首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently reported that store-operated Ca2+ entry (SOCE) in nonexcitable cells is likely to be mediated by a reversible interaction between Ca2+ channels in the plasma membrane and the endoplasmic reticulum, a mechanism known as "secretion-like coupling." As for secretion, in this model the actin cytoskeleton plays a key regulatory role. In the present study we have explored the involvement of the secretory proteins synaptosome-associated protein (SNAP-25) and vesicle-associated membrane protein (VAMP) in SOCE in pancreatic acinar cells. Cleavage of SNAP-25 and VAMPs by treatment with botulinum toxin A (BoNT A) and tetanus toxin (TeTx), respectively, effectively inhibited amylase secretion stimulated by the physiological agonist CCK-8. BoNT A significantly reduced Ca2+ entry induced by store depletion using thapsigargin or CCK-8. In addition, treatment with BoNT A once SOCE had been activated reduced Ca2+ influx, indicating that SNAP-25 is needed for both the activation and maintenance of SOCE in pancreatic acinar cells. VAMP-2 and VAMP-3 are expressed in mouse pancreatic acinar cells. Both proteins associate with the cytoskeleton upon Ca2+ store depletion, although only VAMP-2 seems to be sensitive to TeTx. Treatment of pancreatic acinar cells with TeTx reduced the activation of SOCE without affecting its maintenance. These findings support a role for SNAP-25 and VAMP-2 in the activation of SOCE in pancreatic acinar cells and show parallels between this process and secretion in a specialized secretory cell type. synaptosome-associated protein; vesicle-associated membrane protein; pancreatic acinar cells; cytoskeleton; calcium entry  相似文献   

2.
BoNTs (botulinum neurotoxins) are both deadly neurotoxins and natural toxins that are widely used in protein therapies to treat numerous neurological disorders of dystonia and spinal spasticity. Understanding the mechanism of action and substrate specificity of BoNTs is a prerequisite to develop antitoxin and novel BoNT-derived protein therapy. To date, there is a lack of detailed information with regard to how BoNTs recognize and hydrolyse the substrate VAMP-2 (vesicle-associated membrane protein 2), even though it is known to be cleaved by four of the seven BoNT serotypes, B, D, F, G and TeNT (tetanus neurotoxin). In the present study we dissected the molecular mechanisms of VAMP-2 recognition by BoNT serotype F for the first time. The initial substrate recognition was mediated through sequential binding of VAMP-2 to the B1, B2 and B3 pockets in LC/F (light chain of BoNT serotype F), which directed VAMP-2 to the active site of LC/F and stabilized the active site substrate recognition, where the P2, P1' and P2' sites of VAMP-2 were specifically recognized by the S2, S1' and S2' pockets of LC/F to promote substrate hydrolysis. The understanding of the molecular mechanisms of LC/F substrate recognition provides insights into the development of antitoxins and engineering novel BoNTs to optimize current therapy and extend therapeutic interventions.  相似文献   

3.
The SNARE hypothesis, describing a protein assembly-disassembly pathway, was recently proposed for the sequential steps of synaptic vesicle docking, activation and fusion. To determine if SNARE proteins are involved in regulated exocytosis in eosinophils, the presence and functional role of SNAREs was examined in human blood eosinophils. Immunoblotting, subcellular fractionation, and immunocytochemistry documented that vesicle-associated membrane protein-2 (VAMP-2), a vesicle-SNARE, was expressed in human eosinophils. Syntaxin 4 and SNAP-25 were also detected. Sequencing of cloned RT-PCR products amplified from a domain conserved among VAMP isoforms revealed identity only to VAMP-2 but not to VAMP-1 or cellubrevin. Functional experiments revealed that tetanus toxin pretreatment, which cleaved VAMP-2 in eosinophils, significantly inhibited both IgE receptor- and phorbol ester-mediated exocytosis of eosinophil cationic protein (ECP) from streptolysin-O-permeabilized eosinophils. Thus, these results strongly suggest a critical role of SNAREs in regulated exocytosis in eosinophils.  相似文献   

4.
Ca+ release-activated Ca2+ (CRAC) channels are activated when free Ca2+ concentration in the intracellular stores is substantially reduced and mediate sustained Ca2+ entry. Recent studies have identified Orai1 as a CRAC channel subunit. Here we demonstrate that passive Ca2+ store depletion using the inhibitor of the sarcoendoplasmic reticulum Ca2+-ATPase, thapsigargin (TG), enhances the surface expression of Orai1, a process that depends on rises in cytosolic free Ca2+ concentration, as demonstrated in cells loaded with dimethyl BAPTA, an intracellular Ca2+ chelator that prevented TG-evoked cytosolic free Ca2+ concentration elevation. Similar results were observed with a low concentration of carbachol. Cleavage of the soluble N-ethylmaleimide-sensitive-factor attachment protein receptor, synaptosomal-assiciated protein-25 (SNAP-25), with botulinum neurotoxin A impaired TG-induced increase in the surface expression of Orai1. In addition, SNAP-25 cleaving by botulinum neurotoxin A reduces the maintenance but not the initial stages of store-operated Ca2+ entry. In aggregate, these findings demonstrate that store depletion enhances Orai1 plasma membrane expression in an exocytotic manner that involves SNAP-25, a process that contributes to store-dependent Ca2+ entry.  相似文献   

5.
The present study attempted to evaluate whether soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate lysosome fusion in response to death receptor activation and contribute to membrane raft (MR) clustering and consequent endothelial dysfunction in coronary arterial endothelial cells. By immunohistochemical analysis, vesicle-associated membrane proteins 2 (VAMP-2, vesicle-SNAREs) were found to be abundantly expressed in the endothelium of bovine coronary arteries. Direct lysosome fusion monitoring by N-(3-triethylammoniumpropyl)-4-[4-(dibutylamino)styryl]pyridinium dibromide (FM1-43) quenching demonstrated that the inhibition of VAMP-2 with tetanus toxin or specific small interfering ribonucleic acid (siRNA) almost completely blocked lysosome fusion to plasma membrane induced by Fas ligand (FasL), a well-known MR clustering stimulator. The involvement of SNAREs was further confirmed by an increased interaction of VAMP-2 with a target-SNARE protein syntaxin-4 after FasL stimulation in coimmunoprecipitation analysis. Also, the inhibition of VAMP-2 with tetanus toxin or VAMP-2 siRNA abolished FasL-induced MR clustering, its colocalization with a NADPH oxidase unit gp91(phox), and increased superoxide production. Finally, FasL-induced impairment of endothelium-dependent vasodilation was reversed by the treatment of bovine coronary arteries with tetanus toxin or VAMP-2 siRNA. VAMP-2 is critical to lysosome fusion in MR clustering, and this VAMP-2-mediated lysosome-MR signalosomes contribute to redox regulation of coronary endothelial function.  相似文献   

6.
Botulinum neurotoxins types B, D, F, and G, and tetanus neurotoxin inhibit vesicular fusion via proteolytic cleavage of VAMP/Synaptobrevin, a core component of the membrane fusion machinery. Thus, these neurotoxins became widely used tools for investigating vesicular trafficking routes. Except for VAMP-1, VAMP-2, and Cellubrevin, no other member of the VAMP family represents a substrate for these neurotoxins. The molecular basis for this discrepancy is not known. A 34 amino acid residue segment of VAMP-2 was previously suggested to mediate the interaction with botulinum neurotoxin B, but the validity of the data was later questioned. To check whether this segment alone controls the susceptibility toward botulinum neurotoxin B, it was used to replace the corresponding segment in TI-VAMP. The resulting VAMP hybrid and VAMP-2 were hydrolysed at virtually identical rates. Resetting the VAMP-2 portion in the hybrid from either end to TI-VAMP residues gradually reduced the cleavability. A hybrid encompassing merely the VAMP-2 segment 71-80 around the Gln76/Phe77 scissile bond was still hydrolysed, albeit at a approximately tenfold lower cleavage rate. The contribution of each non-conserved amino acid of the whole 34-mer segment to the interaction was investigated employing VAMP-2. We find that the eight non-conserved residues of the 71-80 segment are all necessary for efficient cleavage. Mutation of an additional six residues located upstream and downstream of this segment affects substrate hydrolysis as well. Vice versa, a readily cleavable TI-VAMP molecule requires at the least the replacement of Ile158, Thr161, and the section 165-174 by Asp64, Ala67, and the 71-80 segment of VAMP-2, respectively. However, the insensitivity of TI-VAMP to botulinum neurotoxin B relies on at least 12 amino acid changes versus VAMP-2. These are scattered along an interface of 22 amino acid residues in length.  相似文献   

7.
Synaptophysin and synaptobrevin are abundant membrane proteins of neuronal small synaptic vesicles. In mature, differentiated neurons they form the synaptophysin/synaptobrevin (Syp/Syb) complex. Synaptobrevin also interacts with the plasma membrane-associated proteins syntaxin and SNAP25, thereby forming the SNARE complex necessary for exocytotic membrane fusion. The two complexes are mutually exclusive. Synaptobrevin is a C-terminally membrane-anchored protein with one transmembrane domain. While its interaction with its SNARE partners is mediated exclusively by its N-terminal cytosolic region it has been unclear so far how binding to synaptophysin is accomplished. Here, we show that synaptobrevin can be cleaved in its synaptophysin-bound form by tetanus toxin and botulinum neurotoxin B, or by botulinum neurotoxin D, leaving shorter or longer C-terminal peptide chains bound to synaptophysin, respectively. A recombinant, C-terminally His-tagged synaptobrevin fragment bound to nickel beads specifically bound synaptophysin, syntaxin and SNAP25 from vesicular detergent extracts. After cleavage by tetanus toxin or botulinum toxin D light chain, the remaining C-terminal fragment no longer interacted with syntaxin or SNAP 25. In contrast, synaptophysin was still able to bind to the residual C-terminal synaptobrevin cleavage product. In addition, the His-tagged C-terminal synaptobrevin peptide 68-116 was also able to bind synaptophysin in detergent extracts from adult brain membranes. These data suggest that synaptophysin interacts with the C-terminal transmembrane part of synaptobrevin, thereby allowing the N-terminal cytosolic chain to interact freely with the plasma membrane-associated SNARE proteins. Thus, by binding synaptobrevin, synaptophysin may positively modulate neurotransmission.  相似文献   

8.
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play key roles in membrane fusion, but their sorting to specific membranes is poorly understood. Moreover, individual SNARE proteins can function in multiple membrane fusion events dependent upon their trafficking itinerary. Synaptosome-associated protein of 25 kDa (SNAP25) is a plasma membrane Q (containing glutamate)-SNARE essential for Ca2+-dependent secretory vesicle-plasma membrane fusion in neuroendocrine cells. However, a substantial intracellular pool of SNAP25 is maintained by endocytosis. To assess the role of endosomal SNAP25, we expressed botulinum neurotoxin E (BoNT E) light chain in PC12 cells, which specifically cleaves SNAP25. BoNT E expression altered the intracellular distribution of SNAP25, shifting it from a perinuclear recycling endosome to sorting endosomes, which indicates that SNAP25 is required for its own endocytic trafficking. The trafficking of syntaxin 13 and endocytosed cargo was similarly disrupted by BoNT E expression as was an endosomal SNARE complex comprised of SNAP25/syntaxin 13/vesicle-associated membrane protein 2. The small-interfering RNA-mediated down-regulation of SNAP25 exerted effects similar to those of BoNT E expression. Our results indicate that SNAP25 has a second function as an endosomal Q-SNARE in trafficking from the sorting endosome to the recycling endosome and that BoNT E has effects linked to disruption of the endosome recycling pathway.  相似文献   

9.
Tetanus neurotoxin and botulinum neurotoxins are the causative agents of tetanus and botulism. They block the release of neurotransmitters from synaptic vesicles in susceptible animals and man and act in nanogram quantities because of their ability to specifically attack motoneurons. They developed an ingenious strategy to enter neurons. This involves a concentration step via complex polysialo gangliosides at the plasma membrane and the uptake and ride in recycling synaptic vesicles initiated by binding to a specific protein receptor. Finally, the neurotoxins shut down the synaptic vesicle cycle, which they had misused before to enter their target cells, via specific cleavage of protein core components of the cellular membrane fusion machinery. The uptake of four out of seven known botulinum neurotoxins into synaptic vesicles has been demonstrated to rely on binding to intravesicular segments of the synaptic vesicle proteins synaptotagmin or synaptic vesicle protein 2. This review summarizes the present knowledge about the cell receptor molecules and the mode of toxin-receptor interaction that enables the toxins' sophisticated access to their site of action.  相似文献   

10.
A more complete picture of the molecules that are critical for the organization of membrane compartments is beginning to emerge through the characterization of proteins in the vesicle-associated membrane protein (also called synaptobrevin) family of membrane trafficking proteins. To better understand the mechanisms of membrane trafficking within the endocytic pathway, we generated a series of monoclonal and polyclonal antibodies against the cytoplasmic domain of vesicle-associated membrane protein 7 (VAMP-7). The antibodies recognize a 25-kD membrane-associated protein in multiple tissues and cell lines. Immunohistochemical analysis reveals colocalization with a marker of late endosomes and lysosomes, lysosome-associated membrane protein 1 (LAMP-1), but not with other membrane markers, including p115 and transferrin receptor. Treatment with nocodozole or brefeldin A does not disrupt the colocalization of VAMP-7 and LAMP-1. Immunoelectron microscopy analysis shows that VAMP-7 is most concentrated in the trans-Golgi network region of the cell as well as late endosomes and transport vesicles that do not contain the mannose-6 phosphate receptor. In streptolysin- O-permeabilized cells, antibodies against VAMP-7 inhibit the breakdown of epidermal growth factor but not the recycling of transferrin. These data are consistent with a role for VAMP-7 in the vesicular transport of proteins from the early endosome to the lysosome.  相似文献   

11.
The supply of synaptic vesicles in the nerve terminal is maintained by a temporally linked balance of exo- and endocytosis. Tetanus and botulinum neurotoxins block neurotransmitter release by the enzymatic cleavage of proteins identified as critical for synaptic vesicle exocytosis. We show here that botulinum neurotoxin A is unique in that the toxin-induced block in exocytosis does not arrest vesicle membrane endocytosis. In the murine spinal cord, cell cultures exposed to botulinum neurotoxin A, neither K(+)-evoked neurotransmitter release nor synaptic currents can be detected, twice the ordinary number of synaptic vesicles are docked at the synaptic active zone, and its protein substrate is cleaved, which is similar to observations with tetanus and other botulinal neurotoxins. In marked contrast, K(+) depolarization, in the presence of Ca(2+), triggers the endocytosis of the vesicle membrane in botulinum neurotoxin A-blocked cultures as evidenced by FM1-43 staining of synaptic terminals and uptake of HRP into synaptic vesicles. These experiments are the first demonstration that botulinum neurotoxin A uncouples vesicle exo- from endocytosis, and provide evidence that Ca(2+) is required for synaptic vesicle membrane retrieval.  相似文献   

12.
The soluble N-ethylmaleimide-sensitive factor attachment protein of 25 kDa (SNAP-25) plays an important role in vesicle trafficking. Together with vesicle-associated membrane protein-2 (VAMP-2) and syntaxin, SNAP-25 forms a ternary complex implicated in docking and fusion of secretory vesicles with the plasma membrane during exocytosis. These so-called SNARE proteins are believed to regulate tubulovesicle trafficking and fusion during the secretory cycle of the gastric parietal cell. Here we examined the cellular localization and functional importance of SNAP-25 in parietal cell cultures. Adenoviral constructs were used to express SNAP-25 tagged with cyan fluorescent protein, VAMP-2 tagged with yellow fluorescent protein, and SNAP-25 in which the C-terminal 25 amino acids were deleted (SNAP-25 Delta181-206). Membrane fractionation experiments and fluorescent imaging showed that SNAP-25 is localized to the apical plasma membrane. The expression of the mutant SNAP-25 Delta181-226 inhibited the acid secretory response of parietal cells. Also, SNAP Delta181-226 bound poorly in vitro with recombinant syntaxin-1 compared with wild type SNAP-25, indicating that pairing between syntaxin-1 and SNAP-25 is required for parietal cell activation. Dual expression of SNAP-25 tagged with cyan fluorescent protein and VAMP-2 tagged with yellow fluorescent protein revealed a dynamic change in distribution associated with acid secretion. In resting cells, SNAP-25 is at the apical plasma membrane and VAMP-2 is associated with cytoplasmic H,K-ATPase-rich tubulovesicles. After stimulation, the two proteins co-localize on the apical plasma membrane. These data demonstrate the functional significance of SNAP-25 as a SNARE protein in the parietal cell and show the dynamic stimulation-associated redistribution of VAMP-2 from H,K-ATPase-rich tubulovesicles to co-localize with SNAP-25 on the apical plasma membrane.  相似文献   

13.
VAMP proteins are important components of the machinery controlling docking and/or fusion of secretory vesicles with their target membrane. We investigated the expression of VAMP proteins in pancreatic beta-cells and their implication in the exocytosis of insulin. cDNA cloning revealed that VAMP-2 and cellubrevin, but not VAMP-1, are expressed in rat pancreatic islets and that their sequence is identical to that isolated from rat brain. Pancreatic beta-cells contain secretory granules that store and secrete insulin as well as synaptic-like microvesicles carrying gamma-aminobutyric acid. After subcellular fractionation on continuous sucrose gradients, VAMP-2 and cellubrevin were found to be associated with both types of secretory vesicle. The association of VAMP-2 with insulin-containing granules was confirmed by confocal microscopy of primary cultures of rat pancreatic beta-cells. Pretreatment of streptolysin-O permeabilized insulin-secreting cells with tetanus and botulinum B neurotoxins selectively cleaved VAMP-2 and cellubrevin and abolished Ca(2+)-induced insulin release (IC50 approximately 15 nM). By contrast, the pretreatment with tetanus and botulinum B neurotoxins did not prevent GTP gamma S-stimulated insulin secretion. Taken together, our results show that pancreatic beta-cells express VAMP-2 and cellubrevin and that one or both of these proteins selectively control Ca(2+)-mediated insulin secretion.  相似文献   

14.
Calcium-regulated exocytosis is required for cell membrane resealing   总被引:15,自引:7,他引:8       下载免费PDF全文
《The Journal of cell biology》1995,131(6):1747-1758
Using confocal microscopy, we visualized exocytosis during membrane resealing in sea urchin eggs and embryos. Upon wounding by a laser beam, both eggs and embryos showed a rapid burst of localized Ca(2+)- regulated exocytosis. The rate of exocytosis was correlated quantitatively with successfully resealing. In embryos, whose activated surfaces must first dock vesicles before fusion, exocytosis and membrane resealing were inhibited by neurotoxins that selectively cleave the SNARE complex proteins, synaptobrevin, SNAP-25, and syntaxin. In eggs, whose cortical vesicles are already docked, vesicles could be reversibly undocked with externally applied stachyose. If cortical vesicles were undocked both exocytosis and plasma membrane resealing were completely inhibited. When cortical vesicles were transiently undocked, exposure to tetanus toxin and botulinum neurotoxin type C1 rendered them no longer competent for resealing, although botulinum neurotoxin type A was still ineffective. Cortical vesicles transiently undocked in the presence of tetanus toxin were subsequently fusion incompetent although to a large extent they retained their ability to redock when stachyose was diluted. We conclude that addition of internal membranes by exocytosis is required and that a SNARE-like complex plays differential roles in vesicle docking and fusion for the repair of disrupted plasma membrane.  相似文献   

15.
Synaptic transmission is conducted by neurotransmitters released from presynaptic nerve terminals by means of Ca2+-dependent exocytosis of synaptic vesicles. Formation of a complex of soluble N-ethylmaleimide-sensitive fusion protein receptor (SNARE) proteins, including vesicle-associated membrane protein-2 (VAMP-2) in the synaptic vesicle membrane, and syntaxin 1 and synaptosomal-associated protein of 25 kDa (SNAP-25) in the plasma membrane, is essential for exocytosis. Ionomycin treatment of cultured rat cerebellar granule cells led to cleavage of SNAP-25, but not syntaxin 1 and VAMP-2, that was dependent on extracellular Ca2+. Cleavage was also induced by N-methyl-D-aspartate (NMDA) treatment, but not by depolarization. The use of various site-specific antibodies to SNAP-25, suggested that the cleavage site was in the N-terminal domain of SNAP-25. Calpain inhibitors abolished the Ca2+-dependent cleavage of SNAP-25 and markedly facilitated Ca2+-dependent glutamate (Glu) release from cerebellar granule cells. These results suggest that calpain may play an important role in the long-lasting regulation of synaptic transmission by suppressing neurotransmitter release, possibly through the proteolytic cleavage of SNAP-25.  相似文献   

16.
Botulinum neurotoxin (BoNT; serotypes A-G) and tetanus neurotoxin elicit flaccid and spastic paralysis, respectively. These neurotoxins are zinc proteases that cleave SNARE proteins to inhibit synaptic vesicle fusion to the plasma membrane. Although BoNT/B and tetanus neurotoxin (TeNT) cleave VAMP-2 at the same scissile bond, their mechanism(s) of VAMP-2 recognition is not clear. Mapping experiments showed that residues 60-87 of VAMP-2 were sufficient for efficient cleavage by BoNT/B and that residues 40-87 of VAMP-2 were sufficient for efficient TeNT cleavage. Alanine-scanning mutagenesis and kinetic analysis identified three regions within VAMP-2 that were recognized by BoNT/B and TeNT: residues adjacent to the site of scissile bond cleavage (cleavage region) and residues located within N-terminal and C-terminal regions relative to the cleavage region. Analysis of residues within the cleavage region showed that mutations at the P7, P4, P2, and P1' residues of VAMP-2 had the greatest inhibition of LC/B cleavage (> or =32-fold), whereas mutations at P7, P4, P1', and P2' residues of VAMP-2 had the greatest inhibition of LC/TeNT cleavage (> or =64-fold). Residues within the cleavage region influenced catalysis, whereas residues N-terminal and C-terminal to the cleavage region influenced binding affinity. Thus, BoNT/B and TeNT possess similar organization but have unique residues to recognize and cleave VAMP-2. These studies provide new insights into how the clostridial neurotoxins recognize their substrates.  相似文献   

17.
In the neuron, SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) assembly acts centrally in driving membrane fusion, a required process for neurotransmitter release. In the cytoplasm, vesicular SNARE VAMP-2 (vesicle-associated membrane protein-2) engages with two plasma membrane SNAREs, syntaxin 1A and SNAP-25 (synaptosome-associated protein of 25 kDa), to form the core complex that bridges two membranes. Although various factors regulate SNARE assembly, the membrane also aids in regulation by trapping VAMP-2 in the membrane. Fluorescence and EPR analyses revealed that the insertion of seven C-terminal core-forming residues into the membrane controls complex formation of the entire core region, even though the preceding 54 core-forming residues are fully exposed and freely moving. When two interfacial tryptophan residues in this region were replaced with hydrophilic serine residues, the mutation supported rapid complex formation. The results suggest that the membrane-proximal region of VAMP-2 is a regulatory module for SNARE assembly, providing new insights into calcium-triggered membrane fusion.  相似文献   

18.
Depletion of Ca2+ stores in Xenopus oocytes activated entry of Ca2+ across the plasma membrane, which was measured as a current I(soc) in subsequently formed cell-attached patches. I(soc) survived excision into inside-out configuration. If cell-attached patches were formed before store depletion, I(soc) was activated outside but not inside the patches. I(soc) was potentiated by microinjection of Clostridium C3 transferase, which inhibits Rho GTPase, whereas I(soc) was inhibited by expression of wild-type or constitutively active Rho. Activation of I(soc) was also inhibited by botulinum neurotoxin A and dominant-negative mutants of SNAP-25 but was unaffected by brefeldin A. These results suggest that oocyte I(soc) is dependent not on aqueous diffusible messengers but on SNAP-25, probably via exocytosis of membrane channels or regulatory molecules.  相似文献   

19.
nSec1 binds a closed conformation of syntaxin1A   总被引:15,自引:0,他引:15  
The Sec1 family of proteins is proposed to function in vesicle trafficking by forming complexes with target membrane SNAREs (soluble N-ethylmaleimide-sensitive factor [NSF] attachment protein [SNAP] receptors) of the syntaxin family. Here, we demonstrate, by using in vitro binding assays, nondenaturing gel electrophoresis, and specific neurotoxin treatment, that the interaction of syntaxin1A with the core SNARE components, SNAP-25 (synaptosome-associated protein of 25 kD) and VAMP2 (vesicle-associated membrane protein 2), precludes the interaction with nSec1 (also called Munc18 and rbSec1). Inversely, association of nSec1 and syntaxin1A prevents assembly of the ternary SNARE complex. Furthermore, using chemical cross-linking of rat brain membranes, we identified nSec1 complexes containing syntaxin1A, but not SNAP-25 or VAMP2. These results support the hypothesis that Sec1 proteins function as syntaxin chaperons during vesicle docking, priming, and membrane fusion.  相似文献   

20.
Zhou JY  Wang ZF  Ren XM  Tang MZ  Shi YL 《FEBS letters》2003,555(2):375-379
Toosendanin (TSN), a triterpenoid derivative extracted from Chinese traditional medicine, has been demonstrated to be an effective cure for experimental botulism. This study is designed to explore its antibotulismic mechanism by Western blotting. The results showed that TSN incubation did not change the electrophoresis pattern and the amounts of synaptosomal-associated protein of 25 kDa (SNAP-25), syntaxin and synaptobrevin/vesicle-associated membrane protein in rat cerebral synaptosomes, but made the synaptosomes completely resistant to botulinum neurotoxin A (BoNT/A)-mediated cleavage of SNAP-25. After binding of BoNT/A to synaptosomes, TSN still partially antagonized the toxin-mediated cleavage of SNAP-25. However, TSN-incubated synaptosomal membrane fraction did not resist the cleavage of SNAP-25 by the light chain of BoNT/A. It is suggested that the antibotulismic effect of TSN results from blocking the toxin's approach to its enzymatic substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号