首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the regulation of cardiac fibrosis is critical for controlling adverse cardiac remodeling during heart failure. Previously we identified miR-378 as a cardiomyocyte-abundant miRNA down-regulated in several experimental models of cardiac hypertrophy and in patients with heart failure. To understand the consequence of miR-378 down-regulation during cardiac remodeling, our current study employed a locked nucleic acid-modified antimiR to target miR-378 in vivo. Results showed development of cardiomyocyte hypertrophy and fibrosis in mouse hearts. Mechanistically, miR-378 depletion was found to induce TGFβ1 expression in mouse hearts and in cultured cardiomyocytes. Among various secreted cytokines in the conditioned-media of miR-378-depleted cardiomyocytes, only TGFβ1 levels were found to be increased. The increase was prevented by miR-378 expression. Treatment of cardiac fibroblasts with the conditioned media of miR-378-depleted myocytes activated pSMAD2/3 and induced fibrotic gene expression. This effect was counteracted by including a TGFβ1-neutralizing antibody in the conditioned-medium. In cardiomyocytes, adenoviruses expressing dominant negative N-Ras or c-Jun prevented antimiR-mediated induction of TGFβ1 mRNA, documenting the importance of Ras and AP-1 signaling in this response. Our study demonstrates that reduction of miR-378 during pathological conditions contributes to cardiac remodeling by promoting paracrine release of profibrotic cytokine, TGFβ1 from cardiomyocytes. Our data imply that the presence in cardiomyocyte of miR-378 plays a critical role in the protection of neighboring fibroblasts from activation by pro-fibrotic stimuli.  相似文献   

2.
Cardiac hypertrophy is a myocardial enlargement due to overload pressure, and the primary cause of heart failure. We investigated the function of miR-375-3p in cardiac hypertrophy and its regulating mechanisms. miR-375-3p was upregulated in hearts of the transverse aortic constriction rat model and angiotensin II (Ang II)-induced primary cardiomyocyte hypertrophy model; the opposite was observed for lactate dehydrogenase B (LDHB) protein expression. miR-375-3p knockdown reduced the surface area of primary cardiomyocytes increased by Ang II treatment and decreased the B-natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC) messenger RNA (mRNA) and protein levels. miR-375-3p was also observed to directly target LDHB. LDHB knockdown increased the surface area of Ang II-treated primary cardiomyocytes and increased the BNP and β-MHC mRNA and protein levels. LDHB knockdown attenuated the effects of miR-375-3p on the surface area of primary cardiomyocytes and BNP and β-MHC levels. Therefore, miR-375-3p inhibitor suppresses Ang II-induced cardiomyocyte hypertrophy by promoting LDHB expression.  相似文献   

3.
Earlier, our study demonstrated that lysophosphatidic acid (LPA) receptor mediated cardiomyocyte hypertrophy. However, the subtype-specific functions for LPA1 and LPA3 receptors in LPA-induced hypertrophy have not been distinguished. Growing evidence indicates that microRNAs (miRNAs) are involved in the pathogenesis of cardiac hypertrophy by down-regulating target molecules. The present work therefore aimed at elucidating the functions mediated by different subtypes of LPA receptors and investigating the modulatory role of miRNAs during LPA induced hypertrophy. Experiments were done with cultured neonatal rat cardiomyocytes (NRCMs) exposed to LPA and we showed that knockdown of LPA1 by small interfering RNA (siRNA) enhanced LPA-induced cardiomyocyte hypertrophy, whereas LPA3 silencing repressed hypertrophy. miR-23a, a pro-hypertrophic miRNA, was up-regulated by LPA in cardiomyocytes and its down-regulation reduced LPA-induced cardiomyocyte hypertrophy. Importantly, luciferase reporter assay confirmed LPA1 to be a target of miR-23a, indicating that miR-23a is involved in mediating the LPA-induced cardiomyocyte hypertrophy by targeting LPA1. In addition, knockdown of LPA3, but not LPA1, eliminated miR-23a elevation induced by LPA. And PI3K inhibitor, LY294002, effectively prevented LPA-induced miR-23a expression in cardiomyocytes, suggesting that LPA might induce miR-23a elevation by activating LPA3 and PI3K/AKT pathway. These findings identified opposite subtype-specific functions for LPA1 and LPA3 in mediating cardiomyocyte hypertrophy and indicated LPA1 to be a target of miR-23a, which discloses a link between miR-23a and the LPA receptor signaling in cardiomyocyte hypertrophy.  相似文献   

4.
Pathological cardiomyocyte hypertrophy is associated with significantly increased risk of heart failure, one of the leading medical causes of mortality worldwide. MicroRNAs are known to be involved in pathological cardiac remodeling. However, whether miR-99a participates in the signaling cascade leading to cardiac hypertrophy is unknown. To evaluate the role of miR-99a in cardiac hypertrophy, we assessed the expression of miR-99a in hypertrophic cardiomyocytes induced by isoprenaline (ISO)/angiotensin-II (Ang II) and in mice model of cardiac hypertrophy induced by transverse aortic constriction (TAC). Expression of miR-99a was evaluated in these hypertrophic cells and hearts. We also found that miR-99a expression was highly correlated with cardiac function of mice with heart failure (8 weeks after TAC surgery). Overexpression of miR-99a attenuated cardiac hypertrophy in TAC mice and cellular hypertrophy in stimuli treated cardiomyocytes through down-regulation of expression of mammalian target of rapamycin (mTOR). These results indicate that miR-99a negatively regulates physiological hypertrophy through mTOR signaling pathway, which may provide a new therapeutic approach for pressure-overload heart failure.  相似文献   

5.
Cardiac hypertrophy has been known as an independent predictor for cardiovascular morbidity and mortality. Molecular mechanisms underlying the development of heart failure remain elusive. Recently, microRNAs (miRs) have been established as important regulators in cardiac hypertrophy. Here, we reported miR-221 was up-regulated in both transverse aortic constricted mice and patients with hypertrophic cardiomyopathy (HCM). Forced expression of miR-221 by transfection of miR-221 mimics increased myocyte cell size and induced the re-expression of fetal genes, which were inhibited by the knockdown of endogenous miR-221 in cardiomyocytes. The TargetScan algorithm-based prediction identified that p27, a cardiac hypertrophic suppressor, is the putative target of miR-221, which was confirmed by luciferase assay and Western blotting. In conclusion, our results demonstrated that miR-221 regulated cardiomyocyte hypertrophy probably through down-regulation of p27, suggesting that miR-221 may be a new intervention target for cardiac hypertrophy.  相似文献   

6.
7.
Noncoding RNAs are important for the regulation of cardiac hypertrophy. The function of MALAT1 (a long noncoding mRNA), miR-181a, and HMGB2, their contribution to cardiac hypertrophy, and the regulatory relationship between them during this process remain unknown. In the present study, we treated primary cardiomyocytes with angiotensin II (Ang II) to mimic cardiac hypertrophy. MALAT1 expression was significantly downregulated in Ang II-treated cardiomyocytes compared with control cardiomyocytes. Ang II-induced cardiac hypertrophy was suppressed by overexpression of MALAT1 and promoted by genetic knockdown of MALAT1. A dual-luciferase reporter assay demonstrated that MALAT1 acted as a sponge for miR-181a and inhibited its expression during cardiac hypertrophy. Cardiac hypertrophy was suppressed by overexpression of an miR-181a inhibitor and enhanced by overexpression of an miR-181a mimic. HMGB2 was downregulated during cardiac hypertrophy and was identified as a target of miR-181a by bioinformatics analysis and a dual-luciferase reporter assay. miR-181a overexpression decreased the mRNA and protein levels of HMGB2. Rescue experiments indicated that MALAT1 overexpression reversed the effect of miR-181a on HMGB2 expression. In summary, the results of the present study show that MALAT1 acts as a sponge for miR-181a and thereby regulates expression of HMGB2 and development of cardiac hypertrophy. The novel MALAT1/miR-181a/HMGB2 axis might play a crucial role in cardiac hypertrophy and serve as a new therapeutic target.Key words: Hypertrophy, cardiomyocytes, MALAT1, miR-181a, HMGB2  相似文献   

8.
Cardiac hypertrophy, which is characterized by the enlargement of cell size, reactivation of fetal genes, remains one of the most important triggers to heart failure. Increasing evidence shows that microRNA (miRNA) is extensively involved in the pathogenesis of cardiac hypertrophy. But the effects of miRNAs on cardiomyocyte hypertrophy have not been completely solved yet. Here, we showed that a collection of miRNAs was aberrantly expressed in hypertrophic cardiomyocytes induced by phenylephrine (PE) or angiotensin II (Ang II). Among them, miR-22 was the most strikingly up-regulated miRNA. To investigate the role of miR-22 in hypertrophy, both over-expression and knock-down assays were performed on cardiomyocytes. The results showed that up-regulation of miR-22 significantly increased the cell size and markedly influenced the expression of hypertrophic markers, including induction of nppa and reduction of myh6. In contrast, reduction of miR-22 level attenuated either PE- or Ang II-induced hypertrophic reaction. Furthermore, several genes, including PTEN, were identified as potential targets of miR-22 by bioinformatic algorithms. Using luciferase analysis, miR-22 could significantly suppress the luciferase activity of reporter fused with 3' untranslated region of PTEN mRNA. Furthermore, up-regulation of miR-22 could suppress the protein level of PTEN and reduction of miR-22 level markedly increased the protein level of PTEN in cardiomyocytes by Western blot analysis, suggesting that the contribution of miR-22 to cardiomyocyte hypertrophy may be partially through targeting PTEN. Taken together, miRNAs were dynamically regulated in cardiomyocyte hypertrophy and attenuation of miR-22 in rat cardiomyocytes efficiently protected from hypertrophic effects through derepressing PTEN.  相似文献   

9.
10.
Cardiac hypertrophy is the uppermost risk factor for the development of heart failure, leading to irreversible cardiac structural remodeling and sudden death. As a major mediator of cardiac remodeling, oncostatin M (OSM) and its receptor, OSMR, attract plenty of interest. Recent studies have demonstrated key effects of noncoding RNAs on myocardial remodeling. However, whether noncoding RNAs that regulate the expression of OSMR would regulate the process of remodeling remain unclear. Herein, we observed that long noncoding RNA (lncRNA) Pvt1 expression showed to be significantly elicited by aortic banding (AB) operation in vivo and by angiotensin (Ang II) treatment in vitro. Pvt1 knockdown significantly attenuated the myocardial hypertrophy caused by pressure overload within rats and the cardiac myocyte hypertrophy caused by Ang II in vitro. Moreover, Pvt1 knockdown also decreased cellular myomesin and B-raf, which was involved in OSM function in cardiac remodeling. Based on online tools prediction, miR-196b may simultaneously target Pvt1 and OSMR 3′ untranslated region (UTR). In rat H9c2 cells and primary cardiac myocyte, Pvt1 and miR-196b exerted negative regulatory effects on each other and miR-196b negatively regulated OSMR expression. Pvt1 directly targeted miR-196b to relieve miR-196b-induced OSMR suppression via acting as a competing endogenous RNA (ceRNA). Moreover, the effect of miR-196b suppression upon the B-raf was opposite to Pvt1 knockdown, and miR-196b suppression might significantly attenuate the effect of Pvt1 knockdown. In summary, Pvt1/miR-196b axis modulating cardiomyocyte hypertrophy and remodeling via OSMR. Our findings provide a rationale for further studies on the potential therapeutic benefits of Pvt1 function and mechanism in cardiac and cardiomyocyte hypertrophy by a lncRNA-miRNA-mRNA network.  相似文献   

11.
Regulation of zebrafish heart regeneration by miR-133   总被引:2,自引:0,他引:2  
Zebrafish regenerate cardiac muscle after severe injuries through the activation and proliferation of spared cardiomyocytes. Little is known about factors that control these events. Here we investigated the extent to which miRNAs regulate zebrafish heart regeneration. Microarray analysis identified many miRNAs with increased or reduced levels during regeneration. miR-133, a miRNA with known roles in cardiac development and disease, showed diminished expression during regeneration. Induced transgenic elevation of miR-133 levels after injury inhibited myocardial regeneration, while transgenic miR-133 depletion enhanced cardiomyocyte proliferation. Expression analyses indicated that cell cycle factors mps1, cdc37, and PA2G4, and cell junction components cx43 and cldn5, are miR-133 targets during regeneration. Using pharmacological inhibition and EGFP sensor interaction studies, we found that cx43 is a new miR-133 target and regeneration gene. Our results reveal dynamic regulation of miRNAs during heart regeneration, and indicate that miR-133 restricts injury-induced cardiomyocyte proliferation.  相似文献   

12.
miRNAs play an important role in the pathogenesis of cardiac hypertrophy and dysfunction. However, little is known about how miR-30a regulates cardiomyocyte hypertrophy. In the study, Male C57BL/6 mice were subjected to thoracic aortic constriction, and hearts were harvested at 3 weeks. We assayed miR-30a expression level by real-time PCR and defined the molecular mechanisms of miR-30a-mediated cardiomyocyte hypertrophy. We found that myocardial expression of miR-30a was decreased in mouse models of hypertrophy and in H9c2 cells treated with phenylephrine. MiR-30a inhibition markedly increased mRNA expression of cardiac hypertrophy markers such as atrial natriuretic factor and brain natriuretic peptide in H9c2, and cell size was increased after miR-30a inhibitor treatment. Downregulated miR-30a activated autophagy by inhibiting beclin-1 expression in H9c2 cell. More important, autophagy inhibition suppressed miR-30a inhibitor-induced cardiomyocyte hypertrophy. Together, our data demonstrated that downregulated miR-30a aggravates pressure overload-induced cardiomyocyte hypertrophy by activating autophagy, thus offering a new target for the therapy of cardiomyocyte hypertrophy.  相似文献   

13.
Cardiac hypertrophy is a major risk factor for heart failure and associated patient morbidity and mortality. Research investigating the aberrant molecular processes that occur during cardiac hypertrophy uses primary cardiomyocytes from neonatal rat hearts as the standard experimental in vitro system. In addition, some studies make use of the H9C2 rat cardiomyoblast cell line, which has the advantage of being an animal-free alternative; however, the extent to which H9C2 cells can accurately mimic the hypertrophic responses of primary cardiac myocytes has not yet been fully established. To address this limitation, we have directly compared the hypertrophic responses of H9C2 cells with those of primary rat neonatal cardiomyocytes following stimulation with hypertrophic factors. Primary rat neonatal cardiomyocytes and H9C2 cells were cultured in vitro and treated with angiotensin II and endothelin-1 to promote hypertrophic responses. An increase in cellular footprint combined with rearrangement of cytoskeleton and induction of foetal heart genes were directly compared in both cell types using microscopy and real-time rtPCR. H9C2 cells showed almost identical hypertrophic responses to those observed in primary cardiomyocytes. This finding validates the importance of H9C2 cells as a model for in vitro studies of cardiac hypertrophy and supports current work with human cardiomyocyte cell lines for prospective molecular studies in heart development and disease.  相似文献   

14.
15.
Cardiac hypertrophy is characterized by thickening myocardium and decreasing in heart chamber volume in response to mechanical or pathological stress, but the underlying molecular mechanisms remain to be defined. This study investigated altered miRNA expression and autophagic activity in pathogenesis of cardiac hypertrophy. A rat model of myocardial hypertrophy was used and confirmed by heart morphology, induction of cardiomyocyte autophagy, altered expression of autophagy-related ATG9A, LC3 II/I and p62 proteins, and decrease in miR-34a expression. The in vitro data showed that in hypertrophic cardiomyocytes induced by Ang II, miR-34a expression was downregulated, whereas ATG9A expression was up-regulated. Moreover, miR-34a was able to bind to ATG9A 3′-UTR, but not to the mutated 3′-UTR and inhibited ATG9A protein expression and autophagic activity. The latter was evaluated by autophagy-related LC3 II/I and p62 levels, TEM, and flow cytometry in rat cardiomyocytes. In addition, ATG9A expression induced either by treatment of rat cardiomyocytes with Ang II or ATG9A cDNA transfection upregulated autophagic activity and cardiomyocyte hypertrophy in both morphology and expression of hypertrophy-related genes (i.e., ANP and β-MHC), whereas knockdown of ATG9A expression downregulated autophagic activity and cardiomyocyte hypertrophy. However, miR-34a antagonized Ang II-stimulated myocardial hypertrophy, whereas inhibition of miR-34a expression aggravated Ang II-stimulated myocardial hypertrophy (such as cardiomyocyte hypertrophy-related ANP and β-MHC expression and cardiomyocyte morphology). This study indicates that miR-34a plays a role in regulation of Ang II-induced cardiomyocyte hypertrophy by inhibition of ATG9A expression and autophagic activity.  相似文献   

16.
17.
Postnatal cardiac myocytes respond to stress signals by hypertrophic growth and activation of a fetal gene program. Recently, we showed that class II histone deacetylases (HDACs) suppress cardiac hypertrophy, and mice lacking the class II HDAC, HDAC9, are sensitized to hypertrophic signals. To further define the roles of HDACs in cardiac hypertrophy, we analyzed the effects of HDAC inhibitors on the responsiveness of primary cardiomyocytes to hypertrophic agonists. Paradoxically, HDAC inhibitors imposed a dose-dependent blockade to hypertrophy and fetal gene activation. We conclude that distinct HDACs play positive or negative roles in the control of cardiomyocyte hypertrophy. HDAC inhibitors are currently being tested in clinical trials as anti-cancer agents. Our results suggest that these inhibitors may also hold promising clinical value as therapeutics for cardiac hypertrophy and heart failure.  相似文献   

18.
Heart failure preceded by pathological cardiac hypertrophy is a leading cause of death. Long noncoding RNA small nucleolar RNA host gene 1 (SNHG1) was reported to inhibit cardiomyocytes apoptosis, but the role and underlying mechanism of SNHG1 in pathological cardiac hypertrophy have not yet been understood. This study was designed to investigate the role and molecular mechanism of SNHG1 in regulating cardiac hypertrophy. We found that SNHG1 was upregulated during cardiac hypertrophy both in vivo (transverse aortic constriction treatment) and in vitro (phenylephrine [PE] treatment). SNHG1 overexpression attenuated the cardiomyocytes hypertrophy induced by PE, while SNHG1 inhibition promoted hypertrophic response of cardiomyocytes. Furthermore, SNHG1 and high‐mobility group AT‐hook 1 (HMGA1) were confirmed to be targets of miR‐15a‐5p. SNHG1 promoted HMGA1 expression by sponging miR‐15a‐5p, eventually attenuating cardiomyocytes hypertrophy. There data revealed a novel protective mechanism of SNHG1 in cardiomyocytes hypertrophy. Thus, targeting of SNHG1‐related pathway may be therapeutically harnessed to treat cardiac hypertrophy.  相似文献   

19.
Pathological cardiac hypertrophy, which may lead to heart failure and sudden death, can be affected by multiple factors. In our previous study, we revealed that IKKi deficiency induced cardiac hypertrophy through the activation of the AKT and NF-kB signaling pathway in response to aortic banding (AB). Non-coding RNAs, mainly long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), play a crucial role in normal developmental and pathological processes. In the present study, microarray analysis results from GEO database were analyzed, and upregulated lncRNAs in cardiac hypertrophy were identified. Of them, lncRNA cytoskeleton regulator RNA (CYTOR) obtained a fold-change of 6.16 and was positively correlated with IKBKE according to the data from The GTEx project. CYTOR knockdown significantly enhanced the inducible effect of AB operation on mice myocardial hypertrophy and Angiotensin II on cardiomyocyte hypertrophy. Moreover, miR-155 was significantly related to hypertrophic cardiomyopathy (HCM, |hsa05410) and predicted to target both CYTOR and IKBKE. Luciferase reporter and RIP assays revealed that CYTOR served as a ceRNA for miR-155 to counteract miR-155-mediated repression of IKBKE. Moreover, CYTOR knockdown reduced IKKi protein levels while activated NF-kB signaling pathway, whereas miR-155 inhibition exerted an opposing effect; the effect of CYTOR could be partially attenuated by miR-155 inhibition. Taken together, CYTOR might play a protective role in cardiac hypertrophy through miR-155 and downstream IKKi and NF-κB signaling, most possibly through serving as a ceRNA for miR-155 to counteract miR-155-mediated repression of IKBKE.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号