolyze, in addition to the α-1,6 linkages in pullulan, α-1,4 linkages in amylose and soluble starch. Neither enzyme possessed activity against maltohexaose or other smaller α-1,4-linked oligosaccharides. The enzymes from T. litoralis and P. furiosus appear to represent highly thermostable amylopullulanases, versions of which have been isolated from less-thermophilic organisms. The identification of these enzymes further defines the saccharide-metabolizing systems possessed by these two organisms.  相似文献   

9.
Cell extracts of Clostridium thermohydrosulfuricum, an anaerobic bacterium which ferments starch into ethanol at 65°C, contained both pullulanase and glucoamylase activities. The general physiochemical and catalytic properties of these enzyme activities were compared. Pullulanase and glucoamylase activities were stable and optimally active at 85 and 75°C, respectively. The pH optima for activity and pH stability ranges were, respectively, 5.5 to 6 and 4.5 to 5.5 for pullulanase and 4 to 6 and 5 to 6 for glucoamylase. The apparent [S]0.5v and Vmax for pullulanase activity on pullulan were 0.33 mg/ml and 2.6 U/mg of protein. The apparent [S]0.5v and Vmax for glucoamylase activity on starch were of 0.41 mg/ml and 0.31 U/mg of protein. These enzymes were active and stable in the presence of air or 10% (vol/vol) ethanol. These enzyme activities allowed the organism to actively degrade raw starch into glucose in the absence of significant α-amylase activity.  相似文献   

10.
Purification and characterization of pullulanase from Aureobasidium pullulans. Pullulanase was purified by using gel—filtration column then on ion exchange using Q-sepharose column yielding a single peak. Purification was further carried out on SP-sepharose column. Molecular weight of pullulanase from A. pullulans was found to be about 73 KDa on the SDS-PAGE 10%. Native-PAGE 10% showed the activity of pullulanase, using polyacrylamide gel containing pullulan. Hydrolysis products from pullulanase activity with soluble starch, glycogen and pullulan on thin layer chromatography appeared as one band which is maltotriose, while α-amylase with soluble starch and glycogen showed two bands which are maltose and maltotriose but α-amylase gave negative result with pullulan on TLC chromatography only. Pullulanase could degrade α-1,6 glycosidic linkage of the previous substrates, while amylase could degrade α-1,4 glycosidic linkage of glycogen, soluble starch and pullulan. MALDI-Ms was employed to deduce protein sequence of pullulanase.  相似文献   

11.
An alkaline α‐amylase gene from alkaliphilic Alkalimonas amylolytica was synthesized based on the preferred codon usage of Escherichia coli and Pichia pastoris, respectively, and then was expressed in the according heterologous host, E. coli BL21 (DE3) and P. pastoris GS115. The alkaline α‐amylase expressed in E. coli was designated AmyA, whereas that produced by P. pastoris was designated AmyB. The specific activity of AmyA and AmyB was 16.0 and 16.6 U/mg at pH 9.5 and 50°C, respectively. The optimal pH and pH stability of AmyA and AmyB were similar, whereas the optimum temperature and thermal stability of AmyB were slightly enhanced compared with those of AmyA. The AmyA and AmyB had a similar melting temperature of 64°C and the same catalytic efficiency (kcat/Km) of 2.0 × 106 L/(mol min). AmyA and AmyB were slightly activated by 1 mM Co2+, Ca2+, or Na+, but inhibited by all other metal ions (K+, Mg2+, Fe3+, Fe2+, Zn2+, Mn2+, and Cu2+). Tween 80 or Tween 60 (10% (w/v)) had little influence on the stability of AmyA and AmyB, while the 10% (w/v) sodium dodecyl sulfate caused the complete loss of AmyA and AmyB activities. The AmyA and AmyB were stable in the presence of solid detergents (washing powder), while were less stable in liquid detergents. Under the optimal conditions in 3‐L bioreactor, the extracellular AmyB activity reached 600 U/mL, which was about 10 times as that of AmyA. These results indicated that P. pastoris was a preferable host for alkaline α‐amylase expression and the produced alkaline α‐amylase had a certain application potential in solid detergents. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

12.
A new fungal strain that was isolated from old sweet soy sauce was identified, based on subsequent microscopic studies and analyses of rRNA18S gene sequence, intergenic region rRNA 18S-23S, and aflatoxins production tests, as an Aspergillus oryzae strain. The latter was noted to produce two extracellular α-amylases, namely AmyA and AmyB. The monitoring of alpha-amylase production in the presence and absence of various protease inhibitors indicated that AmyB could be formed from the proteolysis of AmyA. The enzymes were purified to homogeneity through fractional acetone precipitation, size exclusion, and anion exchange chromatography. The molecular masses estimated for AmyA and AmyB by SDS-PAGE were 50 and 42 kDa, respectively. The NH2-terminal of the purified proteins showed the same amino acid sequences. Further biochemical characterization assays revealed that both enzymes attained maximal activity at pH 5.6 and 50 °C. They were activated and stabilized by Ca2+ and were noted to produce maltose and maltotriose as major starch hydrolysis end products. Overall, the findings of the present study indicate that both AmyA and AmyB exhibit a number of promising properties that make them potential strong candidates for application as additives in the bread making industry.  相似文献   

13.
This paper describes a simple and efficient method of isolation of a plullulanase type I from amylolytic lactic acid bacteria (ALAB). Extracellular pullulanase type I was purified from a cell-free culture supernatant of Lactococcus lactis IBB 500 by using ammonium sulfate fractionation and dialysis (instead of ultrafiltration), and ion-exchange chromatography with CM Sepharose FF followed by gel filtration chromatography with Sephadex G-150 as the final step. A final purification factor of 14.36 was achieved. The molecular mass of the enzyme was estimated as 73.9 kD. The optimum temperature for the enzyme activity was 45°C and the optimum pH was 4.5. Pullulanase activity was increased by addition Co2+ and completely inhibited by Hg2+. The enzyme activity was specifically directed toward α-1,6 glycosidic linkages of pullulan giving maltotriose units. Enzymatic hydrolysis of starch and amylose produced a mixture of maltose and maltotriose.  相似文献   

14.
The gene encoding a type I pullulanase was identified from the genome sequence of the anaerobic thermoalkaliphilic bacterium Anaerobranca gottschalkii. In addition, the homologous gene was isolated from a gene library of Anaerobranca horikoshii and sequenced. The proteins encoded by these two genes showed 39% amino acid sequence identity to the pullulanases from the thermophilic anaerobic bacteria Fervidobacterium pennivorans and Thermotoga maritima. The pullulanase gene from A. gottschalkii (encoding 865 amino acids with a predicted molecular mass of 98 kDa) was cloned and expressed in Escherichia coli strain BL21(DE3) so that the protein did not have the signal peptide. Accordingly, the molecular mass of the purified recombinant pullulanase (rPulAg) was 96 kDa. Pullulan hydrolysis activity was optimal at pH 8.0 and 70°C, and under these physicochemical conditions the half-life of rPulAg was 22 h. By using an alternative expression strategy in E. coli Tuner(DE3)(pLysS), the pullulanase gene from A. gottschalkii, including its signal peptide-encoding sequence, was cloned. In this case, the purified recombinant enzyme was a truncated 70-kDa form (rPulAg′). The N-terminal sequence of purified rPulAg′ was found 252 amino acids downstream from the start site, presumably indicating that there was alternative translation initiation or N-terminal protease cleavage by E. coli. Interestingly, most of the physicochemical properties of rPulAg′ were identical to those of rPulAg. Both enzymes degraded pullulan via an endo-type mechanism, yielding maltotriose as the final product, and hydrolytic activity was also detected with amylopectin, starch, β-limited dextrins, and glycogen but not with amylose. This substrate specificity is typical of type I pullulanases. rPulAg was inhibited by cyclodextrins, whereas addition of mono- or bivalent cations did not have a stimulating effect. In addition, rPulAg′ was stable in the presence of 0.5% sodium dodecyl sulfate, 20% Tween, and 50% Triton X-100. The pullulanase from A. gottschalkii is the first thermoalkalistable type I pullulanase that has been described.  相似文献   

15.
Summary High concentrations of amylases and pullulanases were formed by continuous cultivation of Thermoanaerobacter finnii, Thermobacteroides acetoethylicus, Thermoanaerobacter ethanolicus and Clostridium thermosaccharolyticum in chemostats under starch limitation. 70% to 98% of these enzymes were transported and released into the culture fluid. These extracellular enzymes were extremely thermostable under aerobic conditions and in the absence of substrate and metal ions. The amylases and pullulanases from the first three organisms had an optimal temperature of 90°C. The enzymes from C. thermosaccharolyticum were most active at 75°C. The pH optima of the amylolytic enzymes from the microorganisms investigated ranged between 5 and 6. The addition of calcium ions in vitro significantly enhanced pullulanase activity from T. finnii and C. thermosaccharolyticum. The influence of other metal ions and cyclodextrins on the activities of the amylolytic enzymes is also described.  相似文献   

16.
The extremely thermophilic archaeon Thermococcus hydrothermalis, isolated from a deep-sea hydrothermal vent in the East Pacific Rise at 21°N, produced an extracellular pullulanase. This enzyme was purified 97-fold to homogeneity from cell-free culture supernatant. The purified pullulanase was composed of a single polypeptide chain having an estimated molecular mass of 110 kDa (gel filtration) or 128 kDa (sodium dodecyl sulfate/polyacryl amide gel electrophoresis). The enzyme showed optimum activity at pH 5.5 and 95 °C. The thermostability and the thermoactivity were considerably increased in the presence of Ca2+. The enzyme was activated by 2-mercaptoethanol and dithiothreitol, whereas N-bromosuccinimide and α-cyclodextrin were inhibitors. This enzyme was able to hydrolyze, in addition to the α-1,6-glucosidic linkages in pullulan, α-1,4-glucosidic linkages in amylose and soluble starch, and can therefore be classified as a type II pullulanase or an amylopullulanase. The purified enzyme displayed Michaelis constant (K m) values of 0.95 mg/ml for pullulan and 3.55 mg/ml for soluble starch without calcium and, in the presence of Ca2+, 0.25 mg/ml for pullulan and 1.45 mg/ml for soluble starch. Received: 19 November 1997 / Received revision: 9 March 1998 / Accepted: 14 March 1998  相似文献   

17.
普鲁兰酶是一种淀粉脱支酶,因其分子量较大,胞外分泌表达难度较高。需钠弧菌(Vibrionatriegens)是一种新型的蛋白表达宿主,拥有高效的蛋白合成效率。本研究使用基因组整合T7 RNA聚合酶表达框的V.natriegens VnDX为宿主,构建了产全长普鲁兰酶PulA及其截短突变体PulN2的重组需钠弧菌,分析了信号肽、发酵温度、诱导剂浓度、甘氨酸浓度及发酵时间等条件对产酶的影响,并且对比了2种普鲁兰酶在V.natriegens VnDX与大肠杆菌(Escherichia coli)BL21(DE3)中的胞外产酶能力。研究结果显示,普鲁兰酶PulA和PulN2在V.natriegens VnDX中的胞外酶活为61.6 U/mL和64.3 U/mL,分别为E.coli BL21(DE3)最大酶活力的110%和62%。上述结果表明V.natriegens VnDX可以分泌表达大分子量的全长普鲁兰酶PulA,本研究可为其他大分子量蛋白在V.natriegens VnDX中的分泌表达提供参考和借鉴。  相似文献   

18.
Two constructs derived from the α-amylase gene (amyA) of Lactobacillus amylovorus were expressed in Lactobacillus plantarum, and their expression products were purified, characterized, and compared. These products correspond to the complete (AmyA) and truncated (AmyAΔ) forms of α-amylase; AmyAΔ lacks the 66-kDa carboxyl-terminal direct-repeating-unit region. AmyA and AmyAΔ exhibit similar amylase activities towards a range of soluble substrates (amylose, amylopectin and α-cyclodextrin, and soluble starch). The specific activities of the enzymes towards soluble starch are similar, but the KM and Vmax values of AmyAΔ were slightly higher than those of AmyA, whereas the thermal stability of AmyAΔ was lower than that of AmyA. In contrast to AmyA, AmyAΔ is unable to bind to β-cyclodextrin and is only weakly active towards glycogen. More striking is the fact that AmyAΔ cannot bind or hydrolyze raw starch, demonstrating that the carboxyl-terminal repeating-unit domain of AmyA is required for raw-starch binding activity.  相似文献   

19.
探索获得优良的新型普鲁兰酶基因,丰富普鲁兰酶理论,对实现普鲁兰酶国产化具有重要意义。分析GenBank数据库中蜡样芽胞杆菌假定Ⅰ型、Ⅱ型普鲁兰酶基因序列,从实验室保藏的蜡样芽胞杆菌Bacilluscereus GXBC-3中克隆得到3个普鲁兰酶基因pulA、pulB、pulC,并分别导入大肠杆菌进行胞内诱导表达。纯化重组酶酶学性质研究表明重组酶PulA能水解α-l,6-和α-l,4-糖苷键,为Ⅱ型普鲁兰酶,以普鲁兰糖为底物时,最适反应温度及pH分别为40℃和6.5,比活力为32.89 U/mg;以可溶性淀粉为底物时,最适反应温度及pH分别为50℃和7.0,比活力为25.71 U/mg。重组酶PulB和PulC二者均只能水解α-l,6-糖苷键,为I型普鲁兰酶,以普鲁兰糖为底物时,其最适反应温度及pH分别为45℃、7.0和45℃、6.5,比活力分别为228.54 U/mg和229.65 U/mg。  相似文献   

20.
Streptococcal pullulanases have been recently proposed as key components of the metabolic machinery involved in bacterial adaptation to host niches. By sequence analysis of the Group B Streptococcus (GBS) genome we found a novel putative surface exposed protein with pullulanase activity. We named such a protein SAP. The sap gene is highly conserved among GBS strains and homologous genes, such as PulA and SpuA, have been described in other pathogenic streptococci. The SAP protein contains two N-terminal carbohydrate-binding motifs, followed by a catalytic domain and a C-terminal LPXTG cell wall-anchoring domain. In vitro analysis revealed that the recombinant form of SAP is able to degrade α-glucan polysaccharides, such as pullulan, glycogen and starch. Moreover, NMR analysis showed that SAP acts as a type I pullulanase. Studies performed on whole bacteria indicated that the presence of α-glucan polysaccharides in culture medium up-regulated the expression of SAP on bacterial surface as confirmed by FACS analysis and confocal imaging. Deletion of the sap gene resulted in a reduced capacity of bacteria to grow in medium containing pullulan or glycogen, but not glucose or maltose, confirming the pivotal role of SAP in GBS metabolism of α-glucans. As reported for other streptococcal pullulanases, we found specific anti-SAP antibodies in human sera from healthy volunteers. Investigation of the functional role of anti-SAP antibodies revealed that incubation of GBS in the presence of sera from animals immunized with SAP reduced the capacity of the bacterium to degrade pullulan. Of interest, anti-SAP sera, although to a lower extent, also inhibited Group A Streptococcus pullulanase activity. These data open new perspectives on the possibility to use SAP as a potential vaccine component inducing functional cross-reacting antibodies interfering with streptococcal infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号