首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to determine the regulation mechanisms of ergosterol biosynthesis in yeast, we developed growth conditions leading to high or limiting ergosterol levels in wild type and sterol-auxotrophic mutant strains. An excess of sterol is obtained in anaerobic sterol-supplemented cultures of mutant and wild type strains. A low sterol level is obtained in aerobic growth conditions in mutant strains cultured with optimal sterol supplementation and in wild type strain deprived of pantothenic acid, as well as in anaerobic cultures without sterol supplementation. Measurements of the specific activities of acetoacetyl-CoA thiolase, HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) synthase and HMG-CoA reductase (the first three enzymes of the pathway), show that in cells deprived of ergosterol, acetoacetyl-CoA thiolase and HMG-CoA synthase are generally increased. In an excess of ergosterol, in anaerobiosis, the same enzymes are strongly decreased. A 5-10-fold decrease is observed for acetoacetyl-CoA thiolase and HMG-CoA synthase. In contrast, HMG-CoA reductase is only slightly affected by these conditions. These results show that ergosterol could regulate its own synthesis, at least partially, by repression of the first two enzymes of the pathway. Our results also show that exogenous sterols, even if strongly incorporated by auxotrophic mutant cells, cannot suppress enzyme activities in aerobic growth conditions. Measurement of specific enzyme activities in mutant cells also revealed that farnesyl pyrophosphate thwarts the enhancement of the activities of the two first enzymes.  相似文献   

2.
Yeast Saccharomyces cerevisiae is auxotrophic for ergosterol in the absence of oxygen. We showed that complex changes in esterification of exogenously supplied sterols were also induced by anaerobiosis. Utilization of oleic acid for sterol esterification was significantly impaired in anaerobic cells. Furthermore, anaerobic cells fed different sterols exhibited striking variation in esterification efficiency (high levels of sterol esters for cholesterol and sitosterol, low levels for ergosterol, lanosterol or stigmasterol). Relative activities of two yeast acylCoA:sterol acyltransferases (Are1p and Are2p) changed in response to anaerobiosis: while Are2p was dominant under aerobic conditions, Are1p provided the major activity in the absence of oxygen. Our results indicate that sterol esters may fulfil different roles in aerobic and anaerobic cells.  相似文献   

3.
4.
5.
For extraction of free and esterified sterols from yeast cells, a method was devised in which both forms of sterols were extracted with light petroleum after the treatment of the cells with acetone, and then with dimethylsulfoxide. The content of sterol esters in the cells under aerobic conditions markedly increased with time, amounting to 95% of the total sterols under some conditions. However, the formed sterol esters were decreased, accompanied with an increase of free sterols, when the cells were put under anaerobic conditions. Variations of radioactivities of both sterols which had been labeled in the side chain by incubation of the cells with [Me[-14C]methionine were examined on the cells grown under various conditions. No variation was observed on the cells under aerobic conditions. On the other hand, the labeled esters were hydrolyzed to yield free sterols in the cells under anaerobic conditions. In the cells under aerobic conditions, the free sterols were found to consist mainly of ergosterol, whereas the esterified sterols contained considerable amounts of zymosterol, lanosterol, and other intermediate sterols besides ergosterol.  相似文献   

6.
The sterol composition of Aspergillus fumigatus for the biosynthesis of ergosterol is of interest since this pathway is the target for many antifungal drugs in clinical use. The sterol composition of this fungal species was analyzed by gas chromatography-mass spectrometry in different strains (susceptible and resistant to azole drugs). Also, sterols were analyzed in several A. fumigatus mutant strains deficient in enzymatic steps of the ergosterol biosynthesis pathway such as 14-alpha sterol demethylases (Cyp51A and Cyp51B) and C-5 sterol desaturases (Erg3A, Erg3B and Erg3C). All sterols identified from azole-resistant A. fumigatus strains were qualitatively and quantitatively similar to the susceptible strain (CM-237). However, sterol composition of mutants strains were different depending on the lacking enzyme. The analysis of the sterol composition in these mutant strains led to a better understanding of the ergosterol biosynthesis pathway in this important fungus.  相似文献   

7.
Yeasts can incorporate a wide variety of exogenous sterols under strict anaerobiosis. Yeasts normally require oxygen for growth when exogenous sterols are limiting, as this favours the synthesis of lipids (sterols and unsaturated fatty acids). Although much is known about the oxygen requirements of yeasts during anaerobic growth, little is known about their exact sterol requirements in such conditions. We developed a method to determine the amount of ergosterol required for the growth of several yeast strains. We found that pre-cultured yeast strains all contained similar amounts of stored sterols, but exhibited different ergosterol assimilation efficiencies in enological conditions [as measured by the ergosterol concentration required to sustain half the number of generations attributed to ergosterol assimilation (P50)]. P50 was correlated with the intensity of sterol synthesis. Active dry yeasts (ADYs) contained less stored sterols than their pre-cultured counterparts and displayed very different ergosterol assimilation efficiencies. We showed that five different batches of the same industrial Saccharomyces cerevisiae ADY exhibited significantly different ergosterol requirements for growth. These differences were mainly attributed to differences in initial sterol reserves. The method described here can therefore be used to quantify indirectly the sterol synthesis abilities of yeast strains and to estimate the size of sterol reserves.  相似文献   

8.
Mysyakina  I. S.  Funtikova  N. S.  Medvedev  F. A. 《Microbiology》2002,71(4):404-409
Sterol composition of the arthrospores and mycelium of the fungus Mucor hiemalis 1156 was studied by the method of chromatography–mass spectrometry. Along with ergosterol, the major sterol of the culture studied, ten minor sterols were identified, which were either precursors or products of ergosterol degradation. The content of individual sterols differed substantially in arthrospores and mycelium, which represent different stages of ontogenetic development of the fungus. In arthrospores, the content of ergosterol was lower than in mycelium (55.9 and 78.0%, respectively). Among the precursors of ergosterol, methylated sterols predominated in arthrospores (24.1% versus 11.6% in mycelium). Eburicol and 4,4-dimethylfecosterol were the major methylated sterols of arthrospores (10.6 and 8.1%, respectively). In addition, two uncommon and extremely rare sterols, 1-dihydro-dehydroneoergosterol and dehydroneoergosterol, were identified (for the first time in M. hiemalis). These substances, containing a complex system of conjugated double bonds in their A and B rings, are the products of ergosterol degradation. The data on sterol composition are discussed in terms of their morphogenetic implication.  相似文献   

9.
We measured the incorporation of radiolabeled methionine and acetate into the sterol component of G204, a Saccharomyces cerevisiae mutant strain which is partially heme competent. By comparing the amount of label incorporated into the sterol pool of a control culture, to which no exogenous sterol was added, with a culture which had various sterols added to the growth medium, we were able to determine the specific structural features of ergosterol which facilitate its ability to restrict the sterol biosynthetic pathway. These experiments demonstrate that sterols which contain both a C22 unsaturation and a C24 methyl group are capable of reducing sterol biosynthesis by approx. 50%, regardless of B-ring structure. We examined the regulatory properties of various oxysterols; 24,25-epoxylanosterol reduced endogenous biosynthesis by 49%, whereas all cholesterol derivatives tested, including 25-hydroxycholesterol, had little effect. A new procedure for the synthesis of ergosterol peroxides is also described.  相似文献   

10.
In order to identify the methyl acceptor for the methylation of sterol side-chains in ergosterol biosynthesis, Saccharomyces cerevisiae (wild type) was grown in the presence and absence of ethionine which was expected to be an inhibitor of the methylation. Gas-liquid chromatographic analyses of the sterols in the cells grown in the absence of ethionine showed that ergosterol was the most abundant sterol. On the other hand, a sterol, named sterol Z, accounted for more than 50% of the total sterols in the cells grown in the presence of ethionine. As a result of experiments to raise the yield of sterol Z, the best concentration of DL-ethionine for the production was found to be 1.0 mM. The use of the methionine-less mutant was less effective for the production of sterol Z. Sterol Z was isolated by repeated TLC and was identified as zymosterol from its melting point, GLC and mass spectrometry. The role of zymosterol and other sterols as the methyl-acceptor sterol in ergosterol biosynthesis is also discussed.  相似文献   

11.
[Methyl-14C]methionine was supplied to yeast cells under aerobic and anaerobic conditions for the investigation of the pathway for ergosterol biosynthesis after the methylation of the side-chain. Under aerobic conditions, the incorporation of radioactivity into ergosterol was high. With a limited oxygen supply, in contrast, the radioactivity was first accumulated in ergosta-7,24(28)-dien-3beta-ol and ergosta-8,24(28)-dien-3beta-ol, and then transferred to ergost-7-en-3beta-ol, ergost-8-en-3beta-ol and ergosta-7,22-dien-3beta-ol with time. Under strictly anaerobic conditions, a double bond was introduced neither to delta5 nor to delta22. The results of the tracer experiments suggested the operation of several pathways in the late stages of ergosterol biosynthesis. It was also suggested that the main pathways varied depending on the conditions such as oxygen supply and other factors. The above conclusion was supported by the results of the analyses of the sterol compositions of the cells grown under various conditions.  相似文献   

12.
Wild-type Saccharomyces cerevisiae do not accumulate exogenous sterols under aerobic conditions, and a mutant allele conferring sterol auxotrophy (erg7) could be isolated only in strains with a heme deficiency. delta-Aminolevulinic acid (ALA) fed to a hem1 (ALA synthetase-) erg7 (2,3-oxidosqualene cyclase-) sterol-auxotrophic strain of S. cerevisiae inhibited sterol uptake, and growth was negatively affected when intracellular sterol was depleted. The inhibition of sterol uptake (and growth of sterol auxotrophs) by ALA was dependent on the ability to synthesize heme from ALA. A procedure was developed which allowed selection of strains which would take up exogenous sterols but had no apparent defect in heme or ergosterol biosynthesis. One of these sterol uptake control mutants possessed an allele which allowed phenotypic expression of sterol auxotrophy in a heme-competent background.  相似文献   

13.
The interconversion of free and esterified sterols was followed radioisotopically with [U-14C]acetate and [methyl-14C]methionine. In pulse-chase experiments, radioactivity first appeared mainly in unesterified sterols in exponential-phase cells. Within one generation time, the label equilibrated between the free and esterified sterol pools and subsequently accumulated in steryl esters in stationary-phase cells. When the sterol pools were prelabeled by growing cells aerobically to the stationary phase and the cells were diluted into unlabeled medium, the prelabeled steryl esters returned to the free sterol form under several conditions. (i) During aerobic growth, the prelabeled sterols decreased from 80% to 45% esters in the early exponential phase and then returned to 80% esters as the culture reached the stationary phase. (ii) Under anaerobic conditions, the percentage of prelabeled steryl esters declined continuously. When growth stopped, only 15% of the sterols remained esterified. (iii) In the presence of an inhibitor of sterol biosynthesis, which causes accumulation of a precursor to ergosterol, prelabeled sterols decreased to 40% steryl esters while the precursor was found preferentially in the esterified form. These results indicate that the bulk of the free sterol and steryl ester pools are freely interconvertible, with the steryl esters serving as a supply of free sterols. Furthermore, there is an active cellular control over what types of sterol are found in the free and esterified sterol pools.  相似文献   

14.
Under anaerobic growth conditions the isomeric 4,4′,14-trimethylcholestane derivatives lanosterol and, more efficiently, cycloartenol satisfy the sterol requirement of the yeast sterol auxotroph Saccharomyces cerevisiae strain GL7. Aerobic mutant growth is supported only by cycloartenol and not by lanosterol, suggesting different structural requirements for aerobic and anaerobic cells. It is proposed that the non-planar conformation imposed by the 9,19-cyclopropane ring of cycloartenol moderates the adverse membrane effects of the nuclear methyl groups at C-4 and C-14. Under both aerobic and anaerobic conditions cyclolaudenol, a C-24-methyl derivative of cycloartenol, is a significantly more effective sterol source for strain GL7 than cycloartenol. This result is in keeping with the predominance of C-24-methyl sterols (ergosterol) in wild-type yeast.  相似文献   

15.
Sterol synthesis inSaccharomyces cerevisiae was primarily controlled by the growth rate. At low specific growth rates the intermediates of ergosterol biosynthesis prevailed in cells. At the same time, the total sterol content reached about 6% of dry matter whereas the content of ergosterol was only 2–2.5%, which seems to be the maximum value forS. cerevisiae. After esterification with fatty acids these sterol intermediates are stored in lipid globules together with reserve triacylglycerols. The sporulatingS. cerevisiae cells contained 3.5% sterols and 1.5% ergosterol of dry matter.  相似文献   

16.
Sterols are essential lipid components of eukaryotic membranes. Here we summarize recent advances in understanding how sterols are transported between different membranes. Baker's yeast is a particularly attractive organism to dissect this lipid transport pathway, because cells can synthesize their own major sterol, ergosterol, in the membrane of the endoplasmic reticulum from where it is then transported to the plasma membrane. However, Saccharomyces cerevisiae is also a facultative anaerobic organism, which becomes sterol auxotroph in the absence of oxygen. Under these conditions, cells take up sterol from the environment and transport the lipid back into the membrane of the endoplasmic reticulum, where the free sterol becomes esterified and is then stored in lipid droplets. Steryl ester formation is thus a reliable readout to assess the back-transport of exogenously provided sterols from the plasma membrane to the endoplasmic reticulum. Structure/function analysis has revealed that the bulk membrane function of the fungal ergosterol can be provided by structurally related sterols, including the mammalian cholesterol. Foreign sterols, however, are subject to a lipid quality control cycle in which the sterol is reversibly acetylated. Because acetylated sterols are efficiently excreted from cells, the substrate specificity of the deacetylating enzymes determines which sterols are retained. Membrane-bound acetylated sterols are excreted by the secretory pathway, more soluble acetylated sterol derivatives such as the steroid precursor pregnenolone, on the other hand, are excreted by a pathway that is independent of vesicle formation and fusion. Further analysis of this lipid quality control cycle is likely to reveal novel insight into the mechanisms that ensure sterol homeostasis in eukaryotic cells. Article from a special issue on Steroids and Microorganisms.  相似文献   

17.
Insects are unable to synthesize sterols and require exogenous sterol sources for their normal development and reproduction. A few exceptions are insects associated with symbiotic yeasts or fungi. We analyzed sterols by GC-MS in two anobiid beetles (Lasioderma serricorne and Stegobium paniceum), their intracellular yeast-like symbiotes (YLS), and their diets in order to clarify the sterols synthesized by YLS and the metabolic pathways of the sterols in the beetles. Several C(27), C2(8), and C(29) saturated and unsaturated sterols were identified; the predominant sterols were cholesterol and 7-dehydrocholesterol in the anobiid beetles and ergosterol in the YLS. Most sterols detected in YLS were those known in the late pathway of the ergosterol biosynthesis in yeasts and most of the sterols in the beetles appear to be intermediate metabolites from YLS sterols to 7-dehydrocholesterol. The anobiid beetles appear to use ergosterol and 5-dihydroergosterol as sources for 7-dehydrocholesterol.  相似文献   

18.
Phycomyces is a fungal producer of beta-carotene and other beneficial metabolites. Several erg mutants of Phycomyces, originally selected to study the effects of membrane alteration on physiological responses, have now been used to gain information about sterol biosynthesis in filamentous fungi. One mutant, H23, and its progeny were found to be blocked at episterol C-5 dehydrogenase and did not produce ergosterol or any other sterol with a conjugated Delta(5,7) diene system. This mutant showed abnormal phototropism, which was correlated with the altered sterol composition. Another mutant, H25, seems to be a regulatory mutant. All analyzed mutants synthesized ergosta-7,22,24(28)-trien-3beta-ol, demonstrating for the first time that the sterol C-22 dehydrogenase of Phycomyces is capable of recognizing sterols with a 24(28) unsaturated side chain. New evidence regarding the biogenesis of neoergosterol and phycomysterols, the potential sparking function of cholesterol, as well as the regulation of sterol biosynthesis in this fungus is also reported. Given these results, a pathway for sterol biosynthesis in Phycomyces is proposed.  相似文献   

19.
20.
Saccharomyces cerevisiae, grown aerobically or anaerobically under conditions which induce a requirement for a sterol and an unsaturated fatty acid, synthesized approximately the same amounts of neutral lipid and intracellular low-density vesicles, although the neutral lipids in aerobically-grown cells contained more esterified sterol and less triacylglycerol than those in anaerobically-grown cells. Kluyveromyces fragilis synthesized much less neutral lipid and a smaller quantity of low-density vesicles than S. cerevisiae whether grown at 30°C (generation time 1.1 h) or 20°C (generation time 2.1 h). Both yeasts synthesized highly saturated triacylglycerols, relatively unsaturated phospholipids, and esterified sterols with an intermediate degree of unsaturation irrespective of the conditions under which they were grown. Free sterols in the yeasts were rich in ergosterol and 22(24)-dehydroergosterol, while the esterified sterol fractions were richer in zymosterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号