首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
N2 fixation, measured as acetylene reduction, was studied in laboratory cultures and in natural assemblages (both as a mixed population and as individually picked colonies) of the heterocystous cyanobacteria Aphanizomenon sp. and Nodularia spp. from the Baltic Sea. During a diurnal cycle of alternating light and darkness, these organisms reduced acetylene predominantly during the period of illumination, although considerable activity was also observed during the dark period. In both laboratory cultures and natural populations N2 fixation was saturated below a photon flux density of 600 μm−2 s−1. In cyanobacterial blooms in the Baltic Sea, nitrogenase activity was mostly confined to the surface layers. Samples collected from greater depths did not possess the same capacity for acetylene reduction as samples from the surface itself, even when incubated at the photon flux density prevailing in surface waters. This suggests that, with respect to N2 fixation, Baltic cyanobacteria are adapted to the intensity of illumination that they are currently experiencing.  相似文献   

3.
The objective of this investigation was to examine the effect of an elevated atmospheric CO2 partial pressure ( p CO2) on the N-sink strength and performance of symbiotic N2 fixation in Trifolium repens L. cv. Milkanova. After initial growth under ambient p CO2 in a nitrogen-free nutrient solution, T. repens in the exponential growth stage was exposed to ambient and elevated p CO2 (35 and 60 Pa) and two levels of mineral N (N-free and 7·5 mol m–3 N) for 36 d in single pots filled with silica sand in growth chambers. Elevated p CO2 evoked a significant increase in biomass production from day 12 after the start of CO2 enrichment. For plants supplied with 7·5 mol m–3 N, the relative contribution of symbiotically fixed N (%Nsym) as opposed to N assimilated from mineral sources (15N-isotope-dilution method), dropped to 40%. However, in the presence of this high level of mineral N, %Nsym was unaffected by atmospheric p CO2 over the entire experimental period. In plants fully dependent on N2 fixation, the increase in N yield reflects a stimulation of symbiotic N2 fixation that was the result of the formation of more nodules rather than of higher specific N2 fixation. These results are discussed with regard to physiological processes governing symbiotic N2 fixation and to the response of symbiotic N2 fixation to elevated p CO2 in field-grown T. repens .  相似文献   

4.
The effects of Bradyrhizobium japonicum inoculation and pre-plant additions of N fertilizer on soybean ( Glycine max L. Merrill) yields and levels of N2 fixation were studied under field conditions at two sites in Thailand. Bacterial inoculants were composed of B. japonicum strains selected for high N2 fixation levels in Thai soils. Nitrogen fertilizer addition rates used were from 0 to 250 kg N/ha in 50 kg N/ha increments. At the Chiang Mai site in northern Thailand, bacterial inoculation increased nodule weights on plants receiving 100 kg N/ha or less. Increases in nodule parameters due to inoculation were evident at 45 d after planting (DAP) but disappeared by 60 DAP. Addition of N fertilizers decreased the incidence of nodulation and sap ureide contents and decreased the contribution of N2 fixation to the N content of plants at maturity as measured by N-15 isotope dilution methods. At the Kampang Saen site in central Thailand, bacterial inoculation had significant positive effects on nodule numbers and weights, ARA, sap ureide contents and levels of N2 fixed as measured by N-15 isotope dilution methods. Addition of N fertilizers at this site also reduced the effectiveness of N2-fixing symbioses. It was concluded that small additions of N fertilizer added before planting did not significantly decrease N2 fixation levels, but did have a significant positive effect on plant growth. Larger N additions would reduce N2 fixation levels in excess of the benefits of adding more N in chemical form.  相似文献   

5.
Symploca PCC 8002 Kützing is a filamentous cyanobacterium that lacks the specialized cells, known as heterocysts, that protect nitrogenase from O2 in most aerobic N2-fixing cyanobacteria. Nevertheless, Symploca is able to carry out N2 fixation in the light under aerobic conditions. When cultures were grown under light/dark cycles, nitrogenase activity commenced and increased in the light phase and declined towards zero in the dark. Immunolocalization of dinitrogenase reductase in sectioned Symploca trichomes showed that the enzyme was present only in 9% of the cells. These cells lacked any obvious mechanical protection against atmospheric O2 and their ultrastructural characteristics were similar to those of cells that did not contain any dinitrogenase reductase. The nitrogenase-containing cells possessed carboxysomes that were rich in ribulose-1,5-bisphosphate carboxylase/oxygenase and phycoerythrin, a light harvesting pigment of PS II. This indicates that these cells had a capacity for both N2 fixation and photosynthesis. The significance of the localization pattern for dinitrogenase reductase is discussed in the context of N2 fixation in Symploca PCC 8002.  相似文献   

6.
Abstract: Long-term (14 days) carbon costs of N2 fixation were studied in pot trials. For this purpose the CO2 release from the root space of nodulated and non-nodulated (urea nourished) Vicia faba L. and Pisum sativum L. plants was compared and related to the amount of fixed or assimilated N. Additional measurements of shoot CO2 exchange and dry matter increment were carried out in order to calculate the overall carbon balance. The carbon costs for N2 fixation in Vicia faba 1. (2.87 mg C/mg NfiX) were higher than in Pisum sativum L. (2.03 mg C/mg Nfix). However, the better carbon efficiency in Pisum sativum 1. did not lead to a better growth performance compared to Vicia faba L. Vicia faba L. compensated for the carbon and energy expenditure by more intensive photosynthesis in the N2-fixing treatment. This was not the case with Pisum sativum L., where the carbon balance indicates that the carbon costs of N2 fixation restricted root growth. It is proposed that low carbon costs for N2 fixation indicate an adaptation to a critical carbon supply of roots and nodules, e.g., during the pod-filling of grain legumes.  相似文献   

7.
Mixed cultures of the cellulolytic fungus Trichoderma harzianum with the anaerobic diazotroph Clostridium butyricum were shown to co-operatively degrade cellulose and utilize the degradation products for N2 fixation. Cellulose degradation and N2 fixation were stimulated by small (0.1 mg/ml) additions of (NH4)2SO4. The (NH42SO4 stimulates cellulolysis thereby increasing the supply of cellulose degradation products to the diazotroph. In aerobic environments the anaerobe depends on the respiration of the aerobe to create anaerobic microsites. The N source increased O2 uptake by the fungus increasing the number of sites suitable for the development of the anaerobe. Stimulation in the growth of T. harzianum by (NH42SO4 resulted in increased growth and N2 fixation by Cl. butyricum.  相似文献   

8.
Interactive effects of elevated atmospheric CO2 and arbuscular mycorrhizal (AM) fungi on biomass production and N2 fixation were investigated using black locust ( Robinia pseudoacacia ). Seedlings were grown in growth chambers maintained at either 350 μmol mol−1 or 710 μmol mol−1 CO2. Seedlings were inoculated with Rhizobium spp. and were grown with or without AM fungi. The 15N isotope dilution method was used to determine N source partitioning between N2 fixation and inorganic fertilizer uptake. Elevated atmospheric CO2 significantly increased the percentage of fine roots that were colonized by AM fungi. Mycorrhizal seedlings grown under elevated CO2 had the greatest overall plant biomass production, nodulation, N and P content, and root N absorption. Additionally, elevated CO2 levels enhanced nodule and root mass production, as well as N2 fixation rates, of non- mycorrhizal seedlings. However, the relative response of biomass production to CO2 enrichment was greater in non-mycorrhizal seedlings than in mycorrhizal seedlings. This study provides strong evidence that arbuscular mycorrhizal fungi play an important role in the extent to which plant nutrition of symbiotic N2-fixing tree species is affected by enriched atmospheric CO2.  相似文献   

9.
Vibeke Holter 《Ecography》1984,7(2):165-170
Nitrogen fixation activity was determined for Lotus tenuis. Medicago lupulina and Trifolium pratense . The three species grew in clones in grassland in an area reclaimed from brackish water in the 1940s. The N2[C2H2]-fixation was measured in soil cores throughout 1974 and 1975. From cores taken in dense and uniform stands of the species, the yearly N2[C2H2]-fixation at maximum cover was estimated. L. tenuis fixed about 4 g N m−2 yr−1 (area with max. cover 130%), i.e. 30–56% of its requirement. Both M. lupulina and T. pratense fixed about 7 g N m−2 yr−1 (maximum cover 37% and 80%) i.e. 67% of their N-requirement. Average N2[C2H2]-fixation for the whole area was 0.4 g N m−2 yr−1, considerably less than the N-addition through rainfall.  相似文献   

10.
Biological N2 fixation can fulfil the N demand of legumes but may cost as much as 14% of current photosynthate. This photosynthate (C) sink strength would result in loss of productivity if rates of photosynthesis did not increase to compensate for the costs. We measured rates of leaf photosynthesis, concentrations of N, ureides and protein in leaves of two soybean cultivars ( Glycine max [L.] Merrill) differing in potential shoot biomass production, either associated with Bradyrhizobium japonicum strains, or amended with nitrate. Our results show that the C costs of biological N2 fixation can be compensated by increased photosynthesis. Nodulated plants shifted N metabolism towards ureide accumulation at the start of the reproductive stage, at which time leaf N concentration of nodulated plants was greater than that of N-fertilized plants. The C sink strength of N2 fixation increased photosynthetic N use efficiency at the beginning of plant development. At later stages, although average protein concentrations were similar between the groups of plants, maximum leaf protein of nodulated plants occurred a few days later than in N-fertilized plants. The chlorophyll content of nodulated plants remained high until the pod-filling stage, whereas the chlorophyll content of N-fertilized plants started to decrease as early as the flowering stage. These results suggest that, due to higher C sink strength and efficient N2 fixation, nodulated plants achieve higher rates of photosynthesis and have delayed leaf senescence.  相似文献   

11.
The nitrogen use efficiencies (NUE) of N2 fixation, primary NH 4+ assimilation and NO 3 assimilation are compared. The photon and water costs of the various biochemical and transport processes involved in plant growth, N-assimilation, pH regulation and osmolarity generation, per unit N assimilated are respectively likely to be around 5 and 7% greater for N2 fixation than for a combination of NH 4+ and root and shoot NO 3 assimilation as occurs with most crops. Studies on plant and rhizobial genes involved in nodulation and N2 fixation may lead to more rapid nodulation, production of more stress-tolerant N2 fixing systems and transfer of the hydrogenase system to rhizobium/legume symbioses which currently do not have this ability. The activity of an uptake hydrogenase is predicted to decrease the photon cost of diazotrophic plant growth by about 1%.  相似文献   

12.
Plant regulated aspects of nodulation and N2 fixation   总被引:1,自引:0,他引:1  
Abstract. Root nodule organogenesis is described. Plant regulated aspects of nodulation and N2 fixation are reviewed and discussed. Since the effective N2 fixing symbiosis requires the interaction of the host plant and bacterium in an appropriate environment (the rhizosphere and the root nodule) it is essential that research aimed at improving N2 fixation involve a knowledge and understanding of the plant genes that affect nodule development, growth, and function. Current knowledge of host plant genes involved in N2 fixation is summarized. Various experimental approaches to the study of the host plant's contribution to nodulation are noted. The functions of nodule specific proteins (nodulins) in symbiosis are delineated. Future areas of research are suggested.  相似文献   

13.
Addition of 2 mM nitrite or ammonium to aerobically incubated cultures of Gloeothece rapidly inhibited N2 fixation (measured as acetylene reduction). In contrast, 2 mM nitrate inhibited N2 fixation less rapidly and less extensively, and often temporarily stimulated nitrogenase activity. The inhibitory effects of both nitrate and ammonium could be prevented by addition of 3 mM L-methionine-DL-sulphoximine, suggesting that the true inhibitor of N2 fixation was an assimilatory product of ammonium rather than either ammonium or nitrate itself. The inhibition of N2 fixation by nitrite could not, however, be prevented by addition of L-methionine-DL- sulphoximine. On the other hand, nitrite (unlike nitrate and ammonium) did not inhibit N2 fixation in cultures incubated under a gas phase lacking oxygen. These findings suggest that the mechanism whereby nitrite inhibits N2 fixation in Gloeothece differs from that of either nitrate or ammonium. The inhibitory effect of nitrite on N2 fixation did not involve reduction of nitrite to nitric oxide, though nitric oxide was a potent inhibitor of nitrogenase activity in Gloeothece . Nitrate and nitrite inhibited the synthesis of nitrogenase in Gloeothece , while ammonium not only inhibited nitrogenase synthesis but also stimulated degradation of the enzyme. In addition, all three compounds favoured the appearance of the Fe-protein of nitrogenase in its larger, presumed inactive, form.  相似文献   

14.
The influence of P on N2 fixation and dry matter production of young pea ( Pisum sativum L. cv. Bodil) plants grown in a soil-sand mixture was investigated in growth cabinet experiments. Nodule dry weight, specific C2H2 reduction and P concentration in shoots responded to P addition before any growth response could be observed. The P concentration in nodules responded only slightly to P addition. A supply of P to P-deficient plants increased both the nodule dry weight, specific C2H2 reduction and P concentration in shoots relatively faster than it increased shoot dry weight and P concentration in nodules. Combined N applied to plants when N2 fixation had commenced, increased shoot dry weight only at the highest P levels. This indicates that the smaller plant growth at the low P levels did not result from N deficiency. The reduced nodulation and N2 fixation in P-deficient plants seem to be caused by impaired shoot metabolism and not by a direct effect of P deficiency of the nodules.  相似文献   

15.
Diazotrophic systems have developed a number of strategies to protect nitrogenase (N2ase; EC 1.18.6.1) from O2 excess and active-oxygen species (AOS). Protection against O2 excess is given by biochemical modifications of N2ase, increased rates of low-efficiency respiration, temporal segregation of N2 fixation and photosynthesis, physical barriers to O2 diffusion, and hemoglobins. On the other hand, AOS may originate from oxidation of N2ase components, ferredoxins, flavodoxins and hemoglobins; interaction among the AOS themselves, or between H2O2 and hemoglobins; and during reactions catalyzed by hydrogenase (EC 1.18.99.1), xanthine oxidase (EC 1.1.3.22) and uricase (EC 1.7.3.3). Active-oxygen species are scavenged enzymatically [superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6). peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11)] or through non-enzymic reaction with low-molecular-weight compounds (ascorbate, α-tocopherol, glutathione).  相似文献   

16.
Numerous biochemical and physiological studies have demonstrated the importance of ascorbate (ASC) as a reducing agent and antioxidant in higher plant metabolism. Of special note is the capacity of ASC to eliminate damaging activated oxygen species (AOS) including O2· and H2O2. N2-fixing legume nodules are especially vulnerable to oxidative damage because they contain large amounts of leghaemoglobin which produces AOS through spontaneous autoxidation; thus, ASC and other components of the ascorbate–reduced glutathione (ASC–GSH) pathway are critical antioxidants in nodules. In order to establish a meaningful correlation between concentrations of ASC and capacity for N2 fixation in legume root nodules, soybean ( Glycine max ) plants were treated with excess ASC via exogenous irrigation or continuous intravascular infusion through needles inserted directly into plant stems. Treatment with ASC led to striking increases in nitrogenase activity (acetylene reduction), nodule leghaemoglobin content, and activity of ASC peroxidase, a key antioxidant enzyme. The concentration of lipid peroxides, which are indicators of oxidative damage and onset of senescence, was decreased in ASC-treated nodules. These results support the conclusion that ASC is critical for N2 fixation and that elevated ASC allows nodules to maintain a greater capacity to fix N2 over longer periods.  相似文献   

17.
The effect of genetic factors in Rhizobium on host plant biomass production and on the carbon costs of N2 fixation in pea root nodules was studied. Nine strains of Rhizobium leguminosarum were constructed, each containing one of three symbiotic plasmids in combination with one of three different genomic backgrounds. The resulting strains were tested in symbiosis with plants of Pisum sativum using a flow-through apparatus in which nodule nitrogenase activity and respiration were measured simultaneously under steady state conditions. Nodules formed by strains containing the background of JI6015 had the lowest carbon costs of N2 fixation (7.10–8.10 μmol C/μmol N2), but shoot dry weight of those plants was also smaller than that of plants nodulated by strains with the background of B151 or JI8400. Nodules formed by these two strain types had carbon costs of N2 fixation varying between 11.26 and 13.95 μmol C/μmol N2. The effect of symbiotic plasmids on the carbon costs was relatively small. A time-course experiment demonstrated that nodules formed by a strain derived from JI6015 were delayed in the onset of nitrogenase activity and had a lower rate of activity compared to nodules induced by a strain with the background of B151. The relationship between nitrogenase activity, carbon costs of N2 fixation and host plant biomass production is discussed.  相似文献   

18.
1. Increasing carbon dioxide concentration (E: 680 μl CO2 litre–1 vs ambient, A: 355 μl CO2 litre–1) around late-successional Alpine sedge communities of the Swiss Central Alps (2450 m) for four growing seasons (1992–1995) had no detectable effect on symbiotic N2 fixation in Trifolium alpinum —the sole N2-fixing plant species in these communities (74 ± 30 mg N m–2 year–1, A and E plots pooled).
2. This result is based on data collected in the fourth growing season showing that elevated CO2 had no effect on Trifolium above-ground biomass (4·4 ± 1·7 g m–2, A and E plots pooled, n = 24) or N content per unit land area (124 ± 51 mg N m–2, A and E pooled), or on the percentage of N Trifolium derived from the atmosphere through symbiotic N2 fixation (%Ndfa: 61·0 ± 4·1 across A and E plots) estimated using the 15N dilution method.
3. Thus, it appears that N inputs to this ecosystem via symbiotic N2 fixation will not be dramatically affected in the foreseeable future even as atmospheric CO2 continues to rise.  相似文献   

19.
Application of anaerobic conditions with CO2 or N2 atmospheres to remove astringency from harvested persimmon fruit ( Diospryros kaki L. cv. Triumph), caused production of more acetaldehyde under CO2 than under N2, 14CO2 applied in a 100% CO2 atmosphere, for 48 h to astringent persimmon fruits was incorporated mainly into malate and very little into other metabolites, such as carbohydrate or amino acids. Application of malate or pyruvate to pulp discs of astringent persimmons caused an immediate rise in acetaldehyde production. The higher levels of acetaldehyde produced by whole fruits held in a CO2 atmosphere, than by fruits held in a N2 atmosphere, can be explained through fixation of atmospheric CO2 into malate, leading to acetaldehyde production.  相似文献   

20.
Fixation of molecular nitrogen by Methanosarcina barkeri   总被引:1,自引:0,他引:1  
Abstract Methanosarcina barkeri cells were observed in ammonia-free anaerobic acetate enrichments for sulfate-reducing bacteria. The capacity of Methanosarcina to grow diazotrophically was proved with a pure culture in mineral media with methanol. The cell yields with N2 or NH4+ ions as nitrogen source were 2.2 g and 6.1 g dry weight, respectively, per mol of methanol. Growth experiments with 15N2 revealed that 84% of the cell nitrogen was derived from N2. Acetylene was highly toxic to Methanosarcina and only reduced at concentrations lower than 100 μmol dissolved per 1 of medium. Assimilation of N2 and reduction of acetylene were inhibited by NH4+ ions. The experiments show that N2 fixation occurs not only in eubacteria but also in archaebacteria. The ecological significance of diazotrophic growth of Methanosarcina is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号