首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 806 毫秒
1.
Here we show that positive modulators (CyPPA and NS309) of Ca2+-activated K+ channels of small (SK) and intermediate (IK) conductances in cerebellar neurons decrease glutamate-evoked Ca2+ entry into neurons independently on the presence of Mg2+ in extracellular media. An analysis of neuronal viability after long-term (240 min) glutamate treatments demonstrated neuroprotective action of CyPPA and NS309. Extracellular Mg2+ did not protect neurons from apoptosis during prolonged treatment with glutamate. Activation of SK and IK channels results in local membrane hyperpolarization, which enhances Mg2+ block of NMDA receptors and reduces activation of voltage-dependent Ca2+ channels, which can explain neuroprotection caused by CyPPA or NS309. The obtained results reveal an important role Ca2+-activated K+ channels of small and intermediate conductance in the regulation of Ca2+ entry into cerebellar neurons via NMDA receptors and voltage-gated Ca2+ channels.  相似文献   

2.
SK channels are Ca2+-activated K+ channels that underlie after hyperpolarizing (AHP) currents and contribute to the shaping of the firing patterns and regulation of Ca2+ influx in a variety of neurons. The elucidation of SK channel function has recently benefited from the discovery of SK channel enhancers, the prototype of which is 1-EBIO. 1-EBIO exerts profound effects on neuronal excitability but displays a low potency and limited selectivity. This study reports the effects of DCEBIO, an intermediate conductance Ca2+-activated K+ channel modulator, and the effects of the recently identified potent SK channel enhancer NS309 on recombinant SK2 channels, neuronal apamin-sensitive AHP currents, and the excitability of CA1 neurons. NS309 and DCEBIO increased the amplitude and duration of the apamin-sensitive afterhyperpolarizing current without affecting the slow afterhyperpolarizing current in contrast to 1-EBIO. The potentiation by DCEBIO and NS309 was reversed by SK channel blockers. In current clamp experiments, NS309 enhanced the medium afterhyperpolarization (but not the slow afterhyperpolarization sAHP) and profoundly affected excitability by facilitating spike frequency adaptation in a frequency-independent manner. The potent and specific effect of NS309 on the excitability of CA1 pyramidal neurons makes this compound an ideal tool to assess the role of SK channels as possible targets for the treatment of disorders linked to neuronal hyperexcitability.  相似文献   

3.
Small conductance calcium-activated potassium (SK) channels respond to intracellular Ca2+ via constitutively associated calmodulin (CaM). Previous studies have proposed a modular design for the interaction between CaM and SK channels. The C-lobe and the linker of CaM are thought to regulate the constitutive binding, whereas the N-lobe binds Ca2+ and gates SK channels. However, we found that coexpression of mutant CaM (E/Q) where the N-lobe has only one functional EF hand leads to rapid rundown of SK channel activity, which can be recovered with exogenously applied wild-type (WT), but not mutant, CaM. Our results suggest that the mutation at the N-lobe EF hand disrupts the stable interaction between CaM and SK channel subunits, such that mutant CaM dissociates from the channel complex when the inside of the membrane is exposed to CaM-free solution. The disruption of the stable interaction does not directly result from the loss of Ca2+-binding capacity because SK channels and WT CaM can stably interact in the absence of Ca2+. These findings question a previous conclusion that CaM where the N-lobe has only one functional EF hand can stably support the gating of SK channels. They cannot be explained by the current model of modular interaction between CaM and SK channels, and they imply a role for N-lobe EF hand residues in binding to the channel subunits. Additionally, we found that a potent enhancer for SK channels, 3-oxime-6,7-dichloro-1H-indole-2,3-dione (NS309), enables the recovery of channel activity with CaM (E/Q), suggesting that NS309 stabilizes the interaction between CaM and SK channels. CaM (E/Q) can regulate Ca2+-dependent gating of SK channels in the presence of NS309, but with a lower apparent Ca2+ affinity than WT CaM.  相似文献   

4.

Background and Aims

Endothelial small- and intermediate-conductance KCa channels, SK3 and IK1, are key mediators in the endothelium-derived hyperpolarization and relaxation of vascular smooth muscle and also in the modulation of endothelial Ca2+ signaling and nitric oxide (NO) release. Obesity is associated with endothelial dysfunction and impaired relaxation, although how obesity influences endothelial SK3/IK1 function is unclear. Therefore we assessed whether the role of these channels in the coronary circulation is altered in obese animals.

Methods and Results

In coronary arteries mounted in microvascular myographs, selective blockade of SK3/IK1 channels unmasked an increased contribution of these channels to the ACh- and to the exogenous NO- induced relaxations in arteries of Obese Zucker Rats (OZR) compared to Lean Zucker Rats (LZR). Relaxant responses induced by the SK3/IK1 channel activator NS309 were enhanced in OZR and NO- endothelium-dependent in LZR, whereas an additional endothelium-independent relaxant component was found in OZR. Fura2-AM fluorescence revealed a larger ACh-induced intracellular Ca2+ mobilization in the endothelium of coronary arteries from OZR, which was inhibited by blockade of SK3/IK1 channels in both LZR and OZR. Western blot analysis showed an increased expression of SK3/IK1 channels in coronary arteries of OZR and immunohistochemistry suggested that it takes place predominantly in the endothelial layer.

Conclusions

Obesity may induce activation of adaptive vascular mechanisms to preserve the dilator function in coronary arteries. Increased function and expression of SK3/IK1 channels by influencing endothelial Ca2+ dynamics might contribute to the unaltered endothelium-dependent coronary relaxation in the early stages of obesity.  相似文献   

5.
p75 is expressed among Purkinje cells in the adult cerebellum, but its function has remained obscure. Here we report that p75 is involved in maintaining the frequency and regularity of spontaneous firing of Purkinje cells. The overall spontaneous firing activity of Purkinje cells was increased in p75−/− mice during the phasic firing period due to a longer firing period and accompanying reduction in silence period than in the wild type. We attribute these effects to a reduction in small conductance Ca2+-activated potassium (SK) channel activity in Purkinje cells from p75−/− mice compared with the wild type littermates. The mechanism by which p75 regulates SK channel activity appears to involve its ability to activate Rac1. In organotypic cultures of cerebellar slices, brain-derived neurotrophic factor increased RacGTP levels by activating p75 but not TrkB. These results correlate with a reduction in RacGTP levels in synaptosome fractions from the p75−/− cerebellum, but not in that from the cortex of the same animals, compared with wild type littermates. More importantly, we demonstrate that Rac1 modulates SK channel activity and firing patterns of Purkinje cells. Along with the finding that spine density was reduced in p75−/− cerebellum, these data suggest that p75 plays a role in maintaining normalcy of Purkinje cell firing in the cerebellum in part by activating Rac1 in synaptic compartments and modulating SK channels.  相似文献   

6.
Alterations in the intrinsic properties of Purkinje cells (PCs) may contribute to the abnormal motor performance observed in ataxic rats. To investigate whether such changes in the intrinsic neuronal excitability could be attributed to the role of Ca(2+)-activated K(+) channels (K(Ca)), whole cell current clamp recordings were made from PCs in cerebellar slices of control and ataxic rats. 3-AP induced profound alterations in the intrinsic properties of PCs, as evidenced by a significant increase in both the membrane input resistance and the initial discharge frequency, along with the disruption of the firing regularity. In control PCs, the blockade of small conductance K(Ca) channels by UCL1684 resulted in a significant increase in the membrane input resistance, action potential (AP) half-width, time to peak of the AP and initial discharge frequency. SK channel blockade also significantly decreased the neuronal discharge regularity, the peak amplitude of the AP, the amplitude of the afterhyperpolarization and the spike frequency adaptation ratio. In contrast, in ataxic rats, both the firing regularity and the initial firing frequency were significantly increased by the blockade of SK channels. In conclusion, ataxia may arise from alterations in the functional contribution of SK channels, to the intrinsic properties of PCs.  相似文献   

7.
We have identified and characterized the compound NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime) as a potent activator of human Ca2+ -activated K+ channels of SK and IK types, whereas it is devoid of effect on BK type channels. IK- and SK-channels have previously been reported to be activated by the benzimidazolinone, 1-EBIO and more potently by its dichloronated-analogue, DC-EBIO. NS309 is at least 1000 times more potent than 1-EBIO and at least 30 times more potent than DC-EBIO when the compounds are compared on the same cell.  相似文献   

8.
9.
Calcium signaling plays a central role in normal CNS functioning and dysfunction. As cerebellar Purkinje cells express the major regulatory elements of calcium control and represent the sole integrative output of the cerebellar cortex, changes in neural activity- and calcium-mediated membrane properties of these cells are expected to provide important insights into both intrinsic and network physiology of the cerebellum. We studied the electrophysiological behavior of Purkinje cells in genetically engineered alert mice that do not express BK calcium-activated potassium channels and in wild-type mice with pharmacological BK inactivation. We confirmed BK expression in Purkinje cells and also demonstrated it in Golgi cells. We demonstrated that either genetic or pharmacological BK inactivation leads to ataxia and to the emergence of a beta oscillatory field potential in the cerebellar cortex. This oscillation is correlated with enhanced rhythmicity and synchronicity of both Purkinje and Golgi cells. We hypothesize that the temporal coding modification of the spike firing of both Purkinje and Golgi cells leads to the pharmacologically or genetically induced ataxia.  相似文献   

10.
The intermediate (IK(Ca)) and small (SK(Ca)) conductance Ca(2+)-sensitive K(+) channels in endothelial cells (ECs) modulate vascular diameter through regulation of EC membrane potential. However, contribution of IK(Ca) and SK(Ca) channels to membrane current and potential in native endothelial cells remains unclear. In freshly isolated endothelial cells from mouse aorta dialyzed with 3 microM free [Ca(2+)](i) and 1 mM free [Mg(2+)](i), membrane currents reversed at the potassium equilibrium potential and exhibited an inward rectification at positive membrane potentials. Blockers of large-conductance, Ca(2+)-sensitive potassium (BK(Ca)) and strong inward rectifier potassium (K(ir)) channels did not affect the membrane current. However, blockers of IK(Ca) channels, charybdotoxin (ChTX), and of SK(Ca) channels, apamin (Ap), significantly reduced the whole-cell current. Although IK(Ca) and SK(Ca) channels are intrinsically voltage independent, ChTX- and Ap-sensitive currents decreased steeply with membrane potential depolarization. Removal of intracellular Mg(2+) significantly increased these currents. Moreover, concomitant reduction of the [Ca(2+)](i) to 1 microM caused an additional increase in ChTX- and Ap-sensitive currents so that the currents exhibited theoretical outward rectification. Block of IK(Ca) and SK(Ca) channels caused a significant endothelial membrane potential depolarization (approximately 11 mV) and decrease in [Ca(2+)](i) in mesenteric arteries in the absence of an agonist. These results indicate that [Ca(2+)](i) can both activate and block IK(Ca) and SK(Ca) channels in endothelial cells, and that these channels regulate the resting membrane potential and intracellular calcium in native endothelium.  相似文献   

11.
Gonadotropin-releasing hormone (GnRH) receptors are expressed in hypothalamic tissues from adult rats, cultured fetal hypothalamic cells, and immortalized GnRH-secreting neurons (GT1 cells). Their activation by GnRH agonists leads to an overall increase in the extracellular Ca2+-dependent pulsatile release of GnRH. Electrophysiological studies showed that GT1 cells exhibit spontaneous, extracellular Ca2+-dependent action potentials, and that their inward currents include Na+, T-type and L-type Ca2+ components. Several types of potassium channels, including apamin-sensitive Ca2+-controlled potassium (SK) channels, are also expressed in GT1 cells. Activation of GnRH receptors leads to biphasic changes in intracellular Ca2+ concentration ([Ca2+]i), with an early and extracellular Ca2+-independent peak and a sustained and extracellular Ca2+-dependent plateau phase. During the peak [Ca2+]i response, electrical activity is abolished due to transient hyperpolarization that is mediated by SK channels. This is followed by sustained depolarization and resumption of firing with increased spike frequency and duration. The agonist-induced depolarization and increased firing are independent of [Ca2+]i and are not mediated by inhibition of K+ currents, but by facilitation of a voltage-insensitive and store depletion-activated Ca2+-conducting inward current. The dual control of pacemaker activity by SK and store depletion-activated Ca2+ channels facilitates voltage-gated Ca2+ influx at elevated [Ca2+]i levels, but also protects cells from Ca2+ overload. This process accounts for the autoregulatory action of GnRH on its release from hypothalamic neurons.  相似文献   

12.
Small conductance calcium-activated potassium channels link elevations of intracellular calcium ions to membrane potential, exerting a hyperpolarizing influence when activated. The consequences of SK channel activity have been revealed by the specific blocker apamin, a peptide toxin from honeybee venom. Recent studies have revealed unexpected roles for SK channels in fine-tuning intrinsic cell firing properties and in responsiveness to synaptic input. They have also identified specific roles for different SK channel subtypes. A host of Ca2+ sources, including distinct subtypes of voltage-dependent calcium channels, intracellular Ca2+ stores and Ca2+-permeable ionotropic neurotransmitter receptors, activate SK channels. The macromolecular complex in which the Ca2+ source, SK channels and various modulators are assembled determines the kinetics and consequences of SK channel activation.  相似文献   

13.
To understand the contribution of potassium (K+) channels, particularly alpha-dendrotoxin (D-type)-sensitive K+ channels (Kv.1, Kv1.2 or Kv1.6 subunits), to the generation of neuronal spike output we must have detailed information of the functional role of these channels in the neuronal membrane. Conventional intracellular recording methods in current clamp mode were used to identify the role of alpha-dendrotoxin (alpha-DTX)-sensitive K+ channel currents in shaping the spike output and modulation of neuronal properties of cerebellar Purkinje neurons (PCs) in slices. Addition of alpha-DTX revealed that D-type K+ channels play an important role in the shaping of Purkinje neuronal firing behavior. Repetitive firing capability of PCs was increased following exposure to artificial cerebrospinal fluid (aCSF) containing alpha-DTX, so that in response to the injection of 0.6 nA depolarizing current pulse of 600 ms, the number of action potentials insignificantly increased from 15 in the presence of 4-AP to 29 action potentials per second after application of DTX following pretreatment with 4-AP. These results indicate that D-type K+ channels (Kv.1, Kv1.2 or Kv1.6 subunits) may contribute to the spike frequency adaptation in PCs. Our findings suggest that the activation of voltage-dependent K+ channels (D and A types) markedly affect the firing pattern of PCs.  相似文献   

14.
Small- and intermediate-conductance Ca(2+)-activated K(+) channels (SK3/Kcnn3 and IK1/Kcnn4) are expressed in vascular endothelium. Their activities play important roles in regulating vascular tone through their modulation of intracellular concentration ([Ca(2+)](i)) required for the production of endothelium-derived vasoactive agents. Activation of endothelial IK1 or SK3 channels hyperpolarizes endothelial cell membrane potential, increases Ca(2+) influx, and leads to the release of vasoactive factors, thereby impacting blood pressure. To examine the distinct roles of IK1 and SK3 channels, we used electrophysiological recordings to investigate IK1 and SK3 channel trafficking in acutely dissociated endothelial cells from mouse aorta. The results show that SK3 channels undergo Ca(2+)-dependent cycling between the plasma membrane and intracellular organelles; disrupting Ca(2+)-dependent endothelial caveolae cycling abolishes SK3 channel trafficking. Moreover, transmitter-induced changes in SK3 channel activity and surface expression modulate endothelial membrane potential. In contrast, IK1 channels do not undergo rapid trafficking and their activity remains unchanged when either exo- or endocytosis is block. Thus modulation of SK3 surface expression may play an important role in regulating endothelial membrane potential in a Ca(2+)-dependent manner.  相似文献   

15.
The activation of small-conductance calcium-activated potassium channels (SK) has a profound effect on membrane excitability. In hippocampal pyramidal neurons, SK channel activation by Ca2+ entry from a preceding burst of action potentials generates the slow afterhyperpolarization (AHP). Stimulation of a number of receptor types suppresses the slow AHP, inhibiting spike frequency adaptation and causing these neurons to fire tonically. Little is known of the gating properties of native SK channels in CNS neurons. By using excised inside-out patches, a small-amplitude channel has been resolved that was half-activated by approximately 0.6 microM Ca2+ in a voltage-independent manner. The channel possessed a slope conductance of 10 pS and exhibited nonstationary gating. These properties are in accord with those of cloned SK channels. The measured Ca2+ sensitivity of hippocampal SK channels suggests that the slow AHP is generated by activation of SK channels from a local rise of intracellular Ca2+.  相似文献   

16.
Small conductance (SK) channels are calcium-activated potassium channels that, when cloned in 1996, were thought solely to contribute to the afterhyperpolarisation that follows action potentials, and to control repetitive firing patterns of neurons. However, discoveries over the past few years have identified novel roles for SK channels in controlling dendritic excitability, synaptic transmission and synaptic plasticity. More recently, modulation of SK channel calcium sensitivity by casein kinase 2, and of SK channel trafficking by protein kinase A, have been demonstrated. This article will discuss recent findings regarding the function and modulation of SK channels in central neurons.  相似文献   

17.
A series of antiarrhythmic drugs was studied on spontaneous spike activity and depolarizing outward potassium current in leech Retzius nerve cells. Propafenone (0.7 μM/ml) produced a cardiac-like action potential with a rapid depolarization followed by a sustained depolarization or plateau, which is terminated after 250 msec by a rapid repolarization. The effect of lidocaine (0.7 μM/ml) on spontaneous spike activity was less pronounced, and early afterdepolarization has been recorded. Amiodarone at the same and much higher concentrations (3 μM/ml) did not generate either a cardiac-like action potential or an early afterdepolarization. In the voltage clamp experiments, fast and slow calcium-activated outward potassium currents were suppressed with propafenone and lidocaine but not with amiodarone. These results suggest that the antiarrhythmic drugs, propafenone and lidocaine modulate calcium-activated potassium channels in leech Retzius nerve cells.  相似文献   

18.
While firing rate is well established as a relevant parameter for encoding information exchanged between neurons, the significance of other parameters is more conjectural. Here, we show that regularity of neuronal spike activities affects sensorimotor processing in tottering mutants, which suffer from a mutation in P/Q-type voltage-gated calcium channels. While the modulation amplitude of the simple spike firing rate of their floccular Purkinje cells during optokinetic stimulation is indistinguishable from that of wild-types, the regularity of their firing is markedly disrupted. The gain and phase values of tottering's compensatory eye movements are indistinguishable from those of flocculectomized wild-types or from totterings with the flocculus treated with P/Q-type calcium channel blockers. Moreover, normal eye movements can be evoked in tottering when the flocculus is electrically stimulated with regular spike trains mimicking the firing pattern of normal simple spikes. This study demonstrates the importance of regularity of firing in Purkinje cells for neuronal information processing.  相似文献   

19.
Animal studies suggest that the small (SK) and intermediate (IK) conductance Ca(2+)-activated K(+) channels may contribute to detrusor smooth muscle (DSM) excitability and contractility. However, the ability of SK and IK channels to control DSM spontaneous phasic and nerve-evoked contractions in human DSM remains unclear. We first investigated SK and IK channels molecular expression in native human DSM and further assessed their functional role using isometric DSM tension recordings and SK/IK channel-selective inhibitors. Quantitative PCR experiments revealed that SK3 channel mRNA expression in isolated DSM single cells was ~12- to 44-fold higher than SK1, SK2, and IK channels. RT-PCR studies at the single-cell level detected mRNA messages for SK3 channels but not SK1, SK2, and IK channels. Western blot and immunohistochemistry analysis further confirmed protein expression for the SK3 channel and lack of detectable protein expression for IK channel in whole DSM tissue. Apamin (1 μM), a selective SK channel inhibitor, significantly increased the spontaneous phasic contraction amplitude, muscle force integral, phasic contraction duration, and muscle tone of human DSM isolated strips. Apamin (1 μM) also increased the amplitude of human DSM electrical field stimulation (EFS)-induced contractions. However, TRAM-34 (1 μM), a selective IK channel inhibitor, had no effect on the spontaneous phasic and EFS-induced DSM contractions suggesting a lack of IK channel functional role in human DSM. In summary, our molecular and functional studies revealed that the SK, particularly the SK3 subtype, but not IK channels are expressed and regulate the spontaneous and nerve-evoked contractions in human DSM.  相似文献   

20.
Patch-clamp recordings were performed to study the effects of three calmodulin (CaM) antagonists on the gating of intermediate calcium-activated K(+) channels (IK(Ca)) of human erythrocytes. In the cell-attached configuration, both opening frequency and open probability of IK(Ca) channels were not significantly different in control cells and in those incubated with calmidazolium, trifluoperazine or W7. IK(Ca) channels in excised membrane patches, were normally activated by the calcium bathing the cytoplasmic side in the presence of CaM antagonists, at calcium concentrations ranging from 10(-7) to 10(-3) M. The activity of IK(Ca) channels, which had been previously up-modulated by an endogenous cAMP-dependent protein kinase, was not inhibited when perfused with CaM antagonists. The results presented in this study demonstrate that calmodulin antagonists do not inhibit the activity of native IK(Ca) channels of human erythrocytes. These data are in accordance with findings on the cloned IK(Ca) indicating that calmodulin is constitutively associated with these channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号