首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.

Background & aims

Herbivore-driven changes to soil properties can influence the decomposition rate of organic material and therefore soil carbon cycling within grassland ecosystems. We investigated how aboveground foraging mammalian and invertebrate herbivores affect mineral soil decomposition rates and associated soil properties in two subalpine vegetation types (short-grass and tall-grass) with different grazing histories.

Methods

Using exclosures with differing mesh sizes, we progressively excluded large, medium and small mammals and invertebrates from the two vegetation types in the Swiss National Park (SNP). Mineral soil decomposition rates were assessed using the cotton cloth (standard substrate) method between May and September 2010.

Results

Decomposition displayed strong spatio-temporal variability, best explained by soil temperature. Exclusion of large mammals increased decomposition rates, but further exclusion reduced decomposition rates again in the lightly grazed (tall-grass) vegetation. No difference among treatments was found in the heavily grazed (short-grass) vegetation. Heavily grazed areas had higher decomposition rates than the lightly grazed areas because of higher soil temperatures. Microbial biomass carbon and soil C:N ratio were also linked to spatio-temporal decomposition patterns, but not to grazing history.

Conclusions

Despite altering some of the environmental controls of decomposition, cellulose decomposition rates in the SNP’s subalpine grasslands appear to be mostly resistant to short-term herbivore exclusion.  相似文献   

4.
Despite the importance of invertebrates in grassland ecosystems, few studies have examined how grassland invertebrates have been impacted by disturbances in the southwestern United States. These grasslands may be particularly sensitive to one common disturbance, livestock grazing, because they have not recently evolved in the presence of large herds of bison, an important mammalian herbivore. This study examined how livestock grazing influenced vegetation-associated insect communities in southeastern Arizona. Insect abundance, richness, diversity, community composition, and key environmental variables were compared between sites on active cattle ranches and sites on a 3160 ha sanctuary that has not been grazed by cattle for over 25 years. Vegetation-associated insect communities were found to be sensitive to livestock grazing. Overall abundance of these insects was lower on grazed grasslands, and certain insect orders appeared to be negatively affected by livestock grazing; beetles were less rich, flies were less diverse, and Hymenoptera were less rich and diverse on grazed sites. Conversely, Hemiptera were more diverse on grazed sites. Species composition of vegetation-associated insect communities also differed and was significantly correlated with percent vegetation cover and number of shrubs. Insect species responsible for these differences were taxonomically diverse, and included herbivores and predators/parasites. When compared to other studies conducted in areas of the United States that fall within the historic range of bison, this study suggests that invertebrates in areas outside this range may be more sensitive to grazing pressure.  相似文献   

5.
Our study examines the effects of grazing exclusion on low-productive subalpine and alpine grasslands of the Central Alps (UNESCO Biosphere Park Gurgler Kamm, Obergurgl, Austria). A long-term exclusion experiment was established in 2000 in the subalpine, the lower, and the upper alpine zone. With exception of the subalpine zone, domestic herbivores have been grazing during the whole growing season. In grazed and exclosure plots species frequencies were recorded for 7 years. We analysed exclosure effects on species number, community composition, life forms, and functional groups.Species richness did not decrease significantly within the exclosures, but changes in species composition occurred in each zone, although some were transitory in nature. The dynamic trends of the plots were significantly explained by the ‘treatment×year’ effect along the whole altitudinal gradient, but the effects decreased considerably with altitude. In the subalpine and upper alpine exclosures, stress-tolerators, species of low or no nutritive value, and mosses showed a decreasing trend, whereas tall grasses (subalpine exclosures), competitors, and species with high or medium nutritive values (lower alpine exclosures) tended to increase.Overall, our 7-year study revealed that several functional groups reacted to grazing, according to our main expectations. We suggest that these effects will intensify in the long term.  相似文献   

6.
The salt tolerance ofActinomucor harzii andPenicillium lilacinum both garden soil dominants and twoCephalosporium species from saline soils in Wyoming was investigated. BothCephalosporium species exhibited growth maxima, in culture, at salt concentrations approximating those of the habitat from which they were obtained.P. lilacinum exhibited an ability to adjust, with time, to high MgSO4 concentrations and is considered salt-tolerant.A. harzii was consistently salt-sensitive. The ecological significance of the investigation is discussed.  相似文献   

7.
Aerobic grasslands may consume significant amounts of atmospheric methane (CH4). We aimed (i) to assess the spatial and temporal variability of net CH4 fluxes from grasslands on aerobic sandy soils, and (ii) to explain the variability in net CH4 fluxes by differences in soil moisture content and temperature. Net CH4 fluxes were measured with vented closed flux chambers at two sites with low N input on sandy soils in the Netherlands: (i) Wolfheze, a heather grassland, and (ii) Bovenbuurtse Weilanden, a grassland which is mown twice a year. Spatial variability of net CH4 fluxes was analysed using geostatistics. In incubation experiments, the effects of soil moisture content and temperature on CH4 uptake capacity were assessed. Temporal variability of net CH4 fluxes at Wolfheze was related to differences in soil temperature (r2 of 0.57) and soil moisture content (r2 of 0.73). Atmospheric CH4 uptake was highest at high soil temperatures and intermediate soil moisture contents. Spatial variability of net CH4 fluxes was high, both at Wolfheze and at Bovenbuurtse Weilanden. Incubation experiments showed that, at soil moisture contents lower than 5% (w/w), CH4 uptake was completely inhibited, probably due to physiological water stress of methanotrophs. At soil moisture contents higher than 50% (w/w), CH4 uptake was greatly reduced, probably due to the slow down of diffusive CH4 and O2 transport in the soil, which may have resulted in reduced CH4 oxidation and possibly some CH4 production. Optimum soil moisture contents for CH4 uptake were in the range of 20 – 35% (w/w), as prevailing in the field. The sensitivity of CH4 uptake to soil moisture content may result in short-term variability of net atmospheric CH4 uptake in response to precipitation and evapotranspiration, as well as in long-term variability due to changing precipitation patterns as a result of climate change.  相似文献   

8.
This study focuses on the characteristics displayed by mesophilous and thermophilous microfungal populations occurring in two tropical monodominant plant communities, a Cocos nucifera grove and a Casuarina equisetifolia forest, that provide distinctly different edaphic conditions. The mesophilous population sampled at 25°C by the dilution plate method and the thermophilous population that developed on soil plates incubated at 45°C consisted of 1693 isolates representing 60 species and 29 genera and 8887 isolates representing 20 species and 10 genera, respectively. The mesophilous propagules averaged 9,990 per gram dry soil in the coconut grove that lacks a litter layer, is low in moisture and organic matter and is subjected to high solar irradiation. The population was characterized by the prevalence of aspergilli and dematiaceous-sphaeropsidaceous forms and the near absence of mucoraceous isolates. Ascomycetes were common. The only widespread taxa were the three species, Aspergillus niger, Penicillium chrysogenum, and Cladosporium cladosporioides. Species diversity was high and 73% of the isolates were cellulolytic. In the casuarina forest, adequate moisture and organic matter and a protecting litter layer provide a mesic environment. The mean number of mesophilous fungi per gram dry soil was 32,800. This figure is considerably lower than ones reported for mesic temperate communities and may be due to more rapid propagule removal through accelerated microfaunal and microbial activity. An abundance of mucoraceous and moniliaceous isolates and penicillia, and the rarity of aspergilli, dematiaceous-sphaeropsidaceous forms and ascomycetes characterize the population. The infrequency of aspergilli is thought to be due to their poor competitive ability. Eight species, Absidia cylindrospora, Penicillium notatum, Pestalotia cocculi?, Cylindrocarpon heteronema, Gliocladium roseum, Trichoderma viride, Paecilomyces marquandii, and Penicillium funiculosum were widespread in the area. Species diversity equaled that observed in mesic temperate communities. Less than one third of the isolates were cellulolytic. Phytopathogens were common, a feature characteristic of tropical populations. Thermophilous fungi averaged 33 per gram dry soil in the casuarina forest and increased to 943 per gram in the insolated soil of the coconut grove. Thermotolerant forms (94% of the isolates) were abundant and were principally species of Aspergillus and Chaetomium. Thermophilic fungi were rare and of the six species isolated only Chaetomiun britannicum was widespread. Four species, Ch. osmaniae, Ch. medusarum, Ch. sulphureum, and Thielavia arenaria, appear to be new records for western hemisphere soils.  相似文献   

9.
Drainage has turned peatlands from a carbon sink into one of the world's largest greenhouse gas (GHG) sources from cultivated soils. We analyzed a unique data set (12 peatlands, 48 sites and 122 annual budgets) of mainly unpublished GHG emissions from grasslands on bog and fen peat as well as other soils rich in soil organic carbon (SOC) in Germany. Emissions and environmental variables were measured with identical methods. Site‐averaged GHG budgets were surprisingly variable (29.2 ± 17.4 t CO2‐eq. ha?1 yr?1) and partially higher than all published data and the IPCC default emission factors for GHG inventories. Generally, CO2 (27.7 ± 17.3 t CO2 ha?1 yr?1) dominated the GHG budget. Nitrous oxide (2.3 ± 2.4 kg N2O‐N ha?1 yr?1) and methane emissions (30.8 ± 69.8 kg CH4‐C ha?1 yr?1) were lower than expected except for CH4 emissions from nutrient‐poor acidic sites. At single peatlands, CO2 emissions clearly increased with deeper mean water table depth (WTD), but there was no general dependency of CO2 on WTD for the complete data set. Thus, regionalization of CO2 emissions by WTD only will remain uncertain. WTD dynamics explained some of the differences between peatlands as sites which became very dry during summer showed lower emissions. We introduced the aerated nitrogen stock (Nair) as a variable combining soil nitrogen stocks with WTD. CO2 increased with Nair across peatlands. Soils with comparatively low SOC concentrations showed as high CO2 emissions as true peat soils because Nair was similar. N2O emissions were controlled by the WTD dynamics and the nitrogen content of the topsoil. CH4 emissions can be well described by WTD and ponding duration during summer. Our results can help both to improve GHG emission reporting and to prioritize and plan emission reduction measures for peat and similar soils at different scales.  相似文献   

10.
放牧是草原牧区常见的人类活动,多年放牧对草原植被及土壤的碳过程产生较大的影响.本研究采集不同类型草原多年放牧前后植被及土壤样品,对室内碳同位素进行分析,研究了不同草原生态系统Δ13C(碳同位素分馏值)差异及其影响因素.结果表明: 放牧强度对植被Δ13C值的影响显著,0~5 cm表层土壤Δ13C值在放牧前后变化显著,而对深层土壤(>5 cm)影响不显著.多年放牧后大部分植被Δ13C值显著升高,高海拔地区升高的幅度较大.可见,放牧行为对不同草地生态系统类型、不同土壤深度以及不同海拔生态系统碳过程产生的影响差异显著.针对不同类型的草原,放牧应采取多样化的管理方式.  相似文献   

11.
深入理解土壤及团聚体元素有效性对氮沉降的响应机制,是研究全球变化背景下土壤养分供应及生态系统结构和功能的关键.本研究综合评述了草地生态系统土壤表土及团聚体内元素分布及其对氮沉降的响应机制.总体而言,草地表土内碳、氮、磷、硫有效性研究较多,且研究结果因氮添加形态、添加时间及生态系统类型而异.氮沉降通过改变碳、氮、磷、硫等生源要素的转化过程及其在土壤团聚体内的再分配,而影响这些元素的生物有效性.然而,氮沉降影响草地土壤交换性盐基及有效态微量元素的研究较少.氮沉降促进土壤酸化,导致各团聚体内钙、镁差异性流失,其中大粒径团聚体内盐基元素更易流失;酸化还有助于提高团聚体内铁、锰、铜、锌有效性.土壤小粒径团聚体内的养分对外界环境变化响应不敏感.当前研究的不足之处在于,较少关注氮沉降对土壤团聚作用及团聚体元素有效性的影响.今后应加强团聚体元素有效性与土壤酶活性耦合变化关系的研究,并分析氮沉降背景下土壤物理结构和化学组成的变化对植物群落的反馈作用.  相似文献   

12.
The ultimate objective of PhIMED, in which two European (Germany, Italy) and two Mediterranean (Morocco, Egypt) countries collaborate, is to improve the cultivation of French bean (Phaseolus vulgaris) under arid and semi-arid conditions by analysing and enhancing stress tolerance of the nitrogen fixing rhizobial microsymbionts. Rhizobial strains nodulating P. vulgaris (RP strains) isolated from areas in Morocco frequently subjected to drought were analysed for their salt and pH tolerance and their phylogenetic relationship. Strain RP163, exhibiting high nodulation efficiency and a broad pH tolerance was mutagenised by Tn5 and mutants unable to grow on extreme pH media were isolated. Some of the mutants affected in low pH tolerance were found to be mutated in genes related to cobalmin biosynthesis and in succinate dehydrogenase (sdhA). In a parallel approach, promoters and genes inducible under extreme pH values were identified in Rhizobium leguminosarum bv. viciae VF39, among them gabT, which encodes the GABA transaminase and which is induced under acidic conditions. The same gene is present and similarly regulated in RP163. The actSR gene region was cloned from VF39, sequenced and mutants generated in this region were found to be impaired in growth at low pH, but also under neutral conditions. The Agrobacterium rhizogenes 'promintron' promoter, reported to be activated in stationary phase, was found to be also strongly induced under acidic conditions in rhizobia and it is currently being characterised to construct a system allowing the expression of stress tolerance genes in bacteroids and free-living bacteria.  相似文献   

13.
Seasonal occurrence and abundance of microfungi at three different depths in tropical forest soils of Delhi were studied using the soil dilution and soil plate techniques. Surface layer in all the soil types exhibited the highest population and species number which gradually declined with depth increase. In total, 58 genera comprising 118 species were isolated of which theDeuteromycetes was represented by 38 genera and 90 species, thePhycomycetes by 10 genera and 18 species, theAscomycetes by 6 genera and 8 species, and theBasidiomycetes andMyxomycetes by single genus and species. Besides the surface vegetation, the edaphic and environmental factors had a profound influence on the occurrence and distribution of microfungi at various depths of soils.  相似文献   

14.
The anaerobic bacteria occurring in paddy soils sampled from fields belonging to the Rice Research Station at Ohmagari in Akita Prefecture, Japan, were surveyed from May to November, 1974. Irregularly shaped rods predominated which were found to be gram-positive, strictly anaerobic, catalase-positive and not heat-resistant; populations were estimated at 105–107 cells/g dry soil throughout the entire survey period. On the basis of their morphological and physiological characteristics these bacteria were identified as Propionibacterium. Most strains belonged to P. lymphophilum and P. granulosum.  相似文献   

15.
Deshmukh SK 《Mycopathologia》1999,146(3):115-116
Eighty-seven soil samples were collected from various areas of Mumbai and its vicinity to determine the prevalence of keratinophilic fungi. From the 55 positive samples (63.21%), a total of four genera with nine species were isolated viz. Chrysosporium indicum (28.73%),C. lobatum (2.29 %), C. sp.I (1.14%), C. sp. II (1.14%),C. tropicum (1.14%),C. zonatum (2.29%),Ctenomyces serratus (2.29%) Malbranchea aurantiaca (2.29%) and Microsporum gypseum complex (21.83%). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
In Argentina, the intensification of soybean production has displaced a substantial proportion of cattle ranching to fluvial wetlands such as those in the Delta of the Paraná River. Cattle grazing affects structure and dynamics of native forage plants but there is little information on this impact in populations from fluvial wetlands. This study addresses the effect of cattle ranching on density, survival, mean life-span and aerial biomass of Hymenachne pernambucense (Poaceae), an important forage species in the region. The study was carried out monthly for one year in permanents plots subject to continuous grazing and plots excluded from grazing in the Middle Delta of the Paraná River. In plots excluded from grazing, tillers showed significantly higher population density and survival, and a two-fold increase in mean life-span, while continuous grazing decreased survival of cohorts. The largest contribution to tiller density in ungrazed and grazed populations was made by spring and summer cohorts, respectively. Total and green biomass were significantly higher in the ungrazed population, with highest differences in late spring-early summer. Cattle grazing affected the relationship between tiller density and green biomass suggesting that cattle prefer sprouts because they are more palatable and nutritious than older tissue.  相似文献   

17.
18.
1. Stream and riparian ecosystems in arid montane areas, like the interior western United States, are often just narrow mesic strands, but support diverse and productive habitats. Meadows along many such streams have long been used for rangeland grazing, and, while impacts to riparian areas are relatively well known, the effect of livestock grazing on aquatic life in streams has received less attention. 2. Attempts to link grazing impacts to disturbance have been hindered by the lack of spatial and temporal replication. In this study, we compared channel features and benthic macroinvertebrate communities (i) between 16 stream reaches on two grazed allotments and between 22 reaches on two allotments where livestock had been completely removed for 4 years, (ii) before and after the 4‐year grazing respite at a subset of eight sites and (iii) inside and outside of small‐scale fenced grazing exclosures (eight pairings; 10+ year exclosures) in the meadows of the Golden Trout Wilderness, California (U.S.A.). 3. We evaluated grazing disturbance at the reach scale in terms of the effects of livestock trampling on per cent bank erosion and found that macroinvertebrate richness metrics were negatively correlated with bank erosion, while the percentage of tolerant taxa increased. 4. All macroinvertebrate richness metrics were significantly lower in grazed areas. Bank angle, temperature, fine sediment cover and erosion were higher in grazed areas, while riparian cover was lower. Regression models identified riparian cover, in‐stream substratum, bank conditions and bankfull width‐to‐depth ratios as the most important for explaining variability in macroinvertebrate richness metrics. 5. Small‐scale grazing exclosures showed no improvements for in‐stream communities and only moderate positive effects on riparian vegetation. In contrast, metrics of macroinvertebrate richness increased significantly after a 4‐year period of no grazing. 6. The success of grazing removal reported here suggests that short‐term removal of livestock at the larger, allotment meadow spatial scale is more effective than long‐term, but small‐scale, local riparian area fencing, and yields promising results in achieving stream channel, riparian and aquatic biological recovery.  相似文献   

19.
Abundance and diversity of small mammals are usually affected strongly by grazing either due to decreased food availability or quality, decreased suitability of soil for building burrow systems due to trampling and/or due to increased predation risk in the structurally simpler grazed areas. We estimated the effects of grazing-induced changes in vegetation and soil and of increased predation on small mammals in a Mediterranean grassland landscape. We measured vegetation structure, soil compaction and small mammal abundance and species composition in 22 plots of 8 Sherman live traps each, arranged according to an unbalanced two-way ANOVA design with two grazing levels (grazed areas and cattle exclosures) and two predator abundance levels (increased densities of Eurasian kestrels Falco tinnunculus by means of nest boxes and control). Plots were sampled during 2 consecutive years in early summer and early fall. Exclosure from cattle increased significantly vegetation height and volume and decreased soil compaction. Grazing-induced changes in vegetation height and volume and in soil compaction produced strong effects on small mammal abundance and species richness. Increased kestrel densities did not have significant additive or interactive effects, with the effects of grazing-induced vegetation and soil gradients on abundance or richness of small mammals. Our results suggest that the effects of grazing on small mammal communities in Mediterranean montane grasslands were mainly due to reduced food availability and by negative effects of trampling on the suitability of soils for building burrow systems. Decreased food quality and increased predation in grazed areas seemed to play a minor role, if any. Reductions in stock densities would then favor generalist predator populations in Mediterranean grasslands through the expected positive effects of such reductions on the availability of food and burrows for small mammals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号