首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The two factors that determine plant migration rates – seed dispersal and population growth – are generally treated independently, despite the fact that many animals simultaneously enhance plant migration rate via seed dispersal, and decrease it via negative effects of herbivory on population growth. Using extensive empirical data, we modelled the antagonistic effects of seed dispersal and herbivory by white-tailed deer on potential migration rates of Trillium grandiflorum , a forest herb in eastern North America. This novel antagonistic interaction is illustrated by maximum migration rates occurring at intermediate, but low herbivory (< 15%). Assuming herbivory < 20% and favourable conditions for population growth during post-glacial migration, seed dispersal by deer can explain rates of migration achieved in the past, in contrast to previous models of forest herb migration. However, relatively unfavourable conditions for population growth and increasingly intense herbivory by deer may compromise plant migration in the face of present and future climate change.  相似文献   

2.
Over‐grazing or browsing by large herbivores may result in the loss of individual plant species or entire plant communities. Restoration schemes often involve exclusion of large mammals, but the resulting changes in vegetation may alter other important ecological processes such as regeneration, via changes in microsite availability for seed germination or increases in populations of seedling predators. Working within a large fenced area from which large mammals were excluded, we experimentally tested the effects of microsite, small herbivores, and their interactions on post‐dispersal seed and early seedling mortality of one nationally scarce (Salix arbuscula) and one nationally rare (S. lapponum) species of montane willow. Seeds were sown in three different microsites: natural vegetation, mown vegetation (mimicking grazed sward), and bare ground. Small exclosures and slug pellets were used to examine the effects of small mammal and slug predation, respectively. Survival of seedlings was monitored during the summer following planting. The presence of bare ground, rather than the absence of herbivores, was of over‐riding importance for early seedling survival and establishment. Protecting seedlings from small mammals made no difference to the levels of survival; however, protecting seedlings from slugs (Arion spp.) resulted in approximately 45% of seedlings surviving until the end of the summer compared to only 30% when seedlings were available to slugs. Although excluding large herbivores may increase seed production of existing individuals, the impacts of changes to plant communities on processes such as regeneration need to be considered if restoration projects are to be fully successful.  相似文献   

3.
Herbivores can have strong deleterious effects on vital rates (growth, reproduction, and survival) and thus negatively impact the population dynamics of plant species. In practice, however, these effects might be strongly correlated, for example as a result of tradeoffs between vital rates. To get better insights into the effects of herbivory on the population dynamics of the long‐lived grassland plant Primula veris population projection matrices were constructed from demographic data collected between 1999 and 2008 (nine annual transitions). Data were collected in two large grassland populations, each of which was subjected to two treatments (grazing by cattle versus a mowing treatment), yielding a total of 36 matrices. We applied a lower‐level vital rate life table response experiment (LTRE) using the small noise approximation (SNA) of the stochastic population growth rate to disentangle the contributions of changes in mean vital rates, variability in vital rates, correlations between vital rates and vital rate elasticities to the difference in the stochastic growth rate. Stochastic growth rates (a= log λS) were significantly lower in grazed than in mown plots (a= 0.0185 and 0.1019, respectively). SNA LTRE analysis showed that contributions of mean vital rates by far made the largest contribution to the observed difference in a between grazed and control plots. In particular, changes in sexual reproduction rates made the largest contributions to lower the stochastic growth rate in grazed plots: both adult flowering probabilities and flower and seed production were importantly lower in grazed populations, but these negative effects were largely buffered by increased establishment and seedling survival rates. Among the stochastic terms of the SNA decomposition, contributions of covariance and correlations between vital rates had the largest impact, whereas contributions of elasticities were smaller. The strongest correlation driver was the association between adult survival and seedling establishment, suggesting that environmental conditions favouring adult survival also are beneficial for seedling establishment. Overall, our results show that herbivory had a strong negative effect on the long‐term population growth rate of P. veris that was primarily mediated by differences in fecundity (flower and seed production) and germination.  相似文献   

4.
Wildlife water development can be an important habitat management strategy in western North America for many species, including both pronghorn (Antilocapra americana) and mule deer (Odocoileus hemionus). In many areas, water developments are fenced (often with small-perimeter fencing) to exclude domestic livestock and feral horses. Small-perimeter exclosures could limit wild ungulate use of fenced water sources, as exclosures present a barrier pronghorn and mule deer must negotiate to gain access to fenced drinking water. To evaluate the hypothesis that exclosures limit wild ungulate access to water sources, we compared use (photo counts) of fenced versus unfenced water sources for both pronghorn and mule deer between June and October 2002–2008 in western Utah. We used model selection to identify an adequate distribution and best approximating model. We selected a zero-inflated negative binomial distribution for both pronghorn and mule deer photo counts. Both pronghorn and mule deer photo counts were positively associated with sampling time and average daily maximum temperature in top models. A fence effect was present in top models for both pronghorn and mule deer, but mule deer response to small-perimeter fencing was much more pronounced than pronghorn response. For mule deer, we estimated that presence of a fence around water developments reduced photo counts by a factor of 0.25. We suggest eliminating fencing of water developments whenever possible or fencing a big enough area around water sources to avoid inhibiting mule deer. More generally, our results provide additional evidence that water development design and placement influence wildlife use. Failure to account for species-specific preferences will limit effectiveness of management actions and could compromise research results. © 2011 The Wildlife Society.  相似文献   

5.
Herbivores have diverse impacts on their host plants, potentially altering survival, growth, fecundity, and other aspects of plant performance. Especially for longer-lived plant species, the effects of a single herbivore species can vary markedly throughout the life of the host plant. In addition, the effects of herbivory during any given life history stage of a host plant may also vary considerably with different types of herbivores. To investigate the effects of herbivory by black-tailed deer (Odocoileus hemionus columbianus) and snails (Helminthoglypta arrosa and Helix aspersa) on a nitrogen-fixing shrub, Lupinus chamissonis, we established three exclosure experiments in a sand dune system on the coast of northern California. These experiments documented that deer browsing significantly reduced the volume and growth rate of lupines in the seedling and juvenile life stages. Since plant volume was strongly correlated with aboveground dry biomass for lupines, such herbivore-induced reductions in volume should translate into losses of aboveground biomass. Deer browsing also significantly altered the likelihood of attack by and density of a leaf-galling cecidomyid fly (Dasineura lupinorum), suggesting that a vertebrate herbivore indirectly affected an invertebrate herbivore in this system. Although deer did not significantly affect the survival of lupine seedlings and juveniles, individuals protected from deer had consistently greater survival in the two separate experiments. Our results revealed that snails did not have a significant effect on the survival or growth of juvenile plants, despite being common on and around lupines. An exclosure experiment revealed that herbivory by deer significantly reduced the shoot lengths of mature shrubs, but led only to a minimal reduction in growth rates. In addition, we found that browsed shrubs had significantly greater inflorescence production, but also produced individual seeds with significantly reduced mass. Collectively, these data indicate that deer and snails have widely differing effects on their shared host plant; browsing by deer indirectly affects insect herbivores, and the impacts of deer change markedly with the life history stage of their host plant.  相似文献   

6.
L. H. Fraser  E. B. Madson 《Oikos》2008,117(7):1057-1063
Seed limitation may prevent successful restoration of native plant communities. Seed addition is a common restoration practice but the role of small mammals in affecting seedling recruitment is not well understood. The purpose of this investigation was to test the relative effect of seed introduction in combination with small mammal and bird exclosures in an Ohio wet meadow. We ask whether the ambient population of Microtus pennsylvanicus (1) alters species composition (e.g. forb/grass/sedge, invasive, non-native); (2) influences plant diversity; and (3) reduces the effect of increasing local plant richness through seed introductions. We established a 2×2 factorial design including a seed addition treatment (0 and 20 seed species added) and an exclosure treatment (open and fenced to exclude all mammalian and bird herbivores and granivores). Seeds from twenty native species were selected to represent a broad range of plant life forms typically found in temperate eastern North American wet meadow communities. All species were obligate or facultative wetland species with forbs, grasses and sedges represented. We found that forb species increased inside exclosures, especially in the seed addition treatment. We also found that relative biomass of invasive species was reduced in exclosures and with seed addition. Species richness increased with seed addition; however, exclosures significantly increased species richness and diversity, particularly of those species that were experimentally introduced by seed. Our results support the seed limitation hypotheses. It is also evident that seed and seedling predation are important factors that can control wet meadow community composition and diversity.  相似文献   

7.
Lupines (Lupinus lepidus var. lobbii), the earliest plant colonists of primary successional habitats at Mount St. Helens, were expected to strongly affect successional trajectories through facilitative effects. However, their effects remain localized because initially high rates of reinvasive spread were short lived, despite widespread habitat availability. We experimentally tested whether insect herbivores, by reducing plant growth and fecundity at the edge of the expanding lupine population, could curtail the rate of reinvasion and whether those herbivores had comparable impacts in the older, more successionally advanced core region. We found that removing insect herbivores increased both the areal growth of individual lupine plants and the production of new plants in the edge region, thereby accelerating the lupine's intrinsic rate of increase at the front of the lupine reinvasion. We found no such impacts of herbivory in the core region, where low plant quality or a complex of recently arrived natural enemies may hold herbivores in check. In the context of invasion theory, herbivore-mediated decreases in lupine population growth rate in the edge region translate into decreased rates of lupine spread, which we quantify here using diffusion models. In the Mount St. Helens system, decreased rate of lupine reinvasion will result in reductions in rates of soil formation, nitrogen input, and entrapment of seeds and detritus that are likely to postpone or alter trajectories of primary succession. If the type of spatial subtleties in herbivore effects we found here are common, with herbivory focused on the edge of an expanding plant population and suppressed or ineffective in the larger, denser central region (where the plants might be more readily noticed and studied), then insect herbivores may have stronger impacts on the dynamics of primary succession and plant invasions than previously recognized.  相似文献   

8.
Smit  R.  Bokdam  J.  den Ouden  J.  Olff  H.  Schot-Opschoor  H.  Schrijvers  M. 《Plant Ecology》2001,155(1):119-127
In this study we analysed the effects of large herbivores on smallrodent communities in different habitats using large herbivore exclosures. Westudied the effects of three year grazing introduction by red deer(Cervus elaphus L.) in previously ungrazed pine and oakwoodland and the exclusion of grazing by red deer, roe deer(Capreoluscapreolus L.) and mouflon (Ovis ammon musiminL.) in formerly, heavily grazed pine woodland and heathland. At eight exclosuresites within each habitat type, small rodents were captured with live trapsusing trapping grids. At each trapping grid, seed plots of beechnuts(Fagus sylvatica L.) and acorns (Quercusrobur L.) were placed to measure seed predation by rodents.Exclusion of grazing by large herbivores in formerly, heavily grazedhabitats had a significant effect on small rodent communities. Insideexclosureshigher densities of mainly wood mice (Apodemus sylvaticusL.) and field voles (Microtus agrestis L.) were captured.Introduction of grazing by red deer appeared to have no significant negativeeffects on small rodent communities. The seed predation intensity of beechnutsand acorns by small rodents was significantly higher in ungrazed situations,particularly in habitats that were excluded from grazing. The differencesbetween grazing introduction and exclusion effects on small rodent communitiescan be explained by differences in vegetation structure development. Therecovery of heavily browsed understory vegetation after large herbivore grazingexclusion proceeded faster than the understory degradation due to grazingintroduction. Small rodents depend on structural rich vegetations mainly forshelter. We conclude that large herbivores can have significant effects onvegetation dynamics not only via direct plant consumption but also throughindirect effects by reducing the habitat quality of small rodent habitats.  相似文献   

9.
Browsing by exotic mule deer on Santa Catalina Island (SCI) off the coast of southern California may diminish the post-fire resilience of native shrublands. To assess this, deer exclosures were established following a wildfire to monitor post-fire recovery of three dominant, native shrub species (Heteromeles arbutifolia, Rhus integrifolia, and Rhamnus pirifolia). Post-fire resprout growth, mortality, and tissue water status as well as pre- and post-fire shrub density and cover were measured inside and outside of deer exclosures. We found that deer browsing significantly limited post-fire resprout growth and led to increased mortality of resprouting H. arbutifolia shrubs (88 % mortality outside compared to 11 % inside exclosures). Post-fire resprouts maintained favorable water status during the study despite drought conditions, indicating that water stress was not a proximate cause of resprout mortality. Deer browsing resulted in a >93 % reduction in canopy coverage of dominant shrub species. The dramatic reduction of native shrubs at this site may create opportunities for displacement by exotic species, resulting in eventual vegetation-type conversion. The observed link between intense browsing and post-fire shrub mortality provides much needed information concerning the environmental impact of exotic deer on SCI and illustrates the interaction between exotic herbivores and fire on an island system.  相似文献   

10.
Satu Ramula 《Oecologia》2014,174(4):1255-1264
Invaders generally show better individual performance than non-invaders and, therefore, vital rates (survival, growth, fecundity) could potentially be used to predict species invasiveness outside their native range. Comparative studies have usually correlated vital rates with the invasiveness status of species, while few studies have investigated them in relation to population growth rate. Here, I examined the influence of five vital rates (plant establishment, survival, growth, flowering probability, seed production) and their variability (across geographic regions, habitat types, population sizes and population densities) on population growth rate (λ) using data from 37 populations of an invasive, iteroparous herb (Lupinus polyphyllus) in a part of its invaded range in Finland. Variation in vital rates was often related to habitat type and population density. The performance of the populations varied from declining to rapidly increasing independently of habitat type, population size or population density, but differed between regions. The population growth rate increased linearly with plant establishment, and with the survival and growth of vegetative individuals, while the survival of flowering individuals and annual seed production were not related to λ. The vital rates responsible for rapid population growth varied among populations. These findings highlight the importance of both regional and local conditions to plant population dynamics, demonstrating that individual vital rates do not necessarily correlate with λ. Therefore, to understand the role of individual vital rates in a species ability to invade, it is necessary to quantify their effect on population growth rate.  相似文献   

11.
The impact of mutualists on a partner’s demography depends on how they affect the partner’s multiple vital rates and how those vital rates, in turn, affect population growth. However, mutualism studies rarely measure effects on multiple vital rates or integrate them to assess the ultimate impact on population growth. We used vital rate data, population models and simulations of long-term population dynamics to quantify the demographic impact of a guild of ant species on the plant Ferocactus wislizeni. The ants feed at the plant’s extrafloral nectaries and attack herbivores attempting to consume reproductive organs. Ant-guarded plants produced significantly more fruit, but ants had no significant effect on individual growth or survival. After integrating ant effects across these vital rates, we found that projected population growth was not significantly different between unguarded and ant-guarded plants because population growth was only weakly influenced by differences in fruit production (though strongly influenced by differences in individual growth and survival). However, simulations showed that ants could positively affect long-term plant population dynamics through services provided during rare but important events (herbivore outbreaks that reduce survival or years of high seedling recruitment associated with abundant precipitation). Thus, in this seemingly clear example of mutualism, the interaction may actually yield no clear benefit to plant population growth, or if it does, may only do so through the actions of the ants during rare events. These insights demonstrate the value of taking a demographic approach to studying the consequences of mutualism.  相似文献   

12.
Investigating the impact of ecological factors on sex‐ and age‐specific vital rates is essential to understand animal population dynamics and detect the potential for interactions between sympatric species. We used block count data and autoregressive linear models to investigate variation in birth rate, kid survival, female survival, and male survival in a population of Alpine chamois Rupicapra rupicapra rupicapra monitored over 27 years within the Stelvio National Park, Central Italian Alps, as function of climatic variables, density dependence, and interspecific competition with red deer Cervus elaphus. We also used path analysis to assess the indirect effect of deer abundance on chamois growth rate mediated by each demographic parameter. Based on previous findings, we predicted that birth rate at [t] would negatively relate to red deer abundance at year [t − 1]; survival rates between [t] and [t + 1] would negatively relate to red deer abundance at year [t − 1] and to the interactive effect of winter precipitation at [t + 1] and chamois density at [t]. Our results showed that birth rate was positively related to spring–summer precipitation in the previous year, but this effect was hampered by increasing red deer abundance. Kid and female survival rates were negatively related to the combined effect of chamois abundance and winter precipitation. Male and female survival rates were negatively related to lagged red deer abundance. The path analysis supported a negative indirect effect of red deer abundance on chamois growth rate mediated by birth rate and female survival. Our results suggest that chamois population dynamics was largely explained by the synergistic effect of density dependence and winter harshness, as well as by interspecific competition with red deer, whose effects were seemingly stronger on the kid–female segment of the population.  相似文献   

13.
  1. White-tailed deer (Odocoileus virginianus Zimmermann) and insect pests negatively affect soybean production; however, little is known about how these herbivores potentially interact to affect soybean yield. Previous studies have shown deer browse on non-crop plants affects insect density and insect-mediated leaf damage, which together reduce plant reproductive output. In soybeans, reproductive output is influenced by direct and indirect interactions of different herbivores.
  2. Here, we quantified indirect interactions between two groups of herbivores (mammals and insects) and their effects on soybean growth and yield. We examined responses of insect pest communities along a gradient of deer herbivory (29% to 49% browsed stems) in soybean monocultures.
  3. Structural equation models showed that deer browse had direct negative effects on soybean plant height and yield. Deer browse indirectly decreased insect-mediated leaf damage by reducing plant height. Deer browse also indirectly increased pest insect abundance through reductions in plant height. Similarly, deer herbivory had an indirect positive effect on leaf carbon: nitrogen ratios through changes in plant height, thereby decreasing leaf nutrition.
  4. These results suggest that pest insect abundance may be greater on soybean plants in areas of higher deer browse, but deer browse may reduce insect herbivory through reduced leaf nutrition.
  相似文献   

14.
This study uses data from repeatedly measured forest monitoring plots (20 × 20 m) (n = 32) and nine ungulate exclosures (paired fenced and unfenced plots; 20 × 20 m) to show the effects of introduced ungulates on tree regeneration in Pureora Forest Park, central North Island, between 974 and 2002. Results show that introduced ungulates, particularly red deer (Cervus elaphus scoticus), have suppressed the regeneration of hardwood species such as Coprosma grandifolia, Elaeocarpus dentatus, Griselinia littoralis, Melicytus ramiflorus, Schefflera digitata and Weinmannia racemosa. These species were only common as saplings and small trees in the complete absence of ungulate browsing. The results of this study suggest that red deer will need to be culled to low densities to assure regeneration of palatable tree species in Pureora Forest.  相似文献   

15.
While floral herbivores and predispersal seed predators often reduce plant reproductive output, their role in limiting plant fitness and population growth is less clear, especially for iteroparous perennial plant species. In this study we experimentally excluded floral herbivores and predispersal seed predators (insecticide spray versus water control) over a 2-year period to examine the effect of inflorescence-feeding insects on levels of seed production, seedling emergence, and juvenile establishment for Liatris cylindracea, an iteroparous perennial plant. In addition, we collected detailed demographic data on all life stage transitions for an additional set of individuals in the same population over 4 years. We used the experimental and demographic data to construct stochastic individual-based simulations to evaluate the overall effect of inflorescence-feeding insects on adult recruitment per maternal plant (a fitness component) and population growth rate. The insect exclusion experiments showed that damage due to insects decreased seed production, seedling emergence, and juvenile establishment for both years' experiments. These results indicate that recruitment was seed-limited through juvenile establishment, and that inflorescence-feeding insects influenced the degree of seed limitation. Results of the individual-based simulation models, which included individual demographic and temporal stochasticity, showed that inflorescence-feeding insects negatively affected the number of adult offspring per maternal plant recruited into the population and population growth rate for both years' experiments. Taken together, the results of the experimental exclusions and the individual-based models indicate that inflorescence-feeding insects can influence population growth rate, and have the potential to act as a selective force for the evolution of traits in this plant species.  相似文献   

16.
Two venerable hypotheses, widely cited as explanations for either the success or failure of introduced species in recipient communities, are the natural enemies hypothesis and the biotic resistance hypothesis. The natural enemies hypothesis posits that introduced organisms spread rapidly because they are liberated from their co‐evolved predators, pathogens and herbivores. The biotic resistance hypothesis asserts that introduced species often fail to invade communities because strong biotic interactions with native species hinder their establishment and spread. We reviewed the evidence for both of these hypotheses as they relate to the importance of non‐domesticated herbivores in affecting the success or failure of plant invasion.
To evaluate the natural enemies hypothesis, one must determine how commonly native herbivores have population‐level impacts on native plants. If native herbivores seldom limit native plant abundance, then there is little reason to think that introduced plants benefit from escape from these enemies. Studies of native herbivore‐native plant interactions reveal that plant life‐history greatly mediates the strength with which specialist herbivores suppress plant abundance. Relatively short‐lived plants that rely on current seed production for regeneration are most vulnerable to herbivory that reduces seed production. As such, these plants may gain the greatest advantage from escaping their specialist enemies in recipient communities. In contrast, native plants that are long lived or that possess long‐lived seedbanks may not be kept “in check” by native herbivores. For these species, escape from native enemies may have little to do with their success as exotics; they are abundant both where they are native and introduced.
Evidence for native herbivores providing biotic resistance to invasion by exotics is conflicting. Our review reveals that: 1) introduced plants can attract a diverse assemblage of native herbivores and that 2) native herbivores can reduce introduced plant growth, seed set and survival. However, the generality of these impacts is unclear, and evidence that herbivory actually limits or reduces introduced plant spread is scarce. The degree to which native herbivores provide biotic resistance to either exotic plant establishment or spread may be greatly determined by their functional and numerical responses to exotic plants, which we know little about. Generalist herbivores, through their direct effects on seed dispersal and their indirect effects in altering the outcome of native–non‐native plant competitive interactions, may have more of a facilitative than negative effect on exotic plant abundance.  相似文献   

17.
Deveny AJ  Fox LR 《Oecologia》2006,150(1):69-77
Interactions between herbivores and seed predators may have long-term consequences for plant populations that rely on persistent seed banks for recovery after unpredictable fires. We assessed the effects of browsing by deer and seed predation by rodents, ants and birds on the densities of seeds entering the seed bank of Ceanothus cuneatus var. rigidus, a maritime chaparral shrub in coastal California. Ceanothus produced many more seeds when protected from browsers in long-term experimental exclosures than did browsed plants, but the seed densities in the soil beneath browsed and unbrowsed Ceanothus were the same at the start of an intensive one-year study. The density of seeds in the soil initially increased in both treatments following summer seed drop: while densities returned to pre-drop levels within a few weeks under browsed plants, soil seed densities remained high for 5–8 months beneath unbrowsed plants. Rodent abundance (especially deer mice) was higher near unbrowsed plants than >30 m away, and rodents removed Ceanothus seeds from dishes in the experimental plots. At least in the short term, rodent density and rates of seed removal were inversely related to the intensity of browsing. Our data have management implications for maintaining viable Ceanothus populations by regulating the intensity of browsing and the timing, intensity and frequency of fires.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

18.
Pugliese A  Rosà R 《Parasitology》2008,135(13):1531-1544
Deer are important blood hosts for feeding Ixodes ricinus ticks but they do not support transmission of many tick-borne pathogens, so acting as dead-end transmission hosts. Mathematical models show their role as tick amplifiers, but also suggest that they dilute pathogen transmission, thus reducing infection prevalence. Empirical evidence for this is conflicting: experimental plots with deer removal (i.e. deer exclosures) show that the effect depends on the size of the exclosure. Here we present simulations of dynamic models that take into account different tick stages, and several host species (e.g. rodents) that may move to and from deer exclosures; models were calibrated with respect to Ixodes ricinus ticks and tick-borne encephalitis (TBE) in Trentino (northern Italy). Results show that in small exclosures, the density of rodent-feeding ticks may be higher inside than outside, whereas in large exclosures, a reduction of such tick density may be reached. Similarly, TBE prevalence in rodents decreases in large exclosures and may be slightly higher in small exclosures than outside them. The density of infected questing nymphs inside small exclosures can be much higher, in our numerical example almost twice as large as that outside, leading to potential TBE infection risk hotspots.  相似文献   

19.
Invasive species are a major threat to native communities and ecosystems worldwide. One factor frequently invoked to explain the invasiveness of exotic species is their release in the new habitat from control by natural enemies (enemy-release hypothesis). More recently, interactions between exotic species have been proposed as a potential mechanism to facilitate invasions (invasional meltdown hypothesis). We studied the effects of introduced deer on native plant communities and exotic plant species on an island in Patagonia, Argentina using five 400 m2 exclosures paired with control areas in an Austrocedrus chilensis native forest stand. We hypothesized that introduced deer modify native understory composition and abundance and facilitate invasion of introduced tree species that have been widely planted in the region. After 4 years of deer exclusion, native Austrocedrus and exotic Pseudotsuga menziesii tree sapling abundances are not different inside and outside exclosures. However, deer browsing has strongly inhibited growth of native tree saplings (relative height growth is 77% lower with deer present), while exotic tree sapling growth is less affected (relative height growth is 3.3% lower). Deer significantly change abundance and composition of native understory plants. Cover of native plants in exclosures increased while cover in controls remained constant. Understory composition in exclosures after only 4 years differs greatly from that in controls, mainly owing to the abundance of highly-browsed native species. This study shows that introduced deer can aid the invasion of non-native tree species through negatively affecting native plant species.  相似文献   

20.
Mutualistic and antagonistic interactions with animals are known to influence the performance of plants in many ways. Much less is known about how such effects are influenced by the environment and how they translate into effects on plant population dynamics. In this study, we first quantified how pre-dispersal seed predation in the perennial herb Primula veris changes along a continuous gradient of canopy cover. We then used a deterministic demographic modeling approach to investigate how seed predation may influence population growth rate (λ) and how effects depend on environmentally-induced variation in plant demography. Intensity of seed predation increased with the degree of canopy cover, while sensitivity of λ to changes in seed production decreased. This translated into non-linear effects of seed predation on λ along the canopy cover gradient. Despite seed predation rates being highest in closed habitats, the negative effect of seed predation on λ was lower here than in slightly more open habitats. Our results demonstrate that knowledge of the intensity of plant-herbivore interactions does not suffice to infer how animals influence the population dynamics of plants and their distribution. Plant demographic sensitivity and its dependence on the environment need also to be taken into account when assessing the importance of plant–animal interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号