首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
I studied the effects of introducing phenotypic variation into a well-known single species model for a population with discrete, non-overlapping generations. The phenotypes differed in their dynamic behaviour. The analysis was made under the assumption that the population was in an evolutionary stable state. Differences in the timing of the competitive impacts of the phenotypes on each other had a strong simplifying effect on the dynamics. This result could also be applied to competition between species. The effect of sexual reproduction on the dynamics of the population was analysed by assuming the simplest genetic model of one locus with two alleles. Sexual reproduction made the system much more stable in the (mathematical) sense that the number of attractors was reduced and their basins of attraction enlarged. In a dominant system sex tended to increase the frequency of the recessive allele, and in an overdominant system it induced gene frequencies of 1/2. Whether the attractors in the dominant system tended to be simpler or more complex than the attractors in the asexual system depended on the phenotype of the recessive homozygote. The overdominant sexual system tended to have simpler dynamics than the corresponding asexual population. A 2-locus model was used to study whether sexuals can invade an asexual population and vice versa. One locus coded for sexual and asexual reproduction, while the other coded for the dynamics. Enhanced stability through sexual reproduction seemed to be the reason why there was a clear asymmetry favouring sex in this evolutionary context.  相似文献   

3.
Summary It is apparent in the genetic code that amino acids of similar chemical nature have similar codons. I show how through successive codon captures (multiple rounds of Osawa-Jukes type reassignments), complete codon swappings in an unfavorable genetic code are evolutionarily feasible. This mechanisms could have complemented the ambiguity reduction and the vocabulary extension processes of codon-amino acid assignments. Evolution of wobble rules is implied. Transfer RNA molecules and synthetases may still carry memories of it.  相似文献   

4.
Horizontal gene transfer in plants   总被引:1,自引:0,他引:1  
Horizontal gene transfer (HGT) has played a major role in bacterial evolution and is fairly common in certain unicellular eukaryotes. However, the prevalence and importance of HGT in the evolution of multicellular eukaryotes remain unclear. Recent studies indicate that plant mitochondrial genomes are unusually active in HGT relative to all other organellar and nuclear genomes of multicellular eukaryotes. Although little about the mechanisms of plant HGT is known, several studies have implicated parasitic plants as both donors and recipients of mitochondrial genes. Most cases uncovered thus far have involved a single transferred gene per species; however, recent work has uncovered a case of massive HGT in Amborella trichopoda involving acquisition of at least a few dozen and probably hundreds of foreign mitochondrial genes. These foreign genes came from multiple donors, primarily eudicots and mosses. This review will examine the implications of such massive transfer, the potential mechanisms and consequences of plant-to-plant mitochondrial HGT in general, as well as the limited evidence for HGT in plant chloroplast and nuclear genomes.  相似文献   

5.
6.

   

Consistent holistic view of sexual species as the highest form of biological existence is presented. The Weismann's idea that sex and recombination provide the variation for the natural selection to act upon is dominated in most discussions of the biological meaning of the sexual reproduction. Here, the idea is substantiated that the main advantage of sex is the opposite: the ability to counteract not only extinction but further evolution as well. Living systems live long owing to their ability to reproduce themselves with a high fidelity. Simple organisms (like bacteria) reach the continued existence due to the high fidelity of individual genome replication. In organisms with a large genome and complex development, the achievable fidelity of DNA replication is not enough for the precise reproduction of the genome. Such species must be capable of surviving and must remain unchanged in spite of the continuous changes of their genes. This problem has no solution in the frame of asexual ("homeogenomic") lineages. They would rapidly degrade and become extinct or blurred out in the course of the reckless evolution. The core outcome of the transition to sexual reproduction was the creation of multiorganismic entity - biological species. Individual organisms forfeited their ability to reproduce autonomously. It implies that individual organisms forfeited their ability to substantive evolution. They evolve as a part of the biological species. In case of obligatory sexuality, there is no such a thing as synchronic multi-level selection. Natural selection cannot select anything that is not a unit of reproduction. Hierarchy in biology implies the functional predestination of the parts for the sake of the whole. A crucial feature of the sexual reproduction is the formation of genomes of individual organisms by random picking them over from the continuously shuffled gene pool instead of the direct replication of the ancestor's genome. A clear anti-evolutionary consequence of the sexuality is evident from the fact that the genotypes of the individuals with an enhanced competitiveness are not transmitted to the next generation. Instead, after mating with "ordinary" individuals, these genotypes scatter and rearrange in new gene combinations, thus preventing the winner from exploiting the success.  相似文献   

7.
Horizontal gene transfer and phylogenetics   总被引:6,自引:0,他引:6  
The initial analysis of complete genomes has suggested that horizontal gene transfer events are very frequent between microorganisms. This could potentially render the inference, and even the concept itself, of the organismal phylogeny impossible. However, a coherent phylogenetic pattern has recently emerged from an analysis of about a hundred genes, the so-called 'core', strongly suggesting that it is possible to infer the phylogeny of prokaryotes. Also, estimation of the frequency of horizontal gene transfers at the genome level in a phylogenetic context seems to indicate that it is rather low, although of significant biological impact. Nevertheless, it should be emphasized that the history of microorganisms cannot be properly represented by the phylogeny of the core, which represents only a tiny fraction of the genome. This history, even if horizontal gene transfers are rare, should be represented by a network surrounding the core phylogeny.  相似文献   

8.
Trypanosomes harbour a large number of structural and biochemical peculiarities. Kinetoplast DNA, mitochondrial RNA editing, the sequestration of glycolysis inside glycosomes and unique oxidative-stress protection mechanisms (to name but a few) are found only in the members of the order Kinetoplastida. Thus, it is not surprising that they have provoked much speculation about why and how such oddities have evolved in trypanosomes. However, the true reasons for their existence within the eukaryotic world are still far from clear. Here, Fred Opperdoes and Paul Michels argue that the trypanosome-specific evolution of novel processes and organization could only have been made possible by the acquisition of a large number of foreign genes, which entered a trypanosomatid ancestor through lateral gene transfer. Many different organisms must have served as donors. Some of them were viruses, and others were bacteria, such as cyanobacterial endosymbionts and non-phototrophic bacteria.  相似文献   

9.

Background  

Horizontal gene transfer (HGT), the non-genealogical transfer of genetic material between different organisms, is considered a potentially important mechanism of genome evolution in eukaryotes. Using phylogenomic analyses of expressed sequence tag (EST) data generated from a clonal cell line of a free living dinoflagellate alga Karenia brevis, we investigated the impact of HGT on genome evolution in unicellular chromalveolate protists.  相似文献   

10.
Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries. HGT often occurs in microbic and eukaryotic genomes. However, the pathways by which HGTs occur in multicellular eukaryotes, especially in plants, are not well understood. We systematically summarized more than ten possible pathways for HGT. The intimate contact which frequently occurs in parasitism, symbiosis, pathogen, epiphyte, entophyte, and grafting interactions could promote HGTs between two species. Besides these direct transfer methods, genes can be exchanged with a vector as a bridge: possible vectors include pollen, fungi, bacteria, viruses, viroids, plasmids, transposons, and insects. HGT, especially when involving horizontal transfer of transposable elements, is recognized as a significant force propelling genomic variation and biological innovation, playing an important functional and evolutionary role in both eukaryotic and prokaryotic genomes. We proposed possible mechanisms by which HGTs can occur, which is useful in understanding the genetic information exchange among distant species or distant cellular components.  相似文献   

11.
Reactive oxygen species (ROS) are a key feature of plant (and animal) defences against invading pathogens. As a result, plant pathogens must be able to either prevent their production or tolerate high concentrations of these highly reactive chemicals. In this review, we focus on plant pathogenic bacteria of the genus Pseudomonas and the ways in which they overcome the challenges posed by ROS. We also explore the ways in which pseudomonads may exploit plant ROS generation for their own purposes and even produce ROS directly as part of their infection mechanisms.  相似文献   

12.
The evolutionary maintenance of mixis is one of the major unsolved problems in modern biology. This paper reviews the phenoraenon of sex, the hypotheses for its maintenance, and recent evidence bearing on the hypotheses. One elegant experiment supports the idea that bacterial transformation, an analogue and possible forerunner of eukaryolic mixis, functions as a repair mechanism. All mechanisms that produce a short-term advantage for sex in eukaryotes and that are supported by experimental results rely on strong genotype by environment interactions for fitness. While many environmental factors are involved, most prominently parasites, disease, and coarse-grained environmental heterogeneity of other sorts, each is effective only insofar as it is involved in a genotype by environment interaction for fitness.  相似文献   

13.
The ability of selfishly spreading DNA sequences to invade host populations is intimately bound up with sex. In the absence of sexual reproduction, an element that lowers the fitness of its host and which is initially found in only some of the population will inevitably be lost by natural selection. This will occur even if the element can spread selfishly in the genomes of those individuals which initially possessed it. Here, we create a model in which such a gene is introduced into a population in which individuals sometimes reproduce sexually and sometimes asexually. The element can raise the level of sexuality in its bearers. There is selection against those individuals with the gene (i.e. it is selfish), and a further selective cost to sexual reproduction. The dynamics of the model that arises from these simple assumptions are remarkably complex, with fixation or loss of the selfish gene, unstable and stable equilibria, and effective neutrality all being possible dependent on the parameter values. A selfish gene that increases the level of sexuality of its bearers will tend to have a higher likelihood of invading a host population, and faster spread, but a lower likelihood of spreading to fixation, than an equivalent gene with no effect on sex.  相似文献   

14.
15.
Horizontal gene transfer in eukaryotic evolution   总被引:3,自引:0,他引:3  
Horizontal gene transfer (HGT; also known as lateral gene transfer) has had an important role in eukaryotic genome evolution, but its importance is often overshadowed by the greater prevalence and our more advanced understanding of gene transfer in prokaryotes. Recurrent endosymbioses and the generally poor sampling of most nuclear genes from diverse lineages have also complicated the search for transferred genes. Nevertheless, the number of well-supported cases of transfer from both prokaryotes and eukaryotes, many with significant functional implications, is now expanding rapidly. Major recent trends include the important role of HGT in adaptation to certain specialized niches and the highly variable impact of HGT in different lineages.  相似文献   

16.
Horizontal gene transfer and bacterial diversity   总被引:7,自引:0,他引:7  
Bacterial genomes are extremely dynamic and mosaic in nature. A substantial amount of genetic information is inserted into or deleted from such genomes through the process of horizontal transfer. Through the introduction of novel physiological traits from distantly related organisms, horizontal gene transfer often causes drastic changes in the ecological and pathogenic character of bacterial species and thereby promotes microbial diversification and speciation. This review discusses how the recent influx of complete chromosomal sequences of various microorganisms has allowed for a quantitative assessment of the scope, rate and impact of horizontally transmitted information on microbial evolution.  相似文献   

17.
Horizontal gene transfer in the phytosphere   总被引:6,自引:0,他引:6  
  相似文献   

18.
This study examines how the latitude of cultivation ofGinkgo biloba affects the timing of all phases of its sexual reproductive cycle, from pollination through germination. Seeds produced by trees growing in warm-temperate climates germinate earlier in the year than seeds produced in cold-temperate climates, and they have a longer period of time available for seedling establishment. The embryos ofG. biloba seeds possess a temperature-dependent developmental-delay mechanism that allows seeds to survive winter by preventing premature germination in the fall. This and other cold-climate adaptations appear to have evolved within the genusGinkgo during the early Cretaceous, when the Northern Hemisphere was undergoing dramatic cooling after a long period of stable, warm conditions.Ginkgo biloba seeds possess an odoriferous sarcotesta that attracts mammalian scavengers in Asia-most notably members of the Carnivora—presumably by mimicking the smell of carrion. Seeds cleaned of their sarcotesta germinated faster and at higher percentages than those with their sarcotesta intact, suggesting that animal dispersal plays an important role in promoting seedling establishment. During the Cretaceous, potential dispersal agents included mammals, birds, and carnivorous dinosaurs.  相似文献   

19.
Mechanisms triggering methicillin-resistant Staphylococcus aureus (MRSA) epidemics are poorly understood. A recent study provides new evidence that horizontal gene transfer may be the culprit for the emergence of new resistant and virulent MRSA clones.  相似文献   

20.
Horizontal gene transfer (HGT) is recognized as the major force for bacterial genome evolution. Yet, numerous questions remain about the transferred genes, their function, quantity and frequency. The extent to which genetic transformation by exogenous DNA has occurred over evolutionary time was initially addressed by an in silico approach using the complete genome sequence of the Ralstonia solanacearum GMI1000 strain. Methods based on phylogenetic reconstruction of prokaryote homologous genes families detected 151 genes (13.3%) of foreign origin in the R. solanacearum genome and tentatively identified their bacterial origin. These putative transfers were analyzed in comparison to experimental transformation tests involving 18 different genomic DNA positions in the genome as sites for homologous or homeologous recombination. Significant transformation frequency differences were observed among these positions tested regardless of the overall genomic divergence of the R. solanacearum strains tested as recipients. The genomic positions containing the putative exogenous DNA were not systematically transformed at the highest frequencies. The two genomic "hot spots", which contain recA and mutS genes, exhibited transformation frequencies from 2 to more than 4 orders of magnitude higher than positions associated with other genes depending on the recipient strain. These results support the notion that the bacterial cell is equipped with active mechanisms to modulate acquisition of new DNA in different genomic positions. Bio-informatics study correlated recombination "hot-spots" to the presence of Chi-like signature sequences with which recombination might be preferentially initiated. The fundamental role of HGT is certainly not limited to the critical impact that the very rare foreign genes acquired mainly by chance can have on the bacterial adaptation potential. The frequency to which HGT with homologous and homeologous DNA happens in the environment might have led the bacteria to hijack DNA repair mechanisms in order to generate genetic diversity without losing too much genomic stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号