首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In rat adipose cells, intracellular Glut4 resides in two distinct vesicular populations one of which contains cellugyrin whereas another lacks this protein (Kupriyanova, T. A., and Kandror, K. V. (2000) J. Biol. Chem. 275, 36263--36268). Cell surface biotinylated MPR and (125)I-labeled transferrin are accumulated in cellugyrin-positive vesicles and to a lesser extent in cellugyrin-negative vesicles. An average cellugyrin-positive vesicle carries not more than one molecule of either Glut4, insulin-responsive aminopeptidase (IRAP), or transferrin receptor (TfR), whereas cellugyrin-negative vesicles contain five to six molecules of Glut4, more than 10 molecules of IRAP, and still one molecule of TfR per vesicle. Cellugyrin-negative vesicles are translocated to the cell surface after insulin stimulation, whereas cellugyrin-positive vesicles maintain intracellular localization both in the absence and in the presence of insulin and, therefore, may be involved in interendosomal protein transport. Both cellugyrin-positive and cellugyrin-negative vesicles are present in extracts of non-homogenized cells and therefore may represent the major form of Glut4 storage in vivo.  相似文献   

2.
An improved immunogold labeling procedure was used to examine the subcellular distribution of glucose transporters in Lowricryl HM20- embedded skeletal muscle from transgenic mice overexpressing either Glut1 or Glut4. In basal muscle, Glut4 was highly enriched in membranes of the transverse tubules and the terminal cisternae of the triadic junctions. Less than 10% of total muscle Glut4 was present in the vicinity of the sarcolemmal membrane. Insulin treatment increased the number of gold particles associated with the transverse tubules and the sarcolemma by three-fold. However, insulin also increased the total Glut4 immunogold reactivity in muscle ultrathin sections by up to 1.8- fold and dramatically increased the amount of Glut4 in muscle sections as observed by laser confocal immunofluorescence microscopy. The average diameter of transverse tubules observed in longitudinal sections increased by 50% after insulin treatment. Glut1 was highly enriched in the sarcolemma, both in the basal state and after insulin treatment. Disruption of transverse tubule morphology by in vitro glycerol shock completely abolished insulin-stimulated glucose transport in isolated rat epitrochlearis muscles. These data indicate that: (a) Glut1 and Glut4 are targeted to distinct plasma membrane domains in skeletal muscle; (b) Glut1 contributes to basal transport at the sarcolemma and the bulk of insulin-stimulated transport is mediated by Glut4 localized in the transverse tubules; (c) insulin increases the apparent surface area of transverse tubules in skeletal muscle; and (d) insulin causes the unmasking of a COOH-terminal antigenic epitope in skeletal muscle in much the same fashion as it does in rat adipocytes.  相似文献   

3.
Impaired translocation of the glucose transporter isoform 4 (Glut4) to the plasma membrane in fat and skeletal muscle cells may represent a primary defect in the development of type 2 diabetes mellitus. Glut4 is localized in specialized storage vesicles (GSVs), the biological nature and biogenesis of which are not known. Here, we report that GSVs are formed in differentiating 3T3-L1 adipocytes upon induction of sortilin on day 2 of differentiation. Forced expression of Glut4 prior to induction of sortilin leads to rapid degradation of the transporter, whereas overexpression of sortilin increases formation of GSVs and stimulates insulin-regulated glucose uptake. Knockdown of sortilin decreases both formation of GSVs and insulin-regulated glucose uptake. Finally, we have reconstituted functional GSVs in undifferentiated cells by double transfection of Glut4 and sortilin. Thus, sortilin is not only essential, but also sufficient for biogenesis of GSVs and acquisition of insulin responsiveness in adipose cells.  相似文献   

4.
Insulin stimulates adipose cells both to secrete proteins and to translocate the GLUT4 glucose transporter from an intracellular compartment to the plasma membrane. We demonstrate that whereas insulin stimulation of 3T3-L1 adipocytes has no effect on secretion of the alpha3 chain of type VI collagen, secretion of the protein hormone adipocyte complement related protein of 30 kD (ACRP30) is markedly enhanced. Like GLUT4, regulated exocytosis of ACRP30 appears to require phosphatidylinositol-3-kinase activity, since insulin-stimulated ACRP30 secretion is blocked by pharmacologic inhibitors of this enzyme. Thus, 3T3-L1 adipocytes possess a regulated secretory compartment containing ACRP30. Whether GLUT4 recycles to such a compartment has been controversial. We present deconvolution immunofluorescence microscopy data demonstrating that the subcellular distributions of ACRP30 and GLUT4 are distinct and nonoverlapping; in contrast, those of GLUT4 and the transferrin receptor overlap. Together with supporting evidence that GLUT4 does not recycle to a secretory compartment via the trans-Golgi network, we conclude that there are at least two compartments that undergo insulin-stimulated exocytosis in 3T3-L1 adipocytes: one for ACRP30 secretion and one for GLUT4 translocation.  相似文献   

5.
Lipoprotein lipase (LPL) is the enzyme responsible for hydrolysis of circulating triglyceride-rich lipoproteins and is important for storage of adipocyte lipid. To study the regulation of LPL synthetic rate in adipose tissue, primary cultures of isolated rat adipocytes were pulse-labeled with [35S]methionine, and LPL was immunoprecipitated with an LPL-specific antibody. A pulse-chase experiment identified the cellular and secreted forms of LPL as a 55-57-kDa protein. In the presence of heparin, there was a large increase in secretion of newly synthesized LPL from the cells, although heparin did not stimulate cellular LPL synthetic rate. When cells were exposed to insulin for 2 h, pulse-labeling revealed that insulin stimulated a maximal dose-related increase in LPL synthetic rate of 300% of control. This increase in LPL synthetic rate was observed after an exposure to insulin for as little as 60 min and was accompanied by only a 10-25% increase in total protein synthesis. In addition, insulin had no effect on the turnover of intracellular LPL. Using a cDNA probe for LPL, insulin induced a 2-fold increase in the LPL mRNA. Thus, insulin stimulated an increase in specific LPL mRNA in isolated rat adipocytes. This increase in LPL mRNA then leads to an increase in the synthetic rate of the LPL protein.  相似文献   

6.
The intracellular traffic of the glucose transporter 4 (GLUT4) in muscle cells remains largely unexplored. Here we make use of L6 myoblasts stably expressing GLUT4 with an exofacially directed Myc-tag (GLUT4myc) to determine the exocytic and endocytic rates of the transporter. Insulin caused a rapid (t(12) = 4 min) gain, whereas hyperosmolarity (0.45 m sucrose) caused a slow (t(12) = 20 min) gain in surface GLUT4myc molecules. With prior insulin stimulation followed by addition of hypertonic sucrose, the increase in surface GLUT4myc was partly additive. Unlike the effect of insulin, the GLUT4myc gain caused by hyperosmolarity was insensitive to wortmannin or to tetanus toxin cleavage of VAMP2 and VAMP3. Disappearance of GLUT4myc from the cell surface was rapid (t(12) = 1.5 min). Insulin had no effect on the initial rate of GLUT4myc internalization. In contrast, hyperosmolarity almost completely abolished GLUT4myc internalization. Surface GLUT4myc accumulation in response to hyperosmolarity was only partially blocked by inhibition of tyrosine kinases with erbstatin analog (erbstatin A) and genistein. However, neither inhibitor interfered with the ability of hyperosmolarity to block GLUT4myc internalization. We propose that hyperosmolarity increases surface GLUT4myc by preventing GLUT4 endocytosis and stimulating its exocytosis via a pathway independent of phosphatidylinositol 3-kinase activity and of VAMP2 or VAMP3. A tetanus toxin-insensitive v-SNARE such as TI-VAMP detected in these cells, might mediate membrane fusion of the hyperosmolarity-sensitive pool.  相似文献   

7.
A longstanding question in cell biology is how is the routing of intracellular organelles within cells regulated? Although data support the involvement of Rab4 and Rab11 GTPases in the recycling pathway, the function of Rab11 in particular is uncertain. Here we have analyzed the association of these two Rab GTPases with the Fc receptor, FcRn, during intracellular trafficking. This Fc receptor is both functionally and structurally distinct from the classical Fcgamma receptors and transports immunoglobulin G (IgG) within cells. FcRn is therefore a recycling receptor that sorts bound IgG from unbound IgG in sorting endosomes. In the current study we have used dual color total internal reflection fluorescence microscopy (TIRFM) and wide-field imaging of live cells to analyze the events in human endothelial cells that are involved in the trafficking of FcRn positive (FcRn(+)) recycling compartments from sorting endosomes to exocytic sites at the plasma membrane. Our data are consistent with the following model for this pathway: FcRn leaves sorting endosomes in Rab4(+)Rab11(+) or Rab11(+) compartments. For Rab4(+)Rab11(+) compartments, Rab4 depletion occurs by segregation of the two Rab proteins into discrete domains that can separate. The Rab11(+)FcRn(+) vesicle or tubule subsequently fuses with the plasma membrane in an exocytic event. In contrast to Rab11, Rab4 is not involved in exocytosis.  相似文献   

8.
Misfolded proteins can be directed into cytoplasmic aggregates such as aggresomes and dendritic cell aggresome-like induced structures (DALIS). DALIS were originally identified in lipopolysaccharide-stimulated dendritic cells and act as storage compartments for polyubiquitinated Defective Ribosomal Products (DRiPs) prior to their clearance by the proteasome. Here we demonstrate that ubiquitinated protein aggregates that are similar to DALIS, and not related to aggresomes, can be observed in several cell types in response to stress, including oxidative stress, transfection, and starvation. Significantly, both immune and nonimmune cells could form these aggresome-like induced structures (ALIS). Protein synthesis was essential for ALIS formation in response to oxidative stress, indicating that DRiP formation was required. Furthermore, puromycin, which increases DRiP formation, was sufficient to induce ALIS formation. Inhibition of either proteasomes or of autophagy interfered with ALIS clearance in puromycin treated cells. Autophagy inhibition enhanced ALIS formation under a variety of stress conditions. During starvation, ALIS formation in autophagy-deficient cells was only partially inhibited by protein synthesis inhibitors, indicating that both long-lived proteins and DRiPs can be targeted to ALIS. Together, these findings demonstrate that ALIS act as generalized stress-induced protein storage compartments for substrates of the proteasome and autophagy.  相似文献   

9.
Stimulations of glucose transport produced by insulin action, contraction, or through a change in cell energy status are mediated by separate signaling pathways. These are the wortmannin-sensitive phosphatidylinositol 3-kinase pathway leading to the intermediate Akt and the wortmannin-insensitive AMP-activated protein kinase (AMPK) pathway. Electrical stimulation of cardiomyocytes produced a rapid, insulin-like, wortmannin-sensitive stimulation of glucose transport activity, but this occurred without extensive activation of Akt. Although AMPK phosphorylation was increased by contraction, this response was not wortmannin-inhibitable and consequently did not correlate with the wortmannin sensitivity of the transport stimulation. Oxidative metabolism stress due to hypoxia or treatment with oligomycin led to increased AMPK activity with a corresponding increase in glucose transport activity. We show here that these separate signaling pathways converge on GLUT4 trafficking at separate steps. The rate of exocytosis of GLUT4 was rapidly stimulated by insulin, but insulin treatment did not alter the endocytosis rate. Like insulin stimulation, electrical stimulation of contraction led to a stimulation of GLUT4 exocytosis without any marked change in endocytosis. By contrast, after oxidative metabolism stress, no stimulation of GLUT4 exocytosis occurred; instead, this treatment led to a reduction in GLUT4 endocytosis.  相似文献   

10.
The glucose transporter isoform GLUT4 is unique among the glucose transporter family of proteins in that, in resting cells, it is sequestered very efficiently in a storage compartment. In insulin-sensitive cells, such as fat and muscle, insulin stimulation leads to release of GLUT4 from this reservoir and its translocation to the plasma membrane. This process is crucial for the control of blood and tissue glucose levels. Investigations of the composition and structure of the GLUT4 storage compartment, together with the targeting motifs that direct GLUT4 to this compartment, have been extensive but have been controversial. Recent findings have now provided a clearer consensus of opinion on the mechanisms involved in the formation of this storage compartment. However, another controversy has now emerged, which is unresolved. This concerns the issue of whether the insulin-regulated step occurs at the level of release of GLUT4 from the storage compartment or at the level at which released vesicles fuse with the plasma membrane.  相似文献   

11.
The summarized suspension of thymocytes was separated into subpopulations in the ficoll-urografin gradient density and 6 fractions of thymocytes were obtained. Experiments in vivo showed that under hypothyreosis incorporation of 3H-thymidine into DNA thymocytes, which were isolated in the ficoll-urografin density of 1.065, 1.071, 1.073 and residue is found to be increased than that of intact rats by 72, 35, 47 and 24%, respectively, and incorporation of 14C-amino acids into thymocyte proteins--by 44, 29, 37 and 45%, respectively. Somatotropin normalizes incorporation of the mentioned precursors into the corresponding biopolymers.  相似文献   

12.
Drs2p is a resident type 4 P-type ATPase (P4-ATPase) and potential phospholipid translocase of the trans-Golgi network (TGN) where it has been implicated in clathrin function. However, precise protein transport pathways requiring Drs2p and how it contributes to clathrin-coated vesicle budding remain unclear. Here we show a functional codependence between Drs2p and the AP-1 clathrin adaptor in protein sorting at the TGN and early endosomes of Saccharomyces cerevisiae. Genetic criteria indicate that Drs2p and AP-1 operate in the same pathway and that AP-1 requires Drs2p for function. In addition, we show that loss of AP-1 markedly increases Drs2p trafficking to the plasma membrane, but does not perturb retrieval of Drs2p from the early endosome back to the TGN. Thus AP-1 is required at the TGN to sort Drs2p out of the exocytic pathway, presumably for delivery to the early endosome. Moreover, a conditional allele that inactivates Drs2p phospholipid translocase (flippase) activity disrupts its own transport in this AP-1 pathway. Drs2p physically interacts with AP-1; however, AP-1 and clathrin are both recruited normally to the TGN in drs2Delta cells. These results imply that Drs2p acts independently of coat recruitment to facilitate AP-1/clathrin-coated vesicle budding from the TGN.  相似文献   

13.
Inflammatory changes are involved in tumor cell proliferation,migration,and invasion.Tumor necrosis factor-α (TNF-α) and lipopolysaccharide (LPS) play important...  相似文献   

14.
Small GTPases of the ADP-ribosylation factor (ARF) family, except for ARF6, mainly localize to the Golgi apparatus, where they trigger formation of coated carrier vesicles. We recently showed that class I ARFs (ARF1 and ARF3) localize to recycling endosomes, as well as to the Golgi, and are redundantly required for recycling of endocytosed transferrin. On the other hand, the roles of class II ARFs (ARF4 and ARF5) are not yet fully understood, and the complementary or overlapping functions of class I and class II ARFs have been poorly characterized. In this study, we find that simultaneous depletion of ARF1 and ARF4 induces extensive tubulation of recycling endosomes. Moreover, the depletion of ARF1 and ARF4 inhibits retrograde transport of TGN38 and mannose-6-phosphate receptor from early/recycling endosomes to the trans-Golgi network (TGN) but does not affect the endocytic/recycling pathway of transferrin receptor or inhibit retrograde transport of CD4-furin from late endosomes to the TGN. These observations indicate that the ARF1+ARF4 and ARF1+ARF3 pairs are both required for integrity of recycling endosomes but are involved in distinct transport pathways: the former pair regulates retrograde transport from endosomes to the TGN, whereas the latter is required for the transferrin recycling pathway from endosomes to the plasma membrane.  相似文献   

15.
Incubation of 3T3-L1 adipocytes with insulin at 37 degrees C resulted in a 2-fold increase in specific binding of transferrin to cell-surface receptors, as measured by a subsequent incubation of cells at 4 degrees C with 125I-transferrin. The insulin concentration required for half-maximal effect was 10 nM, and the half-time for insulin action was 40 s. By comparison, insulin stimulated hexose transport in 3T3-L1 adipocytes with a half-maximal effect at 8 nM and a half-time of 105 s. Scatchard analysis of 125I-transferrin binding to cells at 4 degrees C showed that the insulin-induced increase in transferrin receptor binding was due to an increase in the number of surface transferrin receptors. When cells were incubated for 2 h at 37 degrees C with 125I-transferrin to achieve steady-state binding and then exposed to insulin, there was a 1.7-fold increase in surface-bound transferrin (acid-sensitive) and a corresponding decrease in intracellularly bound transferrin (acid-insensitive). Thus, insulin elicits translocation of intracellular transferrin receptors to the plasma membrane. Concomitant with the 2-fold increase in surface receptors in response to insulin, there was a 2-fold increase in the rate of 59Fe3+ uptake from 59Fe3+-loaded transferrin. The rate of externalization of the intracellular 125I-transferrin-receptor complex at 37 degrees C was determined for basal and insulin-treated cells. Insulin increased the first-order rate constant for this process 1.7-fold. The effect of insulin on the rate of externalization is sufficient to account for the increase in surface transferrin receptors.  相似文献   

16.
BACKGROUND: It has been postulated that the regulation of integrin vesicular traffic facilitates cell migration by internalizing integrins at the rear of the cell and transporting them forward within vesicles for exocytosis at the leading edge to form new contacts with the extracellular matrix. The rab family of GTPases control key targeting events in the endo/exocytic pathway; therefore, these GTPases may be involved in the regulation of cell-matrix contact assembly. RESULTS: The endo/exocytic cycle of alphavbeta3 and alpha5beta1 integrins was studied using mouse 3T3 fibroblast cell lines. In serum-starved cells, internalized integrins were transported through rab4-positive, early endosomes and arrived at the rab11-positive, perinuclear recycling compartment approximately 30 min after endocytosis. From the recycling compartment, integrins were recycled to the plasma membrane in a rab11-dependent fashion. Following treatment with PDGF, alphavbeta3 integrin, but not alpha5beta1, was rapidly recycled directly back to the plasma membrane from the early endosomes via a rab4-dependent mechanism without the involvement of rab11. This rapid recycling pathway directed alphavbeta3 to numerous small puncta distributed evenly across the dorsal surface of the cell, and the integrin only became localized into focal complexes at later times following PDGF addition. Interestingly, inhibition of PDGF-stimulated alphavbeta3 recycling using dominant-negative rab4 mutants compromised cell adhesion and spreading on vitronectin (a ligand for alphavbeta3), but adhesion to fibronectin (a ligand for alpha5beta1 and alphavbeta3) was unchanged. CONCLUSIONS: We propose that growth factor-regulated, rab4-dependent recycling of alphavbeta3 integrin from early endosomes to the plasma membrane is a critical upstream event in the assembly of cell-matrix contacts.  相似文献   

17.
This study was conducted to explore the mechanism by which caffeine increases GLUT4 expression in C(2)C(12) myotubes. Myoblasts were differentiated in DMEM containing 2% horse serum for 13 days and the resultant myotubes exposed to 10 mM caffeine in the presence or absence of 25 microM KN93 or 10 mM dantrolene for 2 h. After the treatment, cells were kept in serum-free medium and harvested between 0 and 6 h later, depending on the assay. Chromatin immunoprecipitation (ChIP) assays revealed that caffeine treatment caused hyperacetylation of histone H3 at the myocyte enhancer factor 2 (MEF2) site on the Glut4 promoter (P < 0.05) and increased the amount of MEF2A that was bound to this site approximately 2.2-fold (P < 0.05) 4 h posttreatment compared with controls. These increases were accompanied by an approximately 1.8-fold rise (P < 0.05 vs. control) in GLUT4 mRNA content at 6 h post-caffeine treatment. Both immunoblot and immunocytochemical analyses showed reduced nuclear content of histone deacetylase-5 in caffeine-treated myotubes compared with controls at 0-2 h posttreatment. Inclusion of 10 mM dantrolene in the medium to prevent the increase in cytosolic Ca(2+), or 25 microM KN93 to inhibit Ca(2+)/calmodulin-dependent protein kinase (CaMK II), attenuated all the above caffeine-induced changes. These data indicate that caffeine increases GLUT4 expression by acetylating the MEF2 site to increase MEF2A binding via a mechanism that involves CaMK II.  相似文献   

18.
The endocytic pathway in yeast leads to the vacuole, but resident proteins of the late Golgi, and some endocytosed proteins such as the exocytic SNARE Snc1p, are retrieved specifically to the Golgi. Retrieval can occur from both a late pre-vacuolar compartment and early or 'post-Golgi' endosomes. We show that the endosomal SNARE Pep12p, and a mutant version that reaches the cell surface and is endocytosed, are retrieved from pre-vacuolar endosomes. As with Golgi proteins, this requires the sorting nexin Grd19p and components of the retromer coat, supporting the view that endosomal and Golgi residents both cycle continuously between the exocytic and endocytic pathways. In contrast, retrieval of Snc1p from post-Golgi endosomes requires the sorting nexin Snx4p, to which Snc1p can be cross-linked. Snx4p binds to Snx41p/ydr425w and to Snx42p/ydl113c, both of which are also required for efficient Snc1p sorting. Our findings suggest a general role for yeast sorting nexins in protein retrieval, rather than degradation, and indicate that different sorting nexins operate in different classes of endosomes.  相似文献   

19.
Insulin regulates glucose uptake through effects on the trafficking of the glucose transporter Glut4. To investigate the degree of overlap between Glut4 and the general endocytic pathways, the kinetics of trafficking of Glut4 and the receptors for transferrin (Tf) and α(2)-macroglobulin (α-2-M; LRP-1) were compared using quantitative flow cytometric assays. Insulin increased the exocytic rate constant (k(ex)) for both Glut4 and Tf. However, the k(ex) of Glut4 was 5-15 times slower than Tf in both basal and insulin-stimulated cells. The endocytic rate constant (k(en)) of Glut4 was also five times slower than Tf. Insulin did not affect the k(en) of either protein. In basal cells, the k(en) for α-2-M/LRP-1 was similar to Glut4 but 5-fold slower than Tf. Insulin increased k(en) for α-2-M/LRP-1 by 30%. In contrast, the k(ex) for LRP-1 was five times faster than Glut4 in basal cells, and insulin did not increase this rate constant. Thus, although there is overlap in the protein machineries/compartments utilized, the differences in trafficking kinetics indicate that Glut4, the Tf receptor, and LRP-1 are differentially processed both within the cell and at the plasma membrane. It has been reported that insulin decreases the k(en) of Glut4 in adipocytes. However, the effect of exocytosis on the "internalization" assays was not considered. Because it is counterintuitive, the effect of exocytosis on these assays is often overlooked in endocytosis studies. Using mathematical modeling and simulation, we show that the reported decrease in Glut4 k(en) can be entirely accounted for by the well established increase in Glut4 k(ex).  相似文献   

20.
Using a stable cell line 25-RA derived from wild-type Chinese hamster ovary (CHO) cells as the parental cell, this laboratory previously reported the isolation and characterization of CHO cell mutants (cholesterol-trafficking or CT) defective in transporting LDL-derived cholesterol out of the acidic compartment(s) (lysosomes/endosomes) to the endoplasmic reticulum (ER) for esterification. In this report, we show that the CT mutation can be complemented by fusion with human cells; however, attempts to complement the CT defect through DNA transfection have resulted in a collection of stable cell lines designated as ST cells. Under cholesterol starvation condition, the ST cells exhibit an elevated rate of cholesterol ester biosynthesis (by 3- to 5-fold) compared to both the parental CHO cells and the CT cells. The phenotypes of the ST cells are stable. ST cells are thus new cell lines arisen from the CT cells. When the plasma membranes of the parental, CT, and ST cells are labelled with [3H]cholesterol, ST cells show rates of [3H]cholesterol esterification much higher than that observed in CT cells but lower than that observed in the parental CHO cells. This result shows that translocation of plasma membrane cholesterol to the ER for esterification is defective in the CT cells. This result also suggests that ST cells acquire increased cholesterol trafficking activity between the lysosome and the ER without mixing with the plasma membrane cholesterol pool. The characteristics of CT cells and ST cells reported here suggest that translocation of both lysosomal LDL-derived cholesterol and plasma membrane cholesterol to the ER for esterification may require common cellular factors involved in cholesterol egress from the acidic compartment(s) (lysosomes/endosomes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号