首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
In the Pax gene family, which encodes DNA-binding proteins, Pax 2 has been known to play important roles in the formation of the midbrain/hindbrain boundary, eye, inner ear and kidney in vertebrates (Bioessays 19 (1997) 755). In this article, we report a segmentally regulated pattern of Pax 2 expression during chicken somitogenesis. Pax 2 mRNA is localized in the rostral end of the unsegmented presomitic mesoderm (PSM), abutting anteriorly on a prospective segmentation border. This pattern repeats every segmentation cycle (90 min) observed in ovo and also in the half embryo culture assay in which one half of PSM along the midline is fixed immediately while the other half is cultured for a given period. We also determined the sequence of changes in Pax 2 expression during a segmentation cycle by comparing the pattern of Pax 2 with that of Lunatic-fringe (L-fringe), known to cycle periodically in posterior PSM. A systematic comparison of the expression patterns between Pax 2, L-fringe and EphA4 further highlighted a close relationship between EphA4 and Pax 2 during a segmentation cycle. Lastly, Pax 2 is not segmentally expressed in mouse PSM, suggestive of species (avian)-specific mechanisms underlying somitic segmentation.  相似文献   

2.
Several vertebrate genes of the Hairy/Enhancer-of-split (HES) family are involved in paraxial mesoderm segmentation and intersomitic boundary establishment/maintenance. Here, we show that the zebrafish hairy-related gene, her6, highly homologous to the mammalian and chicken HES-1 genes, is expressed in the posterior part of each segmented somite and in stripes in the anterior presomitic mesoderm (PSM), and also in a dynamic, segmentally restricted pattern during hindbrain segmentation, with all rhombomeres expressing her6 at different time points and at different levels.  相似文献   

3.
Several vertebrate genes of the Hairy/Enhancer-of-split (HES) family are involved in paraxial mesoderm segmentation and intersomitic boundary establishment/maintenance. Here, we show that the zebrafish hairy-related gene, her6, highly homologous to the mammalian and chicken HES-1 genes, is expressed in the posterior part of each segmented somite and in stripes in the anterior presomitic mesoderm (PSM), and also in a dynamic, segmentally restricted pattern during hindbrain segmentation, with all rhombomeres expressing her6 at different time points and at different levels.  相似文献   

4.
BACKGROUND: The process of somitogenesis can be divided into three major events: the prepatterning of the mesoderm; the formation of boundaries between the prospective somites; and the cellular differentiation of the somites. Expression and functional studies have demonstrated the involvement of the murine Notch pathway in somitogenesis, although its precise role in this process is not yet well understood. We examined the effect of mutations in the Notch pathway elements Delta like 1 (Dll1), Notch1 and RBPJkappa on genes expressed in the presomitic mesoderm (PSM) and have defined the spatial relationships of Notch pathway gene expression in this region. RESULTS: We have shown that expression of Notch pathway genes in the PSM overlaps in the region where the boundary between the posterior and anterior halves of two consecutive somites will form. The Dll1, Notch1 and RBPJkappa mutations disrupt the expression of Lunatic fringe (L-fng), Jagged1, Mesp1, Mesp2 and Hes5 in the PSM. Furthermore, expression of EphA4, mCer 1 and uncx4.1, markers for the anterior-posterior subdivisions of the somites, is down-regulated to different extents in Notch pathway mutants, indicating a global alteration of pattern in the PSM. CONCLUSIONS: We propose a model for the mechanism of somite border formation in which the activity of Notch in the PSM is restricted by L-fng to a boundary-forming territory in the posterior half of the prospective somite. In this region, Notch function activates a set of genes that are involved in boundary formation and anterior-posterior somite identity.  相似文献   

5.
Segmentation of the vertebrate body axis is initiated early in development with the sequential formation of somites. Somitogenesis is temporally regulated by a molecular oscillator, the segmentation clock, which acts within presomitic mesoderm (PSM) cells to drive periodic expression of the cyclic genes. We have investigated the kinetics of the progression of cycling gene expression along the PSM. Here we show that c-hairy1 and c-hairy2 mRNA expression traverses the PSM in an entirely progressive manner and that both these genes and c-Lfng maintain a similar anterior limit of expression during each cycle. However, some differences are seen regarding both the onset of a new oscillation of these genes and the duration of their expression in the caudal PSM. We also investigated whether oscillating cyclic gene expression in the PSM is entirely cell autonomous. We find that while small PSM explants are still able to maintain their oscillation schedule, once they are dissociated, PSM cells are no longer able to maintain synchronous oscillations. The results imply that cell communication or a community effect is essential for the normal pattern of cyclic gene expression in these cells.  相似文献   

6.
The expression of the murine paired-box-containing gene, Pax2, is examined in the developing central nervous system by in situ hybridization. Pax2 expression is detected along the boundaries of primary divisions of the neural tube. Initially, Pax2 is expressed in the ventricular zone in two compartments of cells on either side of the sulcus limitans and along the entire rhombencephalon and spinal cord. At later times, Pax2 is restricted to progeny cells that have migrated to specific regions of the intermediate zone. In the eye, Pax2 expression is restricted to the ventral half of the optic cup and stalk and later to the optic disc and nerve. In the ear, expression is restricted to regions of the otic vesicle that form neuronal components. The transient and restricted nature of Pax2 expression suggests that this murine segmentation gene homologue may also establish compartmental boundaries and contribute to the specification of neuronal identity, as do certain Drosophila segmentation genes.  相似文献   

7.
BACKGROUND: One prominent example of segmentation in vertebrate embryos is the subdivision of the paraxial mesoderm into repeating, metameric structures called somites. During this process, cells in the presomitic mesoderm (PSM) are first patterned into segments leading secondarily to differences required for somite morphogenesis such as the formation of segmental boundaries. Recent studies have shown that a segmental pattern is generated in the PSM of Xenopus embryos by genes encoding a Mesp-like bHLH protein called Thylacine 1 and components of the Notch signaling pathway. These genes establish a repeating pattern of gene expression that subdivides cells in the PSM into anterior and posterior half segments, but how this pattern of gene expression leads to segmental boundaries is unknown. Recently, a member of the protocadherin family of cell adhesion molecules, called PAPC, has been shown to be expressed in the PSM of Xenopus embryos in a half segment pattern, suggesting that it could play a role in restricting cell mixing at the anterior segmental boundary. RESULTS: Here, we examine the expression and function of PAPC during segmentation of the paraxial mesoderm in Xenopus embryos. We show that Thylacine 1 and the Notch pathway establish segment identity one segment prior to the segmental expression of PAPC. Altering segmental identity in embryos by perturbing the activity of Thylacine 1 and the Notch pathway, or by treatment with a protein synthesis inhibitor, cycloheximide, leads to the predicted changes in the segmental expression of PAPC. By disrupting PAPC function in embryos using a putative dominant-negative or an activated form of PAPC, we show that segmental PAPC activity is required for proper somite formation as well as for maintaining segmental gene expression within the PSM. CONCLUSIONS: Segmental expression of PAPC is established in the PSM as a downstream consequence of segmental patterning by Thylacine 1 and the Notch pathway. We propose that PAPC is part of the mechanism that establishes the segmental boundaries between posterior and anterior cells in adjacent segments.  相似文献   

8.
9.
The Eph family is the largest known group of structurally related receptor tyrosine kinases (RTKs). Each Eph receptor has a specific Ephrin ligand, and these function to define spatial boundaries during development. Analyses of EphA4 in mouse, chick, frog and zebrafish embryos have implicated this gene in a number of developmental processes, including maintenance of segmental boundaries, axon guidance, limb development, neural crest migration and patterning of the ear. In order to determine which components of EphA4 function may be primitive for gnathostomes, we cloned EphA4 from the lesser spotted catshark (Scyliorhinus canicula) and examined its expression pattern during shark embryonic development. Consistent with the patterns reported for bony fish and tetrapods, we observed segmental expression of EphA4 in the developing hindbrain and later in the pharyngeal arches of shark embryos. EphA4 was also detected during sensory organogenesis, in the developing ear, eye, nasal pits and lateral line. A dynamic pattern of EphA4 expression occurs during shark fin development, suggesting an early role in outgrowth and patterning of the fin buds and a later role in tissue differentiation. We also observed several novel domains of EphA4 expression that have not been reported in other vertebrates, including external gill buds, dermal denticles, median fins and claspers. While some of these domains may reflect co-option of EphA4 expression to novel sites for development of shark-specific characters, others are more likely to be ancestral patterns of expression that were lost in other vertebrate lineages.Edited by R. P. Elinson  相似文献   

10.
11.
Fibroblast growth factor (FGF) signaling plays a crucial role in vertebrate segmentation. The FGF pathway establishes a posterior-to-anterior signaling gradient in the presomitic mesoderm (PSM), which controls cell maturation and is involved in the positioning of segmental boundaries. In addition, FGF signaling was shown to be rhythmically activated in the PSM in response to the segmentation clock. Here, we show that conditional deletion of the FGF receptor gene Fgfr1 abolishes FGF signaling in the mouse PSM, resulting in an arrest of the dynamic cyclic gene expression and ultimately leading to an arrest of segmentation. Pharmacological treatments disrupting FGF signaling in the PSM result in an immediate arrest of periodic WNT activation, whereas NOTCH-dependent oscillations stop only during the next oscillatory cycle. Together, these experiments provide genetic evidence for the role of FGF signaling in segmentation, and identify a signaling hierarchy controlling clock oscillations downstream of FGF signaling in the mouse.  相似文献   

12.
How morphological diversity arises through evolution of gene sequence is a major question in biology. In Drosophila, the genetic basis for body patterning and morphological segmentation has been studied intensively. It is clear that some of the genes in the Drosophila segmentation program are functioning similarly in certain other taxa, although many questions remain about when these gene functions arose and which taxa use these genes similarly to establish diverse body plans. Tardigrades are an outgroup to arthropods in the Ecdysozoa and, as such, can provide insight into how gene functions have evolved among the arthropods and their close relatives. We developed immunostaining methods for tardigrade embryos, and we used cross-reactive antibodies to investigate the expression of homologs of the pair-rule gene paired (Pax3/7) and the segment polarity gene engrailed in the tardigrade Hypsibius dujardini. We find that in H. dujardini embryos, Pax3/7 protein localizes not in a pair-rule pattern but in a segmentally iterated pattern, after the segments are established, in regions of the embryo where neurons later arise. Engrailed protein localizes in the posterior ectoderm of each segment before ectodermal segmentation is apparent. Together with previous results from others, our data support the conclusions that the pair-rule function of Pax3/7 is specific to the arthropods, that some of the ancient functions of Pax3/7 and Engrailed in ancestral bilaterians may have been in neurogenesis, and that Engrailed may have a function in establishing morphological boundaries between segments that is conserved at least among the Panarthropoda. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Pax group III genes and the evolution of insect pair-rule patterning   总被引:4,自引:0,他引:4  
Pair-rule genes were identified and named for their role in segmentation in embryos of the long germ insect Drosophila. Among short germ insects these genes exhibit variable expression patterns during segmentation and thus are likely to play divergent roles in this process. Understanding the details of this variation should shed light on the evolution of the genetic hierarchy responsible for segmentation in Drosophila and other insects. We have investigated the expression of homologs of the Drosophila Pax group III genes paired, gooseberry and gooseberry-neuro in short germ flour beetles and grasshoppers. During Drosophila embryogenesis, paired acts as one of several pair-rule genes that define the boundaries of future parasegments and segments, via the regulation of segment polarity genes such as gooseberry, which in turn regulates gooseberry-neuro, a gene expressed later in the developing nervous system. Using a crossreactive antibody, we show that the embryonic expression of Pax group III genes in both the flour beetle Tribolium and the grasshopper Schistocerca is remarkably similar to the pattern in Drosophila. We also show that two Pax group III genes, pairberry1 and pairberry2, are responsible for the observed protein pattern in grasshopper embryos. Both pairberry1 and pairberry2 are expressed in coincident stripes of a one-segment periodicity, in a manner reminiscent of Drosophila gooseberry and gooseberry-neuro. pairberry1, however, is also expressed in stripes of a two-segment periodicity before maturing into its segmental pattern. This early expression of pairberry1 is reminiscent of Drosophila paired and represents the first evidence for pair-rule patterning in short germ grasshoppers or any hemimetabolous insect.  相似文献   

14.
15.
16.
Pax group III genes are involved in a number of processes during insect segmentation. In Drosophila melanogaster, three genes, paired, gooseberry and gooseberry-neuro, regulate segmental patterning of the epidermis and nervous system. Paired acts as a pair-rule gene and gooseberry as a segment polarity gene. Studies of Pax group III genes in other insects have indicated that their expression is a good marker for understanding the underlying molecular mechanisms of segmentation. We have cloned three Pax group III genes from the honeybee (Apis mellifera) and examined their relationships to other insect Pax group III genes and their expression patterns during honeybee segmentation. The expression pattern of the honeybee homologue of paired is similar to that of paired in Drosophila, but its expression is modulated by anterior–posterior temporal patterning similar to the expression of Pax group III proteins in Tribolium. The expression of the other two Pax group III genes in the honeybee indicates that they also act in segmentation and nervous system development, as do these genes in other insects.  相似文献   

17.
We report here that a previously described cell surface antigen (Brower, Smith & Wilcox, 1980) is expressed in a segmentally repeating pattern of stripes in the epidermis and nervous system of segmented Drosophila embryos. We also report that the antigenic activity is found on two closely related cell surface glycoproteins. The pattern of expression of this antigen is reminiscent of the expression of some segmentation genes and is affected by mutation of at least two of these genes, fushi tarazu and paired. Thus these glycoproteins are candidates for cell surface molecules involved in carrying out the patterning processes controlled by segmentation genes.  相似文献   

18.
The segmental structure of the axial skeleton is formed during somitogenesis. During this process, paired somites bud from the presomitic mesoderm (PSM), in a process regulated by a genetic clock called the segmentation clock. The Notch pathway and the Notch modulator Lunatic fringe (Lfng) play multiple roles during segmentation. Lfng oscillates in the posterior PSM as part of the segmentation clock, but is stably expressed in the anterior PSM during presomite patterning. We previously found that mice lacking overt oscillatory Lfng expression in the posterior PSM (Lfng?FCE) exhibit abnormal anterior development but relatively normal posterior development. This suggests distinct requirements for segmentation clock activity during the formation of the anterior skeleton (primary body formation), compared to the posterior skeleton and tail (secondary body formation). To build on these findings, we created an allelic series that progressively lowers Lfng levels in the PSM. Interestingly, we find that further reduction of Lfng expression levels in the PSM does not increase disruption of anterior development. However tail development is increasingly compromised as Lfng levels are reduced, suggesting that primary body formation is more sensitive to Lfng dosage than is secondary body formation. Further, we find that while low levels of oscillatory Lfng in the posterior PSM are sufficient to support relatively normal posterior development, the period of the segmentation clock is increased when the amplitude of Lfng oscillations is low. These data support the hypothesis that there are differential requirements for oscillatory Lfng during primary and secondary body formation and that posterior development is less sensitive to overall Lfng levels. Further, they suggest that modulation of the Notch signaling by Lfng affects the clock period during development.  相似文献   

19.
Dorso-ventral and proximo-distal axis formation of the optic cup is apparent from early stages of development. Pax6 is initially detectable in the optic vesicle and later shows a distal-high and proximal-low gradient of expression in the retina. To determine the early role of Pax6 in pattern formation of the optic cup, we expressed Pax6 ectopically in the optic vesicle of stages 9-10 chick embryos by in ovo electroporation, which resulted in a small eye-like phenotype. The signaling molecule fibroblast growth factor (FGF)8, which appears to be restricted to the central retina, was increased, whereas bone morphogenetic protein (BMP)4 and Tbx5, two dorsal markers, were down-regulated in Pax6-electroporated eye. Pax6 overexpression also decreased the expression of the ventral marker Vax. Electroporation with a dominant-negative form of Pax6 resulted in a decrease in FGF8 expression, but BMP4 expression was unaffected initially while it was diminished later. Our data suggest a new role for Pax6 in regulating FGF8 and BMP4 expression during pattern formation of the optic cup, and that a Pax6-regulated balance between FGF8 and BMP4 is critical for retinogenesis.  相似文献   

20.
Pax3 functions in cell survival and in pax7 regulation   总被引:11,自引:0,他引:11  
In developing vertebrate embryos, Pax3 is expressed in the neural tube and in the paraxial mesoderm that gives rise to skeletal muscles. Pax3 mutants develop muscular and neural tube defects; furthermore, Pax3 is essential for the proper activation of the myogenic determination factor gene, MyoD, during early muscle development and PAX3 chromosomal translocations result in muscle tumors, providing evidence that Pax3 has diverse functions in myogenesis. To investigate the specific functions of Pax3 in development, we have examined cell survival and gene expression in presomitic mesoderm, somites and neural tube of developing wild-type and Pax3 mutant (Splotch) mouse embryos. Disruption of Pax3 expression by antisense oligonucleotides significantly impairs MyoD activation by signals from neural tube/notochord and surface ectoderm in cultured presomitic mesoderm (PSM), and is accompanied by a marked increase in programmed cell death. In Pax3 mutant (Splotch) embryos, MyoD is activated normally in the hypaxial somite, but MyoD-expressing cells are disorganized and apoptosis is prevalent in newly formed somites, but not in the neural tube or mature somites. In neural tube and somite regions where cell survival is maintained, the closely related Pax7 gene is upregulated, and its expression becomes expanded into the dorsal neural tube and somites, where Pax3 would normally be expressed. These results establish that Pax3 has complementary functions in MyoD activation and inhibition of apoptosis in the somitic mesoderm and in repression of Pax7 during neural tube and somite development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号