首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transgenic corn expressing the Bacillus thuringiensis Cry1Ab gene is highly insecticidal to Ostrinia nubilalis (European corn borer) larvae. We ascertained whether Cry1F, Cry9C, or Cry9E recognizes the Cry1Ab binding site on the O. nubilalis brush border by three approaches. An optical biosensor technology based on surface plasmon resonance measured binding of brush border membrane vesicles (BBMV) injected over a surface of immobilized Cry toxin. Preincubation with Cry1Ab reduced BBMV binding to immobilized Cry1Ab, whereas preincubation with Cry1F, Cry9C, or Cry9E did not inhibit BBMV binding. BBMV binding to a Cry1F-coated surface was reduced when vesicles were preincubated in Cry1F or Cry1Ab but not Cry9C or Cry9E. A radioligand approach measured 125I-Cry1Ab toxin binding to BBMV in the presence of homologous (Cry1Ab) and heterologous (Cry1Ac, Cry1F, Cry9C, or Cry9E) toxins. Unlabeled Cry1Ac effectively competed for 125I-Cry1Ab binding in a manner comparable to Cry1Ab itself. Unlabeled Cry9C and Cry9E toxins did not inhibit (125)I-Cry1Ab binding to BBMV. Cry1F inhibited (125)I-Cry1Ab binding at concentrations greater than 500 nM. Cry1F had low-level affinity for the Cry1Ab binding site. Ligand blot analysis identified Cry1Ab, Cry1Ac, and Cry1F binding proteins in BBMV. The major Cry1Ab signals on ligand blots were at 145 kDa and 154 kDa, but a strong signal was present at 220 kDa and a weak signal was present at 167 kDa. Cry1Ac and Cry1F binding proteins were detected at 220 and 154 kDa. Anti-Manduca sexta aminopeptidase serum recognized proteins of 145, 154, and 167 kDa, and anti-cadherin serum recognized the 220 kDa protein. We speculate that isoforms of aminopeptidase and cadherin in the brush border membrane serve as Cry1Ab, Cry1Ac, and Cry1F binding proteins.  相似文献   

2.
Plutella xylostella strain resistant (PXR) to Bacillus thuringiensis Cry1Ac toxin was not killed at even more than 1000 μg Cry1Ac/g diet but killed by Cry1Ab at 0.5 μg/g diet. In contrast, susceptible strain (PXS) was killed by Cry1Ac at 1 μg/g diet. Cy3-labeld Cry1A(s) binding to brush border membrane vesicles (BBMV) prepared from both strains were analyzed with direct binding assay. The Kd value of Cry1Aa to both BBMV was almost identical: 213.2 and 205.8 nM, and 263.5 and 265.0 nM for Cry1Ac. The highest Kd values were in Cry1Ab which showed most effective insecticidal activity in PXS and PXR, 2126 and 2463 nM, respectively. These results clearly showed that the BBMV from PXR and PXS could equally bind to Cry1Ac. The binding between BBMV and Cy3-labeled Cry1Ac was inhibited only by anti-175 kDa cadherin-like protein (CadLP) and -252 kDa protein antisera, but not by anti-120 kDa aminopeptidase. This supports that resistance in PXR resulted from the abortion of pore formation after the binding of Cry1Ac to the BBMV. And furthermore, the importance of 175K CadLP and P252 proteins in those bindings was suggested. We briefly discuss possible mechanisms of the resistance.  相似文献   

3.
Plutella xylostella (PX) that were 130000-fold more resistant to Cry1Ac were selected from the susceptible strain and maintained in the laboratory. The LC50 of the susceptible strain (PXS) was 0.38 microg toxin/g diet, whereas that of the resistant strain (PXR) was 4800 microg toxin/g diet. Brush border membrane vesicles (BBMV) were prepared from both PXS and PXR. In ligand blot analysis, Cry1Ac bound to a 120-kDa protein of BBMV; however, the intensity of the band was almost equal in both strains of insect. Hence, we analyzed the lipid components of BBMV from PXS and PXR. BBMV lipids were fractionated into non-polar lipid, phospholipid, neutral glycolipid and acidic glycolipid. Neutral glycolipid content was substantially lower in the BBMV of PXR than of PXS. The same trend was observed when lipids were extracted from whole midgut instead of BBMV. Thin layer chromatography of midgut neutral glycolipids revealed the presence of more than seven components. Among the midgut neutral glycolipids, a possible hexasaccharylceramide and a possible trisaccharylceramide of PXR were less than half the level found in PXS. The other lipid fractions in PXR and PXS were similar to each other.  相似文献   

4.
A genetically altered variant of Cry9Ca from Bacillus thuringiensis shows high potency against the spruce budworm, Choristoneura fumiferana Clemens. Its activity, as measured by feeding inhibition in frass-failure assays, is estimated to be four to seven times greater than B. thuringiensis subsp. kurstaki HD-1, the strain currently used in commercial products to control this insect. Bioassays against budworm of mixtures of the modified Cry9Ca and two of the Cry1A endotoxin proteins produced by HD-1 show neither synergism nor antagonism. Experiments with brush border membrane vesicles from budworm midgut revealed that Cry9Ca and the Cry1A toxins share a common binding site and that bound Cry9Ca can be displaced from the membrane to some extent by the Cry1A toxins. However, it is uncertain whether the binding site is actually the receptor molecule or a membrane protein associated with pore formation.  相似文献   

5.
The pores formed by Bacillus thuringiensis insecticidal toxins have been shown to allow the diffusion of a variety of monovalent cations and anions and neutral solutes. To further characterize their ion selectivity, membrane permeability induced by Cry1Aa and Cry1Ac to amino acids (Asp, Glu, Ser, Leu, His, Lys and Arg) and to divalent cations (Mg(2+), Ca(2+) and Ba(2+)) and anions (SO(4)(2-) and phosphate) was analyzed at pH 7.5 and 10.5 with midgut brush border membrane vesicles isolated from Manduca sexta and an osmotic swelling assay. Shifting pH from 7.5 to 10.5 increases the proportion of the more negatively charged species of amino acids and phosphate ions. All amino acids diffused well across the toxin-induced pores, but, except for aspartate and glutamate, amino acid permeability was lower at the higher pH. In the presence of either toxin, membrane permeability was higher for the chloride salts of divalent cations than for the potassium salts of divalent anions. These results clearly indicate that the pores are cation-selective.  相似文献   

6.
The binding of Bacillus thuringiensis δ-endotoxin to brush border membrane vesicles (BBMVs) from the target insect larval midgut comprises with not only a reversible but also an irreversible component. The irreversible binding of δ-endotoxin is thought to be a pathologically important factor. Here, we studied the irreversible binding of Cry1Aa to the BBMVs of Bombyx mori. The 125I-labeled Cry1Aa bound to the solubilized brush border membrane (BBM) through rapid dissociation only, unlike the binding to BBMVs, indicating that the toxin bound to the solubilized BBM through only a reversible process. Low-temperature sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that the toxin bound irreversibly to BBMVs formed an oligomer of 220 kDa, whereas that bound reversibly to the solubilized BBM did not oligomeraize. When the 125I-labeled Cry1Aa bound irreversibly to the BBMVs was digested by proteinase K, approximately 40% of the toxin observed to be resistant to proteinase K. The molecular mass of the toxin resistant to proteinase K was 60 kDa, suggesting that the irreversible binding comprise two forms. These results support the notion that the irreversible binding of the toxin to BBMVs is due to the insertion of the toxin into the lipid bilayers and oligomerization to form channels.  相似文献   

7.
Bacillus thuringiensis Cry1Ac delta-endotoxin specifically binds a 115-kDa aminopeptidase-N purified from Manduca sexta midgut. Cry1Ac domain III mutations were constructed around a putative sugar-binding pocket and binding to purified aminopeptidase-N and brush border membrane vesicles (BBMV) was compared to toxicity. Q509A, R511A, Y513A, and 509-511 (QNR-AAA) eliminated aminopeptidase-N binding and reduced binding to BBMV. However, toxicity decreased no more than two-fold, indicating activity is not directly correlated with aminopeptidase-N binding. Analysis of toxin binding to aminopeptidase-N in M. sexta is therefore insufficient for predicting toxicity. Mutants retained binding, however, to another BBMV site, suggesting alternative receptors may compensate in vivo.  相似文献   

8.
The binding properties of Bacillus thuringiensis toxins to brush border membrane vesicles of Dipel-resistant and -susceptible Ostrinia nubilalis larvae were compared using ligand-toxin immunoblot analysis, surface plasmon resonance (SPR), and radiolabeled toxin binding assays. In ligand-toxin immunoblot analysis, the number of Cry1Ab or Cry1Ac toxin binding proteins and the relative toxin binding intensity were similar in vesicles from resistant and susceptible larvae. Surface plasmon resonance with immobilized activated Cry1Ab toxin indicated that there were no significant differences in binding with fluid-phase vesicles from resistant and susceptible larvae. Homologous competition assays with radiolabeled Cry1Ab and Cry1Ac toxin and vesicles from resistant and susceptible larvae resulted in similar toxin dissociation constants and binding site concentrations. Heterologous competition binding assays indicated that Cry1Ab and Cry1Ac completely competed for binding, thus they share binding sites in the epithelium of the larval midguts of O. nubilalis. Overall, the binding analyses indicate that resistance to Cry1Ab and Cry1Ac in this Bt-resistant strain of O. nubilalis is not associated with a loss of toxin binding.  相似文献   

9.
The use of combinations of Bacillus thuringiensis (Bt) toxins with diverse modes of action for insect pest control has been proposed as the most efficient strategy to increase target range and delay the onset of insect resistance. Considering that most cases of cross-resistance to Bt toxins in laboratory-selected insect colonies are due to alteration of common toxin binding sites, independent modes of action can be defined as toxins sharing limited or no binding sites in brush border membrane vesicles (BBMV) prepared from the target insect larvae. In this paper, we report on the specific binding of Cry2Ae toxin to binding sites on BBMV from larvae of the three most commercially relevant heliothine species, Heliothis virescens, Helicoverpa zea, and Helicoverpa armigera. Using chromatographic purification under reducing conditions before labeling, we detected specific binding of radiolabeled Cry2Ae, which allowed us to perform competition assays using Cry1Ab, Cry1Ac, Cry1Fa, Vip3A, Cry2Ae, and Cry2Ab toxins as competitors. In these assays, Cry2Ae binding sites were shared with Cry2Ab but not with the tested Cry1 or Vip3A toxins. Our data support the use of Cry2Ae toxin in combination with Cry1 or Vip3A toxins in strategies to increase target range and delay the onset of heliothine resistance.  相似文献   

10.
11.
The binding of Cry1Ac, an insecticidal protein of Bacillus thuringiensis, to a brush border membrane (BBM) isolated from midguts of the diamondback moth Plutella xylostella was examined by surface plasmon resonance (SPR)-based biosensor. BBM was mixed with 1,3-ditetradecylglycero-2-phosphocholine (PC14), a neutral charged artificial lipid, and was reconstructed to a monolayer on a hydrophobic chip for the biosensor. The binding of Cry1Ac to the reconstructed monolayer was analyzed by a two-state binding model, and it was shown that Cry1Ac bound to the monolayer in the first step with an affinity constant (K(1)) of 508 nM, followed by the second uni-molecular step with an equilibrium constant (K(2)) of 0.472. The overall affinity constant K(d) was determined to be 240 nM. The binding was markedly inhibited by N-acetyl-D-galactosamine (K(i)=8 mM). The monolayer was shown to retain a high affinity to Cry1Ac, providing an insect-free system for rapid and large-scale screening of B. thuringiensis insecticidal proteins by the SPR-based biosensor technology.  相似文献   

12.
We have evaluated the binding of Bacillus thuringiensis Cry toxins to aminopeptidase N (APN) purified from Lymantria dispar (gypsy moth) brush border membrane vesicle (BBMV). CryIAc toxin bound strongly to APN, while either the structurally related CryIAa and CryIAb toxins or CryIC, CryIIA, and CryIIIA toxins showed weak binding to APN. An in vitro competition binding study demonstrated that the binding of CryIAc to L. dispar BBMV was inhibited by APN. Inhibition of short circuit current for CryIAc, measured by voltage clamping of whole L. dispar midgut, was substantially reduced by addition of phosphatidylinositol-specific phospholipase C, which is known to release APN from the midgut membrane. In contrast, addition of phosphatidylinositol-specific phospholipase C had only a marginal effect on the inhibition of short circuit current for CryIAa. These data suggest that APN is the major functional receptor for CryIAc in L. dispar BBMV. A ligand blotting experiment demonstrated that CryIAc recognized a 120-kDa peptide (APN), while CryIAa and CryIAb recognized a 210-kDa molecule in L. dispar BBMV. In contrast, CryIAa and CryIAb bound to both the 120- and 210-kDa molecules in Manduca sexta BBMV, while CryIAc recognized only the 120-kDa peptide. The 120-kDa peptide (APN) in L. dispar BBMV reacted with soybean agglutinin, indicating that N-acetylgalactosamine is a component of this glycoprotein.  相似文献   

13.
To investigate whether membrane proteases are involved in the activity of Bacillus thuringiensis insecticidal toxins, the rate of pore formation by trypsin-activated Cry1Aa was monitored in the presence of a variety of protease inhibitors with Manduca sexta midgut brush border membrane vesicles and by a light-scattering assay. Most of the inhibitors tested had no effect on the pore-forming ability of the toxin. However, phenylmethylsulfonyl fluoride, a serine protease inhibitor, promoted pore formation, although this stimulation only occurred at higher inhibitor concentrations than those commonly used to inhibit proteases. Among the metalloprotease inhibitors, o-phenanthroline had no significant effect; EDTA and EGTA reduced the rate of pore formation at pH 10.5, but only EDTA was inhibitory at pH 7.5. Neither chelator affected the properties of the pores already formed after incubation of the vesicles with the toxin. Taken together, these results indicate that, once activated, Cry1Aa is completely functional and does not require further proteolysis. The effect of EDTA and EGTA is probably better explained by their ability to chelate divalent cations that could be necessary for the stability of the toxin's receptors or involved elsewhere in the mechanism of pore formation.  相似文献   

14.
Three types of binding assays were used to study the binding of Bacillus thuringiensis delta-endotoxin Cry1Ac to brush border membrane vesicle (BBMV) membranes and a purified putative receptor of the target insect Manduca sexta. Using hybrid proteins consisting of Cry1Ac and the related Cry1C protein, it was shown that domain III of Cry1Ac is involved in specificity of binding as observed by all three techniques. In ligand blotting experiments using SDS-PAGE-separated BBMV proteins as well as the purified putative receptor aminopeptidase N (APN), the presence of domain III of Cry1Ac in a hybrid with Cry1C was necessary and sufficient for specific binding to APN. Using the surface plasmon resonance (SPR) technique with immobilized APN, it was shown that the presence of domain III of Cry1Ac in a hybrid is sufficient for binding to one of the two previously identified Cry1Ac binding sites, whereas the second site requires the full Cry1Ac toxin for binding. In addition, the role of domain III in the very specific inhibition of Cry1Ac binding by the amino sugar N-acetylgalactosamine (GalNac) was determined. Both in ligand blotting and in surface plasmon resonance experiments, as well as in binding assays using intact BBMVs, it was shown that the presence of domain III of Cry1Ac in a toxin molecule is sufficient for the inhibition of binding by GalNAc. These and other results strongly suggest that domain III of delta-endotoxins play a role in insect specificity through their involvement in specific binding to insect gut epithelial receptors.  相似文献   

15.
Insect proteases are implicated in Bacillus thuringiensis insecticidal proteins mode of action determining toxin specificity and sensitivity. Few data are available on the involvement of proteases in the later steps of toxicity such as protease interaction with toxin-receptor complexes and the pore formation process. In this study, a Colorado potato beetle (CPB) midgut membrane metalloprotease was found to be involved in the proteolytic processing of Cry3Aa. Interaction of Cry3Aa with BBMV membrane proteases resulted in a distinct pattern of proteolysis. Cleavage was demonstrated to occur in protease accessible regions of domain III and was specifically inhibited by the metalloprotease inhibitors 1,10-phenanthroline and acetohydroxamic acid. Proteolytic inhibition by a peptide representing a segment of proteolysis in domain III and the metalloprotease inhibitor acetohydroxamic acid correlated with increased pore formation, evidencing that Cry3Aa is a specific target of a CPB membrane metalloprotease that degrades potentially active toxin.  相似文献   

16.
Crystal proteins synthesized by Bacillus thuringiensis (Bt) have been used as biopesticides because of their toxicity to the insect larval hosts. To protect the proteins from environmental stress to extend their activity, we have developed a new microcapsule formulation. Poly (acrylic acid) (PAH) and poly (styrene sulfonate) (PSS) were fabricated through layer-by-layer self-assembly based on a CaCO3 core. Cry1Ac protoxins were loaded into microcapsules through layer-by-layer self-assembly at low pH, and the encapsulated product was stored in water at 4°C. Scanning electron microscopy (SEM) was used to observe the morphology of the capsules. To confirm the successful encapsulation, the loading results were observed with a confocal laser scattering microscope (CLSM), using fluorescein-labeled Cry1Ac protoxin (FITC-Cry1Ac). The protoxins were released from the capsule under the alkaline condition corresponding to the midgut of certain insects, a condition which seldom exists elsewhere in the environment. The following bioassay experiment demonstrated that the microcapsules with Cry1Ac protoxins displayed approximately equivalent insecticidal activity to the Asian corn borer compared with free Cry1Ac protoxins, and empty capsules proved to have no effect on insects. Further result also indicated that the formulation could keep stable under the condition of heat and desiccation. These results suggest that this formulation provides a promising methodology that protects protoxins from the environment and releases them specifically in the target insects’ midgut, which has shown potential as biopesticide in the field.  相似文献   

17.
Bacillus thuringiensis serovar israelensis (B. thuringiensis subsp. israelensis) produces four insecticidal crystal proteins (ICPs) (Cry4A, Cry4B, Cry11A, and Cyt1A). Toxicity of recombinant B. thuringiensis subsp. israelensis strains expressing only one of the toxins was determined with first instars of Tipula paludosa (Diptera: Nematocera). Cyt1A was the most toxic protein, whereas Cry4A, Cry4B, and Cry11A were virtually nontoxic. Synergistic effects were recorded when Cry4A and/or Cry4B was combined with Cyt1A but not with Cry11A. The binding and pore formation are key steps in the mode of action of B. thuringiensis subsp. israelensis ICPs. Binding and pore-forming activity of Cry11Aa, which is the most toxic protein against mosquitoes, and Cyt1Aa to brush border membrane vesicles (BBMVs) of T. paludosa were analyzed. Solubilization of Cry11Aa resulted in two fragments, with apparent molecular masses of 32 and 36 kDa. No binding of the 36-kDa fragment to T. paludosa BBMVs was detected, whereas the 32-kDa fragment bound to T. paludosa BBMVs. Only a partial reduction of binding of this fragment was observed in competition experiments, indicating a low specificity of the binding. In contrast to results for mosquitoes, the Cyt1Aa protein bound specifically to the BBMVs of T. paludosa, suggesting an insecticidal mechanism based on a receptor-mediated action, as described for Cry proteins. Cry11Aa and Cyt1Aa toxins were both able to produce pores in T. paludosa BBMVs. Protease treatment with trypsin and proteinase K, previously reported to activate Cry11Aa and Cyt1Aa toxins, respectively, had the opposite effect. A higher efficiency in pore formation was observed when Cyt1A was proteinase K treated, while the activity of trypsin-treated Cry11Aa was reduced. Results on binding and pore formation are consistent with results on ICP toxicity and synergistic effect with Cyt1Aa in T. paludosa.  相似文献   

18.
Abstract:  To monitor the resistance of field populations of the diamondback moth Plutella xylostella in China to the insecticidal protein Cry1Ac, Cry1Ba and commercial formulation Bacillus thuringiensis var. kurstaki (Btk), six representative populations of the diamondback moth were collected from Shanghai, Shandong, Hubei, Hunan, Zhejiang and Guangdong provinces of China where crucifer crop plants are intensively planted. Bioassay results showed that the populations of the diamondback moth from different locations exhibited different levels of resistance, compared with a susceptible laboratory population. The Guangdong field population was 56.15- and 21.90-fold resistant to Cry1Ac and Btk, respectively. Shanghai, Hunan, Shandong and Zhejiang populations were 37.85-, 17.24-, 10.24- and 9.41-fold resistant to Cry1Ac, respectively, but were not resistant to Btk. The Hubei population did not show resistance to Cry1Ac and Btk. Almost all tested populations were susceptible to Cry1Ba, but the Guangdong population showed some tolerance to Cry1Ba with a LC50 of 0.69  μ g/ml which was 6.17-fold higher than that of the susceptible population. The results suggested that the complex resistance patterns of field populations of P. xylostella need to be considered for expression of Bt toxin genes in genetically-engineered crop plants and commercial formulations.  相似文献   

19.
The pores formed by Bacillus thuringiensis insecticidal toxins have been shown to allow the diffusion of a variety of monovalent cations and anions and neutral solutes. To further characterize their ion selectivity, membrane permeability induced by Cry1Aa and Cry1Ac to amino acids (Asp, Glu, Ser, Leu, His, Lys and Arg) and to divalent cations (Mg2+, Ca2+ and Ba2+) and anions (SO42− and phosphate) was analyzed at pH 7.5 and 10.5 with midgut brush border membrane vesicles isolated from Manduca sexta and an osmotic swelling assay. Shifting pH from 7.5 to 10.5 increases the proportion of the more negatively charged species of amino acids and phosphate ions. All amino acids diffused well across the toxin-induced pores, but, except for aspartate and glutamate, amino acid permeability was lower at the higher pH. In the presence of either toxin, membrane permeability was higher for the chloride salts of divalent cations than for the potassium salts of divalent anions. These results clearly indicate that the pores are cation-selective.  相似文献   

20.
Alanine substitution mutations in the Cry1Ac domain III region, from amino acid residues 503 to 525, were constructed to study the functional role of domain III in the toxicity and receptor binding of the protein to Lymantria dispar, Manduca sexta, and Heliothis virescens. Five sets of alanine block mutants were generated at the residues 503SS504, 506NNI508, 509QNR511, 522ST523, and 524ST525. Single alanine substitutions were made at the residues 509Q, 510N, 511R, and 513Y. All mutant proteins produced stable toxic fragments as judged by trypsin digestion, midgut enzyme digestion, and circular dichroism spectrum analysis. The mutations, 503SS504-AA, 506NNI508-AAA, 522ST523-AA, 524ST525-AA, and 510N-A affected neither the protein’s toxicity nor its binding to brush border membrane vesicles (BBMV) prepared from these insects. Toward L. dispar and M. sexta, the 509QNR511-AAA, 509Q-A, 511R-A, and 513Y-A mutant toxins showed 4- to 10-fold reductions in binding affinities to BBMV, with 2- to 3-fold reductions in toxicity. Toward H. virescens, the 509QNR511-AAA, 509Q-A, 511R-A, and 513Y-mutant toxins showed 8- to 22-fold reductions in binding affinities, but only 509QNR511-AAA and 511R-A mutant toxins reduced toxicity by approximately three to four times. In the present study, greater loss in binding affinity relative to toxicity has been observed. These data suggest that the residues 509Q, 511R, and 513Y in domain III might be only involved in initial binding to the receptor and that the initial binding step becomes rate limiting only when it is reduced more than fivefold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号