首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thrombin acts as a procoagulant when it cleaves fibrinogen and promotes the formation of a fibrin clot and functions as an anticoagulant when it activates protein C with the assistance of the cofactor thrombomodulin. The dual function of thrombin in the blood poses the challenge to turn the enzyme into a potent anticoagulant by selectively abrogating fibrinogen cleavage. Using functional and structural data, we have rationally designed a thrombin mutant, W215A/E217A, that cleaves fibrinogen with a value of k(cat)/K(m) about 20,000-fold slower than wild-type but activates protein C in the presence of thrombomodulin with a specificity comparable with wild-type. This mutant demonstrates for the first time that the relative specificity of thrombin toward fibrinogen and protein C can be completely reversed.  相似文献   

2.
Thrombin elicits functional responses critical to blood homeostasis by interacting with diverse physiological substrates. Ala-scanning mutagenesis of 97 residues covering 53% of the solvent accessible surface area of the enzyme identifies Trp215 as the single most important determinant of thrombin specificity. Saturation mutagenesis of Trp215 produces constructs featuring kcat/Km values for the hydrolysis of fibrinogen, protease-activated receptor PAR1, and protein C that span five orders of magnitude. Importantly, the effect of Trp215 replacement is context dependent. Mutant W215E is 10-fold more specific for protein C than fibrinogen and PAR1, which represents a striking shift in specificity relative to wild-type that is 100-fold more specific for fibrinogen and PAR1 than protein C. However, when the W215E mutation is combined with deletion of nine residues in the autolysis loop, which by itself shifts the specificity of the enzyme from fibrinogen and PAR1 to protein C, the resulting construct features significant activity only toward PAR1. These findings demonstrate that thrombin can be re-engineered for selective specificity toward protein C and PAR1. Mutations of Trp215 provide important reagents for dissecting the multiple functional roles of thrombin in the blood and for clinical applications.  相似文献   

3.
Conservative Trp-to-Phe mutations were individually created in human thrombin at positions 60d, 96, 148, 207, and 215. Fluorescence intensities for these residues varied by a factor of 6. Residues 60d, 96, 148, and 215 transferred energy to the thrombin inhibitor 5-dimethylaminonaphthalene-1-sulfonylarginine-N-(3-ethyl-1,5- pentanediyl)amide efficiently, but residue 207 did not. Intensities correlated inversely with exposure to solvent, and measured and theoretical energy transfer efficiencies agreed well. Function was measured with respect to fibrinogen clotting, platelet and factor V activation, inhibition by antithrombin, and the thrombomodulin-dependent activation of protein C and thrombin-activable fibrinolysis inhibitor (TAFI). All activities of W96F and W207F ranged from 74 to 154% of the wild-type activity. This was also true for W148F, except for inhibition by antithrombin, where it showed 60% activity. W60dF was deficient by 30, 57, and 43% with fibrinogen clotting, platelet activation, and factor V cleavage (Arg(1006)), respectively. W215F was deficient by 90, 55, and 56% with fibrinogen clotting, platelet activation, and factor V cleavage (Arg(1536)). With protein C and TAFI, W96F, W148F, and W207F were normal. W60dF, however, was 76 and 23% of normal levels with protein C and TAFI, respectively. In contrast, W215F was 25 and 124% of normal levels in these reactions. Thus, many activities of thrombin are retained upon substitution of Trp with Phe at positions 96, 148, and 207. Trp(60d), however, appears to be very important for TAFI activation, and Trp(215) appears to very important for clotting and protein C activation.  相似文献   

4.
Thrombin Glu-39 restricts the P'3 specificity to nonacidic residues   总被引:6,自引:0,他引:6  
Residue 39 of serine proteases neighbors positions P'2 to P'4 of the substrate. When Glu-39 of thrombin is replaced with Lys, the resultant enzyme (E39K) retains similar P1, P2, and P3 specificities but has altered P'3 and/or P'4 specificities. These conclusions are based on analysis of both p-nitroanilide and synthetic peptide hydrolysis. The activity of E39K is nearly normal toward 17 p-nitroanilide substrates. In peptide substrates, an acidic residue at either the P3 or P'3 position reduces the rate of cleavage by thrombin. A single substitution of Asp with Gly in either the P3 or P'3 position of a peptide corresponding to the P7-P'5 residues of protein C increases the rate of cleavage by thrombin 2-3-fold. Replacement of both Asp residues with Gly increases the rate of cleavage 30-fold. With E39K, the inhibitory effect of Asp in P3 remains unchanged, but Asp in the P'3 site is no longer inhibitory. Significant differences in the catalytic activity of E39K are also seen with respect to protein C activation. In the absence of thrombomodulin, E39K activates protein C 2.2 times faster than thrombin. In the presence of thrombomodulin, the rate of protein C activation is similar for E39K and thrombin. The second order rate constant of inhibition by antithrombin III, where P'4 is a Glu, is slightly increased (1.4-fold). The clotting activity is reduced 2.4-fold due to a lower rate of fibrinopeptides A and B release where P'3 is Arg. These data show that the P'3 position is a determinant of thrombin specificity and suggest that thrombomodulin may function in part by alleviating the inhibitory effects that may arise from the proximity of the Asp in P'3 of protein C with Glu-39 of thrombin.  相似文献   

5.
The activation of human platelets by alpha-thrombin is mediated at least in part by cleavage of protease-activated G-protein-coupled receptors, PAR-1 and PAR-4. Platelet glycoprotein Ibalpha also has a high affinity binding site for alpha-thrombin, and this interaction contributes to platelet activation through a still unknown mechanism. In the present study the hypothesis that GpIbalpha may contribute to platelet activation by modulating the hydrolysis of PAR-1 on the platelet membrane was investigated. Gel-filtered platelets from normal individuals were stimulated by alpha-thrombin, and the kinetics of PAR-1 hydrolysis by enzyme was followed with flow cytometry using an anti-PAR-1 monoclonal antibody (SPAN 12) that recognizes only intact PAR-1 molecules. This strategy allowed measurement of the apparent k(cat)/K(m) value for thrombin hydrolysis of PAR-1 on intact platelets, which was equal to 1.5 +/- 0.1 x 10(7) m(-1) sec(-1). The hydrolysis rate of PAR-1 by thrombin was measured under conditions in which thrombin binding to GpIb was inhibited by different strategies, with the following results. 1) Elimination of GpIbalpha on platelet membranes by mocarhagin treatment reduced the k(cat)/K(m) value by about 6-fold. 2) A monoclonal anti-GpIb antibody reduced the apparent k(cat)/K(m) value by about 5-fold. 3) An oligonucleotide DNA aptamer, HD22, which binds to the thrombin heparin-binding site (HBS) and inhibits thrombin interaction with GpIbalpha, reduced the apparent k(cat)/K(m) value by about 5-fold. 4) Displacement of alpha-thrombin from the binding site on GpIb using PPACK-thrombin reduced the apparent k(cat)/K(m) value by about 5-fold, and 5) mutation at the HBS of thrombin (R98A) caused a 5-fold reduction of the apparent k(cat)/K(m) value of PAR-1 hydrolysis. Altogether these results show that thrombin interaction with GpIb enhances the specificity of thrombin cleavage of PAR-1 on intact platelets, suggesting that GpIb may function as a "cofactor" for PAR-1 activation by thrombin.  相似文献   

6.
The activating effect of Na(+) on thrombin is allosteric and depends on the conformational transition from a low activity Na(+)-free (slow) form to a high activity Na(+)-bound (fast) form. The structures of these active forms have been solved. Recent structures of thrombin obtained in the absence of Na(+) have also documented inactive conformations that presumably exist in equilibrium with the active slow form. The validity of these inactive slow form structures, however, is called into question by the presence of packing interactions involving the Na(+) site and the active site regions. Here, we report a 1.87A resolution structure of thrombin in the absence of inhibitors and salts with a single molecule in the asymmetric unit and devoid of significant packing interactions in regions involved in the allosteric slow --> fast transition. The structure shows an unprecedented self-inhibited conformation where Trp-215 and Arg-221a relocate >10A to occlude the active site and the primary specificity pocket, and the guanidinium group of Arg-187 penetrates the protein core to fill the empty Na(+)-binding site. The extreme mobility of Trp-215 was investigated further with the W215P mutation. Remarkably, the mutation significantly compromises cleavage of the anticoagulant protein C but has no effect on the hydrolysis of fibrinogen and PAR1. These findings demonstrate that thrombin may assume an inactive conformation in the absence of Na(+) and that its procoagulant and anticoagulant activities are closely linked to the mobility of residue 215.  相似文献   

7.
Rezaie AR 《IUBMB life》2011,63(6):390-396
Several recent studies have demonstrated that the activation of protease-activated receptor 1 (PAR-1) by thrombin and activated protein C (APC) on cultured vascular endothelial cells elicits paradoxical proinflammatory and antiinflammatory responses, respectively. Noting that the protective intracellular signaling activity of APC requires the interaction of the protease with its receptor, endothelial protein C receptor (EPCR), we recently hypothesized that the occupancy of EPCR by protein C may also change the PAR-1-dependent signaling specificity of thrombin. In support of this hypothesis, we demonstrated that EPCR is associated with caveolin-1 in lipid rafts of endothelial cells and that the occupancy of EPCR by the Gla-domain of protein C/APC leads to its dissociation from caveolin-1 and recruitment of PAR-1 to a protective signaling pathway through the coupling of PAR-1 to the pertussis toxin sensitive G(i) -protein. Thus, when EPCR is bound by protein C, a PAR-1-dependent protective signaling response in cultured endothelial cells can be mediated by either thrombin or APC. This article will briefly review the mechanism by which the occupancy of EPCR by its natural ligand modulates the PAR-1-dependent signaling specificity of coagulation proteases.  相似文献   

8.
Amino acid substitutions within the amino-terminal 5 residues of the thrombin-specific inhibitor hirudin dramatically alter its ability to inhibit the thrombin-catalyzed hydrolysis of both a chromogenic substrate and fibrinogen. Replacing the highly conserved Tyr-3 residue with Trp or Phe increases hirudin's affinity for thrombin 3-6-fold (decreases the inhibition constant, Ki) whereas Thr results in a 450-fold increase in Ki. A more extensive modification involving deletion of the amino-terminal Val, and Tyr-3----Val, Thr-4----Gln, and Asp-5----Ile replacement, results in a large reduction in thrombin inhibitory activity corresponding to greater than a 10(7)-fold increase in Ki and a 10(3)-fold increase in IC50, using D-Phe-L-pipecolyl-Arg-p-nitroanilide (S-2238) and fibrinogen, respectively, as substrates. Kinetic analysis of these mutant proteins and synthetic peptide fragments and available structural information on thrombin and hirudin derived from protein crystallography and two-dimensional NMR studies indicate that the amino-terminal region of hirudin binds at the apolar binding/active site region of thrombin, with Tyr-3 occupying the S3 specificity site. The large effect of these modifications on hirudin activity suggests that alteration of the amino-terminal segment can destabilize the interaction of other regions of hirudin with thrombin.  相似文献   

9.
Molecular mapping of thrombin-receptor interactions   总被引:19,自引:0,他引:19  
In addition to its procoagulant and anticoagulant roles in the blood coagulation cascade, thrombin works as a signaling molecule when it interacts with the G-protein coupled receptors PAR1, PAR3, and PAR4. We have mapped the thrombin epitopes responsible for these interactions using enzymatic assays and Ala scanning mutagenesis. The epitopes overlap considerably, and are almost identical to those of fibrinogen and fibrin, but a few unanticipated differences are uncovered that help explain the higher (90-fold) specificity of PAR1 relative to PAR3 and PAR4. The most critical residues for the interaction with the PARs are located around the active site where mutations affect recognition in the order PAR4 > PAR3 > PAR1. Other important residues for PAR binding cluster in a small area of exosite I where mutations affect recognition in the order PAR1 > PAR3 > PAR4. Owing to this hierarchy of effects, the mutation W215A selectively compromises PAR4 cleavage, whereas the mutation R67A abrogates the higher specificity of PAR1 relative to PAR3 and PAR4. 3D models of thrombin complexed with PAR1, PAR3, and PAR4 are constructed and account for the perturbations documented by the mutagenesis studies.  相似文献   

10.
The complement system is an important recognition and effector mechanism of the innate immune system that upon activation leads to the elimination of foreign bodies. It can be activated through three pathways of which the lectin pathway is one. The lectin pathway relies on the binding of mannan-binding lectin (MBL) or the ficolins and the subsequent activation of the MBL-associated serine proteases (MASPs), namely, MASP1, 2 and 3 which all form complexes with both MBL and the ficolins. Major substrates have only been identified for MASP2 i.e. C4 and C2. For MASP1 only a few protein substrates which are cleaved at a low rate have been identified while none are known for MASP3. Since chromogenic substrate screenings have shown that MASP1 has thrombin-like activity, we wanted to investigate the catalytic potential of MASP1 towards two major proteins involved in the clotting process, fibrinogen and factor XIII, and compare the activity directly with that of thrombin. We found that rMASP1 and thrombin cleave factor XIII A-chain and the fibrinogen beta-chain at identical sites, but differ in cleavage of the fibrinogen alpha-chain. The thrombin turnover rate of factor XIII is approximately 650 times faster than that of rMASP1 at 37 degrees C, pH 7.4. rMASP1 cleavage of fibrinogen leads to the release of the proinflammatory peptide fibrinopeptide B. Thus rMASP1 has similar, but not identical specificity to thrombin and its catalytic activity for factor XIII and fibrinogen cleavage is much lower than that of thrombin. Nevertheless, rMASP1 can drive the formation of cross-linked fibrinogen. Since MASP1 is activated on contact of MBL or the ficolins with microorganisms, fibrinogen and factor XIII may be involved in the elimination of invading pathogens.  相似文献   

11.
The structure of the ternary complex of human alpha-thrombin with a covalently bound analogue of fibrinopeptide A and a C-terminal hirudin peptide has been determined by X-ray diffraction methods at 0.25 nm resolution. Fibrinopeptide A folds in a compact manner, bringing together hydrophobic residues that slot into the apolar binding site of human alpha-thrombin. Fibrinogen residue Phe8 occupies the aryl-binding site of thrombin, adjacent to fibrinogen residues Leu9 and Val15 in the S2 subsite. The species diversity of fibrinopeptide A is analysed with respect to its conformation and its interaction with thrombin. The non-covalently attached peptide fragment hirudin(54-65) exhibits an identical conformation to that observed in the hirudin-thrombin complex. The occupancy of the secondary fibrinogen-recognition exosite by this peptide imposes restrictions on the manner of fibrinogen binding. The surface topology of the thrombin molecule indicates positions P1'-P3', differ from those of the canonical serine-proteinase inhibitors, suggesting a mechanical model for the switching of thrombin activity from fibrinogen cleavage to protein-C activation on thrombomodulin complex formation. The multiple interactions between thrombin and fibrinogen provide an explanation for the narrow specificity of thrombin. Structural grounds can be put forward for certain congenital clotting disorders.  相似文献   

12.
A polypeptide corresponding to the extracellular domain of protease-activated receptor 3 (PAR-3) is hydrolyzed by thrombin slowly because of high K(M) (>100 microM). However, thrombin is found to bind two PAR-3, one without catalyzing hydrolysis or blocking the active site, while the other is hydrolyzed. In a solvent lacking Na(+), hydrolysis of a nitroanilide substrate is enhanced 1.6-fold by addition of PAR-3 polypeptide, with half-saturation at 2.5 microM. In contrast, the fibrinogen clotting activity of thrombin is inhibited completely by PAR-3, with a K(I) of 3 microM. None of the activities of thrombin are affected by addition of 50 microM PAR-4 polypeptide. Thus, PAR-3 in low concentrations binds thrombin in a configuration that blocks the anion-binding exosite but not the catalytic site, while hydrolysis of PAR-3, PAR-4, and other substrates that do not interact with exosite I persists. The allosteric effect of PAR-3 is characteristic of that of Na(+).  相似文献   

13.
Thrombin acts on many protein substrates during the hemostatic process. Its specificity for these substrates is modulated through interactions at regions remote from the active site of the thrombin molecule, designated exosites. Exosite interactions can be with the substrate, cofactors such as thrombomodulin, or fragments from prothrombin. The relative activity of alpha-thrombin for fibrinogen is 10 times greater than that for protein C. However, the relative activity of meizothrombin for protein C is 14 times greater than that for fibrinogen. Modulation of thrombin specificity is linked to its Na(+)-binding site and residues in autolytic loop-2 that interact with the Na(+)-binding site. Recombinant prothrombins that yield recombinant meizothrombin (rMT) and rMT des-fragment 1 (rMT(desF1)) enable comparisons of the effects of mutations at the Na(+)-binding residue (Asp(554)) and deletion of loop-2 (Glu(466)-Thr(469)) on the relative activity of meizothrombin for several substrates. Hydrolysis of t-butoxycarbonyl-VPR-p-nitroanilide by alpha-thrombin, recombinant alpha-thrombin, or rMT(desF1) was almost identical, but that by rMT was only 40% of that by alpha-thrombin. Clotting of fibrinogen by rMT and rMT(desF1) was 12-16% of that by alpha-thrombin, as already known. Strikingly, however, although meizothrombins modified by substitution of Asp(554) with either Ala or Leu or by deletion of loop-2 had 6-8 and <1%, respectively, of the clotting activity of alpha-thrombin, the activity of these meizothrombins for protein C was increased to >10 times that of alpha-thrombin. It is proposed that interactions within thrombin that involve autolytic loop-2 and the Na(+)-binding site primarily enhance thrombin action on fibrinogen, but impair thrombin action on protein C.  相似文献   

14.
F Ni  D R Ripoll  P D Martin  B F Edwards 《Biochemistry》1992,31(46):11551-11557
NMR experiments were carried out to study the interaction of thrombin with a synthetic peptide, ESKATNATLDPR, derived from the newly-identified platelet receptor for thrombin [Vu, T.-K. H., Hung, D. T., Wheaton, V. I., & Coughlin, S. R. (1991) Cell 64, 1057-1068]. On the basis of the observation of the thrombin-induced line broadening and transferred NOEs, binding of the peptide was found to be located exclusively within residues LDPR of the proteolytic cleavage site LDPR/S essential for receptor activation by thrombin. Measurement of transferred NOEs and molecular modeling indicate that the side chain of the Asp(P3) residue may form a hydrogen bond with thrombin and, by doing so, it is brought near a positively-charged thrombin residue Arg(221A), thereby partially neutralizing the negative charge of an Asp residue at this site of protein substrates. The hydrophobic side chains of residues Leu(P4) and Pro(P2) reside on the same side of the peptide backbone as indicated by transferred NOEs and were found by modeling to fit into a hydrophobic cage around the thrombin active site. These results suggest that the interaction of thrombin with protein substrates such as prothrombin, protein C, protein S, the platelet receptor, and the A alpha- and B beta-chains of fibrinogen all follow the same canonical binding mode in that the substrate forms an antiparallel beta-strand with thrombin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Human thrombin utilizes Na+ as a driving force for the cleavage of substrates mediating its procoagulant, prothrombotic, and signaling functions. Murine thrombin has Asp-222 in the Na+ binding site of the human enzyme replaced by Lys. The charge reversal substitution abrogates Na+ activation, which is partially restored with the K222D mutation, and ensures high activity even in the absence of Na+. This property makes the murine enzyme more resistant to the effect of mutations that destabilize Na+ binding and shift thrombin to its anticoagulant slow form. Compared with the human enzyme, murine thrombin cleaves fibrinogen and protein C with similar k(cat)/K(m) values but activates PAR1 and PAR4 with k(cat)/K(m) values 4- and 26-fold higher, respectively. The significantly higher specificity constant toward PAR4 accounts for the dominant role of this receptor in platelet activation in the mouse. Murine thrombin can also cleave substrates carrying Phe at P1, which potentially broadens the repertoire of molecular targets available to the enzyme in vivo.  相似文献   

16.
Roy DB  Rose T  Di Cera E 《Proteins》2001,43(3):315-318
Na+ binding to thrombin enhances the catalytic activity toward numerous synthetic and natural substrates. The bound Na+ is located in a solvent channel 16 A away from the catalytic triad, and connects with D189 in the S1 site through an intervening water molecule. Molecular modeling indicates that the G184K substitution in thrombin positions the protonated epsilon-amino group of the Lys side-chain to replace the bound Na+. Likewise, the G184R substitution positions the guanidinium group of the longer Arg side-chain to replace both the bound Na+ and the connecting water molecule to D189. We explored whether the G184K or G184R substitution would replace the bound Na+ and yield a thrombin derivative stabilized in the highly active fast form. Both the G184K and G184R mutants lost sensitivity to monovalent cations, as expected, but their activity toward a chromogenic substrate was compromised up to 200-fold as a result of impaired diffusion into the S1 site and decreased deacylation rate. Interestingly, both G184K and G184R substitutions compromised cleavage of procoagulant substrates fibrinogen and PAR1 more than that of the anticoagulant substrate protein C. These findings demonstrate that Na+ binding to thrombin is difficult to mimic functionally with residue side-chains, in analogy with results from other systems.  相似文献   

17.
Acidic synthetic peptides corresponding to segments of several nonhomologous proteins (hirudin, residues 54-65; heparin cofactor II, residues 54-75; and fibrinogen, residues 410-427 of the gamma B-chain) inhibit thrombin's cleavage of fibrinogen without blocking the enzyme's active site. Here, we examined effects of these peptides on thrombin's cleavage of protein C and small peptides. Activation of protein C by thrombin in the absence of calcium was inhibited by all of the peptides. Maximal inhibition was 60%, and no greater inhibition was produced by higher peptide concentrations. This differed from progressive inhibition of protein C activation by increasing peptide concentrations in the presence of thrombomodulin and calcium. Potencies of the peptides were in the order hirudin-(54-65) greater than heparin cofactor II-(54-75) greater than gamma B-chain-(410-427). Sulfation of the tyrosine residue in hirudin-(54-65) increased its potency about 10-fold, similar to changes in anticlotting activity. The peptides were activators rather than inhibitors of the cleavage of small chromogenic substrates. In the presence of the peptides, the affinity of thrombin for the substrates S-2366 (pyro-Glu-Pro-Arg-4-nitroanilide), Chromozyme TH (tosyl-Gly-Pro-Arg-4-nitroanilide), and S-2251 (D-Val-Leu-Lys-4-nitroanilide) increased 1.5-2-fold with little change in the Vmax of substrate cleavage. Potencies of peptides in these allosteric effects on thrombin was in the same order as for their other effects. The similar actions of these nonhomologous peptides, which are believed to bind to thrombin's anion-binding exosite, suggest that binding of any peptide to this site exerts the same allosteric effect on thrombin's active site. Interactions of these peptides with thrombin may serve as models for regulation of thrombin's interactions with natural substrates and inhibitors.  相似文献   

18.
The N-terminal sequences of human and canine angiotensinogen and two hybrid sequences were synthesized and used to determine whether the species specificity of renin is influenced by amino-acid residues adjacent to the cleavage site. kcat/Km for the generation of angiotensin I from the N-terminal tridecapeptide of human angiotensinogen by canine renin is 0.37% of that observed when the N-terminal tetradecapeptide from canine angiotensinogen is used as a substrate. Replacement of the valine residue at P'1 in the human tridecapeptide with the leucine residue from the canine sequence triples kcat and improves Km 4-fold. Replacement of isoleucine residue at P'2 with the valine residue from the canine sequence enhances Km 8-fold. Substitution of the histidine residue at P'3 with the tyrosine serine sequence of canine angiotensinogen increases kcat an order of magnitude. Results obtained with the synthetic substrate are similar to those observed with the protein substrates. Canine renin does not cleave human angiotensinogen. Also, kcat/Km of canine renin for its homologous substrate is about 6-times greater than the kcat/Km value for human renin acting on human angiotensinogen.  相似文献   

19.
Thrombin signaling in the brain: the role of protease-activated receptors   总被引:19,自引:0,他引:19  
Signaling by the protease thrombin has started to be appreciated in cell biology, especially since the gene for protease-activated receptor-1 (PAR-1) has been cloned. Apart from the central role of thrombin in blood coagulation and wound healing, thrombin also regulates cellular functions in a large variety of cells through PAR-1, PAR-3 and PAR-4. Receptors are activated by a proteolytic cleavage mechanism via G protein-coupled signaling pathways. Accumulating evidence shows that thrombin changes the morphology of neurons and astrocytes, induces glial cell proliferation, and even exerts, depending on the concentration applied, either cytoprotective or cytotoxic effects on neural cells. These effects may be mediated, through either distinct or overlapping signal transduction cascades, by activation of PARs. This review focuses on the underlying signaling events initiated by thrombin in neuronal and glial cells, to summarize our understanding of the intracellular signaling machinery linking thrombin receptors to their potential physiological and pathological functions in the CNS.  相似文献   

20.
Thrombin bound to thrombomodulin activates thrombin-activable fibrinolysis inhibitor (TAFI) and protein C much more efficiently than thrombin alone. Although thrombomodulin has been proposed to alter the thrombin active site, the recently determined structure of the thrombin-thrombomodulin complex does not support this proposal. In this study, the contribution of amino acids near the activation site of TAFI toward thrombomodulin dependence was determined, utilizing four variants of TAFI with specific substitutions in the P6-P'3 region surrounding the Arg-92 cleavage site. Two point mutants had either the Ser-90 or Asp-87 of TAFI replaced with Ala, a third mutant had the thrombin activation site of the fibrinogen Bbeta-chain substituted into positions 91-95 of TAFI, and a fourth mutant had the thrombin activation site of protein C substituted into positions 90-95 of TAFI. Each of these mutants was expressed, purified, and characterized with respect to activation kinetics and functional properties of the enzyme. Even though fibrinogen is poorly cleaved by thrombin-thrombomodulin, the fibrinogen activation site does not significantly alter the thrombomodulin dependence of TAFI activation. The TAFI variant with the protein C activation sequence is only slowly activated by thrombin-thrombomodulin, and not at all by free thrombin. Mutating Asp-87 to Ala increases the catalytic efficiency of activation 3-fold both in the presence and absence of thrombomodulin, whereas mutating Ser-90 to Ala effects only minor kinetic differences compared with wild type TAFI. The thermal stabilities and antifibrinolytic properties of the enzymes were not substantially altered by any of the mutations that allowed for efficient activation of the enzyme. We conclude that residues in the P6-P'3 region of TAFI do not determine the thrombomodulin dependence of activation, which lends support to the argument that the role of thrombomodulin is to optimally orient thrombin and its substrate, rather than to allosterically alter the specificity of the thrombin active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号