首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Utilization of endogenous lipid by the isolated perfused rat heart   总被引:5,自引:5,他引:0  
1. The lipids of the rat heart have been studied with regard to amount, classes present and fatty acid composition of free fatty acids, triglycerides and phospholipids. Myocardial lipid contained 300μmoles of total fatty acid/g. dry wt. of which only 2–4μmoles were free; the remainder was esterified, chiefly as phospholipid. Neutral esters, of which triglyceride was the principal form, made up 15% of the total fatty acids. 2. When normal hearts were perfused with a nutrient-free medium until exhaustion, the triglyceride concentration declined from 43 to 13μmoles/g. dry wt. The content of phospholipids, partial glycerides and cholesteryl esters did not change. When the lipids of the rat heart were labelled with [1-14C]palmitate before perfusion with non-nutrient medium, radioactivity disappeared from the triglyceride, diglyceride and free fatty acid fractions, but not from the phospholipid or other ester classes. 3. These experiments support the view that only a small fraction of the total cardiac lipid, principally triglycerides and to a smaller extent diglycerides, is available as a source of fuel in the absence of exogenous substrate.  相似文献   

2.
Bean plants ( Phaseolus vulgaris ) grown in phosphate-deficient (–P) medium display deficiency symptoms after about 2 weeks of culture. A decrease in inorganic phosphate level in roots was observed after 10 days of culture, and after 17 days it was more than 30 times less than control. The dry weight of the shoots of phosphate-deficient plants was lower whereas the dry weight of the roots was higher as compared to the control roots. After 2 weeks of culture, the sucrose level in –P roots almost doubled compared to control roots. An increase in glucose and fructose was observed earlier than that of sucrose, and after 10 days of culture in phosphate-deficient medium the glucose level in –P roots was about 3 times higher than that in +P roots. At the same time, a decrease in hexose-phosphate level was observed. This decrease may reflect a higher drain from the hexose phosphate pool, or it may be due to the lower capacity for hexose phosphorylation of phosphate-deficient plants, as judged by the lower hexokinase and fructokinase activities. The ratio of non-phosphorylated to phosphorylated sugars in –P roots was about 5 times higher as compared to control roots. We propose that glucose and fructose accumulation in phosphate-deficient roots represents a non-metabolic, probably vacuolar pool which is not utilized for growth and metabolism of the roots.  相似文献   

3.
The content of assimilable organic carbon has been proposed to control the growth of microbes in drinking water. However, recent results have shown that there are regions where it is predominantly phosphorus which determines the extent of microbial growth in drinking waters. Even a very low concentration of phosphorus (below 1 μg of P liter−1) can promote extensive microbial growth. We present here a new sensitive method to determine microbially available phosphorus concentrations in water down to 0.08 μg of P liter−1. The method is a bioassay in which the analysis of phosphorus in a water sample is based on maximum growth of Pseudomonas fluorescens P17 when the energy supply and inorganic nutrients, with the exception of phosphorus, do not limit bacterial growth. Maximum growth (CFU) in the water sample is related to the concentration of phosphorus with the factor 373,200 ± 9,400 CFU/μg of PO4-P. A linear relationship was found between cell growth and phosphorus concentration between 0.05 to 10 μg of PO4-P liter−1. The content of microbially available phosphorus in Finnish drinking waters varied from 0.1 to 10.2 μg of P liter−1 (median, 0.60 μg of P liter−1).  相似文献   

4.
5.
1. Cholesteryl 3β-sulphate is oxidized in vitro by preparations of bovine adrenal-cortex mitochondria to pregnenolone sulphate and isocaproic acid (4-methyl-pentanoic acid) without hydrolysis of the ester linkage. 2. Free cholesterol is the preferred substrate for adrenal-cortex cholesterol oxidase; the apparent Km for cholesteryl sulphate is 500μm and for free cholesterol 50μm under the same conditions. 3. Cholesteryl 3β-acetate is hydrolysed by bovine adrenal-cortex mitochondria in vitro to free cholesterol, which is subsequently oxidized to more polar steroids and isocaproic acid. Evidence was obtained that other cholesterol esters behave similarly. Cholesterol esters may thus act as precursors of steroid hormones. 4. Cholest-4-en-3-one is only poorly oxidized to isocaproic acid and more polar steroids and thus is probably not a significant precursor of steroid hormones. 5. Cholesteryl esters inhibit the oxidation of cholesterol competitively (Ki for cholesteryl phosphate 28μm, for cholesteryl sulphate 110μm, for cholesteryl acetate 65μm) but pregnenolone esters do not inhibit this system. 6. Pregnenolone and 20α-hydroxycholesterol (both metabolites of cholesterol in this system) inhibit the oxidation of cholesterol non-competitively. Ki for pregnenolone is 130μm and Ki for 20α-hydroxycholesterol is 17μm. 7. 25-Oxo-27-norcholesterol inhibits cholesterol oxidation non-competitively (Ki16μm). A number of other Δ5-3β-hydroxy steroids inhibit cholesterol oxidation and evidence was obtained that the 3β-hydroxyl group was necessary for inhibitory activity. 8. Pregnenolone, 20α-hydroxycholesterol and 25-oxo-27-norcholesterol inhibit oxidation of cholesteryl sulphate by this system but their sulphates do not. 9. 3β-Hydroxychol-5-enoic acid, 3α-hydroxy-5β-cholanic acid and 3β-hydroxy-22,23-bisnorchol-5-enoic acid stimulated formation of isocaproic acid from cholesterol. 10. No evidence was obtained that phosphorylation or sulphation are obligatory steps in cholesterol oxidation by adrenal-cortex mitochondria. 11. The cholesteryl 3β-sulphate sulphatase of bovine adrenal cortex was found mostly in the microsomal fraction and was inhibited by inorganic phosphate.  相似文献   

6.
Di-(2-ethylhexyl) phthalate was the major phthalic acid ester in the Mississippi River estuary, with mean levels of 0.1 μg/g (dry weight) in surface sediments, 1.0 μg/liter in river water, and 0.7 μg/liter in delta water. Bacteria that grew aerobically on dibutyl phthalate and o-phthalic acid were readily detected in the sediments and water. Pure cultures of bacteria were isolated on seven different phthalic acid esters from freshwater and marine sources. The marine isolates were taxonomically diverse and grew on a variety of phthalic acid esters. Dibutyl phthalate and o-phthalic acid supported growth in full-strength synthetic sea-water medium, but Na+ -dependent catabolism was demonstrable only for o-phthalic acid.  相似文献   

7.
In cotyledons of germinating cotton (Gossypium hirsutum L. var. Stoneville 213) seedlings, in the dark, isocitric lyase (EC 4.1.3.1) activity peaks after 2 days and thereafter slowly declines to a negligible value after 8 days. The maximum activity of this enzyme in cotyledons of 2-day-old seedlings was 16.2 μmoles of glyoxylate formed/15 min·10 cotyledon pairs. Actinomycin D at a concentration of 10 μg/ml, if added to the imbibing solution, completely prevents the development of isocitric lyase activity in these germinating seed. In cotyledons of germinating cotton seedlings, in the light, isocitric lyase activity peaks after 2 to 3 days and sharply declines to a negligible value after 4 days. The maximum activity of this enzyme in cotyledons of 2- to 3-day-old seedlings was 13.2 μmoles of glyoxylate formed/15 min·10 cotyledon pairs. Actinomycin D at a concentration of 10 μg/ml, if added to the imbibing solution, severely inhibits the development of enzyme activity.  相似文献   

8.
9.
The aim of this work was to investigate the contribution of fructose 2,6-bisphosphate to the regulation of carbohydrate metabolism under phosphate stress. The study exploited heterotrophic tobacco callus lines expressing a modified mammalian 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase that increased the fructose 2,6-bisphosphate content of the tissue. The phosphate status of two transgenic and one untransformed cell line was perturbed by incubation with 2-deoxyglucose, a phosphate-sequestering agent, and by growth of callus on phosphate-depleted media. 31P-NMR spectroscopy confirmed that both treatments decreased cellular levels of inorganic phosphate and phosphorylated metabolites. Despite large decreases in the amounts of phosphate esters, UDPglucose and adenylates in response to phosphate deficiency, the fructose 2,6-bisphosphate content of each line was unaffected by 2-deoxyglucose and increased during growth on phosphate-limited media. Short-term treatment of callus with 2-deoxyglucose had only minor effects on the carbohydrate status of each line, whereas long-term phosphate deficiency caused an increase in starch and a decrease in soluble sugar content in both transgenic and control lines. There were no consistent differences between the three callus lines in metabolism of [U-14C]glucose in response to incubation with 2-deoxyglucose. In contrast, there was a decrease in partitioning of label into glycolytic products (particularly organic acids) in untransformed callus during growth on phosphate-depleted medium. This decrease was greatly attenuated in the transgenic lines with increased fructose 2,6-bisphosphate content. This suggests that the conversion of hexose phosphates to triose phosphates is constrained under phosphate-deficient conditions, and that this restriction can be relieved by activation of pyrophosphate:fructose-6-phosphate 1-phosphotransferase. However, since the transgenic and control lines did not differ in the extent to which the carbohydrate content changed in response to growth on phosphate-depleted media, it is concluded that an increase in flux through pyrophosphate:fructose-6-phosphate 1-phosphotransferase is not a major component of the metabolic response of heterotrophic tobacco cells to phosphate deficiency.  相似文献   

10.
1. Cerebral tissues were prepared for incubation by cutting them from the brain rapidly and in situ, and the calcium concentration in the incubating medium was altered from the customary 2·8mm to 0·75mm. This provided incubated cerebral cortex with fluid and ion content more closely resembling that of the brain in vivo than hitherto obtained. 2. From a systematic difference in size between inulin spaces of slices with one and those with two cut surfaces, it was estimated that cutting directly affected a layer 0·02mm. thick. On the basis of the volume of this layer, it was calculated that the portion of the tissue not affected by cutting had an inulin space of 258 μl./g. initial wt., and during the process of preparation and incubation had gained 30μequiv. of sodium and 17 μequiv. of chloride/g. and had lost 14 μequiv. of potassium/g. 3. Several aspects of the ion content of the incubated tissue were compatible with the observed membrane potential of −60mv between cellular and extracellular phases. 4. In response to electrical stimulation, sodium of the non-inulin space increased from 28 to 57 μequiv./g., potassium decreased from 68 to 48 μequiv./g. and chloride increased from 16 to 22 μequiv./g. in the non-inulin space. These changes were complete in about 6min., and thereafter the concentrations remained steady during continued stimulation. Initial rates of change were 460 μequiv./g./hr. for sodium and 480 μequiv./g./hr. for potassium. 5. After stimulation was stopped the ionic composition of the tissue returned completely to its pre-stimulation state within 10min. Initial rates for extrusion of sodium and gain of potassium were 160 and 230 μequiv./g./hr. respectively.  相似文献   

11.
Bligny R  Douce R 《Plant physiology》1977,60(5):675-679
The effects of copper deficiency on cell culture growth, cell respiration, mitochondrial oxidative properties, and electron transport chain have been studied with suspension-cultured sycamore cells (Acer pseudoplatanus L.). Within the range of the copper concentration studied (0.1-25 μg/1 of culture medium), the mean rate of cell division is independent of copper concentration. An initial copper concentration lower than 2 μg/1 limited the maximum density of population reached at the stationary phase of growth.  相似文献   

12.
Growth hormone release inhibiting hormone (GHRIH) was administered by constant infusion over 75 minutes to eight acromegalic patients at different doses. 100 to 1,000 μg were equally effective in reducing circulating growth hormone (GH) levels; 25 μg lowered GH levels in only five patients, and at this dose the extent of the fall was smaller than from doses of 100 μg or more. 10 μg was ineffective. Injection of single doses of 500 μg by intravenous, subcutaneous, and intramuscular routes caused only small and transient reductions in GH levels, though the effect was improved by injecting the hormone intramuscularly in 2 ml of 16% gelatin. Injection of a suspension of 4 mg GHRIH in 1 ml of arachis oil lowered growth hormone levels for between three and four hours.In four acromegalic patients an oral 50-g glucose tolerance test was performed during a continuous infusion of either saline or 1,000 μg GHRIH. The “paradoxical” rise in growth hormone seen in these patients during the saline infusion was suppressed by GHRIH. The blood glucose responses were, moreover, modified by GHRIH in that the peak was delayed and occurred at the end of the infusion in each case. A “normal” glucose tolerance curve was converted to a “diabetic” type of response in two patients. This effect could be accounted for by the inhibition of insulin secretion known to occur with large doses of GHRIH.We speculate that acromegaly may be primarily a hypothalmic disease due to deficiency of GHRIH resulting in excessive secretion of growth hormone from the pituitary and adenoma formation due to inappropriate and prolonged stimulation of the pituitary.  相似文献   

13.
ACPase activity was localized in the apoplast of pea root nodules under phosphorus deficiency. Pea plants (Pisum sativum L. cv. Sze ciotygodniowy) where inoculated with Rhizobium leguminosarum bv. viciae 248 and were cultured on nitrogen-free medium with phosphate (−N/+P) or phosphate-deficient (−N/−P) one. In comparison with control nodules, P-deficient nodules showed the increase of ACPase activity in plant cell walls and the infection threads. The increase in bacterial ACPase activity under P-deficiency may reflect higher demand for inorganic phosphorus that is necessary for bacteria multiplication within the infection threads. The increase of ACPase activity in nodule apoplast under P stress may enlarge the availability of phosphate for plant and bacteria.  相似文献   

14.
The effect of arsenate with or without phosphate on the growth and sugar metabolism in rice seedlings cv. MTU 1010 was studied. Arsenate was found to be more toxic for root growth than shoot growth and water content of the seedlings gradually decreased with increasing concentrations. Arsenate exposure at 20 μM and 100 μM resulted in an increase in reducing sugar content and decrease in non-reducing sugar content. There was a small increase in starch content, the activity of starch phosphorylase was increased but α-amylase activity was found to be decreased. Arsenate toxicity also affected the activities of different carbohydrate metabolizing enzymes. The activities of sucrose degrading enzymes viz., acid invertase and sucrose synthase were increased whereas, the activity of sucrose synthesizing enzyme, viz. sucrose phosphate synthase declined. The combined application of arsenate with phosphate exhibited significant alterations of all the parameters tested under the purview of arsenate treatment alone which was congenial to better growth and efficient sugar metabolism in rice seedlings. Thus, the use of phosphorus enriched fertilizers may serve to ensure the production of healthy rice plants in arsenic contaminated soils.  相似文献   

15.
Richter M  Wilms W  Scheffer F 《Plant physiology》1968,43(11):1747-1754
The exudate production of alfalfa under the conditions of the sterile flow culture was quantitatively measured. In the first 40 days 3.10−3 μmoles amino-N, 2.5 μequivalents of organic acids and approximately 10−4 μmoles of reducing sugars were liberated per plant and per day into the percolating nutrient solution. The amino acid concentration in the outflow varies according to a daily periodicity. The exudation of a colored substance also shows daily periodical variations. This pattern is different from the pattern of the amino acid exudation, however, and directly coupled to shoot illumination. Short-term 2,4-dinitrophenol additions to the nutrient lower the liberation of amino acids into the percolating solution.  相似文献   

16.
The yield coefficient (YC) of Pseudomonas sp. strain DP-4, a 2,4-dichlorophenol (DCP)-degrading organism, was estimated from the number of CFU produced at the expense of 1 unit amount of DCP at low concentrations. At a low concentration of DCP, the YC can be overestimated in pure culture, because DP-4 assimilated not only DCP but also uncharacterized organic compounds contaminating a mineral salt medium. The concentration of these uncharacterized organic compounds was nutritionally equivalent to 0.7 μg of DCP-C ml−1. A mixed culture with non-DCP-degrading organisms resulted in elimination of ca. 99.9% of the uncharacterized organic compounds, and then DP-4 assimilated only DCP as a substrate. In a mixed culture, DP-4 degraded an initial concentration of 0.1 to 10 μg of C ml of DCP−1 and the number of CFU of DP-4 increased. In the mixed culture, DCP at an initial concentration of 0.07 μg of C ml−1 was degraded. However, the number of CFU of DP-4 did not increase. DCP at an extremely low initial concentration of 0.01 μg of C ml−1 was not degraded in mixed culture even by a high density, 105 CFU ml−1, of DP-4. When glucose was added to this mixed culture to a final concentration of 1 μg of C ml−1, the initial concentration of 0.01 μg of C ml of DCP−1 was degraded. These results suggested that DP-4 required cosubstrates to degrade DCP at an extremely low initial concentration of 0.01 μg of C ml−1. The YCs of DP-4 at the expense of DCP alone decreased discontinuously with the decrease of the initial concentration of DCP, i.e., 1.5, 0.19, or 0 CFU per pg of DCP-C when 0.7 to 10, 0.1 to 0.5, or 0.07 μg of C ml of DCP−1 was degraded, respectively. In this study, we developed a new method to eliminate uncharacterized organic compounds, and we estimated the YC of DP-4 at the expense of DCP as a sole source of carbon.  相似文献   

17.
Selenium (Se) is an essential micronutrient for human and animal organisms. Organic selenium complexes and selenium-containing amino acids are considered the most bioavailable.Under appropriate conditions yeasts are capable of accumulating large amounts of trace elements, such as selenium, and incorporating them into organic compounds. It has been found that introduction of water-soluble selenium salt as a component of the culture medium for yeasts produced by conventional batch processing results in a substantial amount of selenium being absorbed by the yeast.Using a culture medium supplemented with 30 μg/mL sodium-selenite added during the exponential growth phase results in selenium-accumulation in the range of 1200–1400 μg/g dried baker's yeast (Saccharomyces cerevisiae) measured by ICP-AES method. In our previous studies it was shown that higher amounts of sodium-selenite in the culture medium have a strong inhibitory effect on the growth of this yeast. As a consequence of variations in cultivation conditions we obtained selenium yeast with different inorganic selenium content. The most important parameters influencing incorporated forms of selenium are pH value and dissolved oxygen level in the culture medium, and depending on these the selenium consumption rate of the yeast. A 0.40–0.50 mg/g h-1 specific selenium consumption rate was found to be appropriate to obtain selenium-enriched bakers' yeast of a high quality. Under suitable conditions the undesirable inorganic selenium content of the yeast could be suppressed to as low as 5–6% at the expense, however, of approximately a 20% decrease in the final biomass.  相似文献   

18.
Broyer TC  Lee DC  Asher CJ 《Plant physiology》1966,41(9):1425-1428
Alfalfa and subterranean clover plants were grown in highly purified nutrient solutions to which selenite selenium had been added at 0, 0.025, 0.25, 2.5 or 25.0 μg-atoms/liter. In both species, yields of tops and roots were significantly less at 25.0 μg-atoms/liter than at lower selenium concentrations (p < 0.01). The results indicated that growth was adversely affected when the concentration of selenium in mature leaf tissue reached 0.2 to 0.8 μg-atom/g dry weight.  相似文献   

19.
The objective of this study was to identify the association of blood lead level (BLL) with mortality in inorganic lead-exposed workers of South Korea. A cohort was compiled comprising 81,067 inorganic lead exposed workers working between January 1, 2000, and December 31, 2004. This cohort was merged with the Korean National Statistical Office to follow-up for mortality between 2000 and 2008. After adjusting for age and other carcinogenic metal exposure, all-cause mortality (Relative risk [RR] 1.36, 95% confidence interval [CI] 1.03–1.79), digestive disease (RR 3.23, 95% CI 1.33–7.86), and intentional self-harm (RR 2.92, 95% CI 1.07–7.81) were statistically significantly higher in males with BLL >20 μg/dl than of those with BLL ≤10μg/dl. The RR of males with BLL of 10–20 μg/dl was statistically higher than of those with BLL ≤10μg/dl in infection (RR 3.73. 95% CI, 1.06–13.06). The RRs of females with 10–20 μg/dl BLL was statistically significantly greater than those with BLL <10μg/dl in all-cause mortality (RR 1.93, 95% CI 1.16–3.20) and colon and rectal cancer (RR 13.42, 95% CI 1.21–149.4). The RRs of females with BLL 10–20 μg/dl (RR 10.45, 95% CI 1.74–62.93) and BLL ≥20 μg/dl (RR 12.68, 95% CI 1.69–147.86) was statistically significantly increased in bronchus and lung cancer. The increased suicide of males with ≥20 μg/dl BLLs, which might be caused by major depression, might be associated with higher lead exposure. Also, increased bronchus and lung cancer mortality in female workers with higher BLL might be related to lead exposure considering low smoking rate in females. The kinds of BLL-associated mortality differed by gender.  相似文献   

20.
Culture of bean plants (Phaseolus vulgaris L. cv., Złota Saxa) for 16 d on phosphate-deficient nutrient medium resulted in an over twofold increase of pyruvate concentration in the root tissues. In a variety of plant tissues, the marked decline in cellular concentrations of adenylates and inorganic phosphate (Pi) influences the activity of pyruvate producing enzymes, which are dependent on the availability of ADP. In bean roots after 16 d of phosphate starvation pyruvate producing enzymes: phosphoenolpyruvate phosphatase (EC 3.1.3.2) and phosphoenolpyruvate carboxylase (EC 4.1.1.31) had higher activities compared to those of control plants. The observed decrease of alanine and ethanol concentration and also alcohol dehydrogenase (EC 1.1.1.1) activity in phosphate-deficient roots may be the effect of the restrictions in pyruvate utilizing pathways. The increased activity of mitochondrial NAD-malic enzyme (EC 1.1.1.40) as well as the lower consumption of pyruvate during respiration of phosphate-deficient roots indicate that pyruvate concentration in mitochondria may be elevated. It is proposed that pyruvate accumulation in phosphate-deficient roots and alternative oxidase participation in respiration are important aspects of plant metabolic adaptations to Pi limitation, and may play a role in reducing oxidative stress induced by phosphate deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号