首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Otake H  Hayashi Y  Hamaguchi S  Sakaizumi M 《Genetics》2008,179(4):2157-2162
The medaka, Oryzias latipes, has an XX/XY sex-determination system, and a Y-linked DM-domain gene, DMY, is the sex-determining gene in this species. Since DMY appears to have arisen from a duplicated copy of the autosomal DMRT1 gene approximately 10 million years ago, the medaka Y chromosome is considered to be one of the youngest male-determining chromosomes in vertebrates. In the screening process of sex-reversal mutants from wild populations, we found a population that contained a number of XY females. PCR, direct sequencing, and RT-PCR analyses revealed two different null DMY mutations in this population. One mutation caused loss of expression during the sex-determining period, while the other comprised a large deletion in putative functional domains. YY females with the mutant-type DMY genes on their Y chromosomes were fully fertile, indicating that the X and Y chromosomes were functionally the same except for the male-determining function. In addition, we investigated the frequencies of the sex chromosome types in this population over four successive generations. The Y chromosomes bearing the mutant-type DMY genes were detected every year with no significant differences in their frequencies. These results demonstrate that aberrant Y chromosomes behaving as X chromosomes have been maintained in this population.  相似文献   

2.
The medaka, Oryzias latipes, has an XX/XY sex determination mechanism. A Y-linked DM domain gene, DMY, has been isolated by positional cloning as a prime candidate for the sex-determining gene. Furthermore, the crucial role of DMY during male development was established by studying two wild-derived XY female mutants. In this study, to find new DMY and sex-determination related gene mutations, we conducted a broad survey of the genotypic sex (DMY-negative or DMY-positive) of wild fish. We examined 2274 wild-caught fish from 40 localities throughout Japan, and 730 fish from 69 wild stocks from Japan, Korea, China, and Taiwan. The phenotypic sex type agreed with the genotypic sex of most fish, while 26 DMY-positive (XY) females and 15 DMY-negative (XX) males were found from 13 and 8 localities, respectively. Sixteen XY sex-reversals from 11 localities were mated with XY males of inbred strains, and the genotypic and phenotypic sexes of the F(1) progeny were analyzed. All these XY sex-reversals produced XY females in the F(1) generation, and all F(1) XY females had the maternal Y chromosome. These results show that DMY is a common sex-determining gene in wild populations of O. latipes and that all XY sex-reversals investigated had a DMY or DMY-linked gene mutation.  相似文献   

3.
DMY is the second vertebrate sex-determining gene identified from the fish, Oryzias latipes. In this study, we used two different ways of sex reversal, DMY knock-down and estradiol-17beta (E2) treatment, to determine the possible function of DMY during early gonadal sex differentiation in XY medaka. Our findings revealed that the mitotic and meiotic activities of the germ cells in the 0 day after hatching (dah) DMY knock-down XY larvae were identical to those of the normal XX larvae, suggesting the microenvironment of these XY gonads to be similar to that of the normal XX gonad, where DMY is naturally absent. Conversely, E2 treatment failed to initiate mitosis in the XY gonad, possibly due to an active DMY, even though it could initiate meiosis. Present study is the first to prove that the germ cells in the XY gonad can resume the mitotic activity, if DMY was knocked down.  相似文献   

4.
Zhang J 《Genetics》2004,166(4):1887-1895
  相似文献   

5.
Sex reversal of XY male to functional females was induced by estrogen treatment during the embryonic period in the medaka Oryzias latipes. The present study aimed to examine whether exogenous estrogen (estradiol-17beta; E(2)) affects early sex differentiation, paying particular attention to DMY expression and proliferation activity of germ cells in estrogen treated XY individuals. Our results showed that germ cell number was not affected by E(2) treatment at hatching, and that DMY expression was not suppressed under conditions of sex reversal. Therefore, male differentiation of germ cells, which is triggered by the expression of DMY in the supporting cell lineage, proceeds even in E(2) treated XY individuals until hatching, and early sex differentiation is not altered by estrogen. However, sex reversal occurred after hatching probably because of estrogen remaining in the yolk. Interestingly, DMY expression was also detected in the large follicle layer of E(2 )treated XY ovary. These results suggested that DMY regulates male determination in early embryonic stage but does not suppress female follicle development.  相似文献   

6.
DMY is a Y-specific DM-domain gene required for male development and appears to be the sex-determining gene in the teleost fish medaka, Oryzias latipes. Although the genomic region containing DMY appears to have originated through duplication of the DMRT1 region, it is unknown when the duplication occurred. Here we show that O. curvinotus also has the DMY gene on the Y chromosome, which is homologous to the Y chromosome of medaka, and that DMY is expressed in XY embryos. A phylogenetic tree based on the amino acid sequence including the DM-domain shows that DMY was derived from DMRT1 immediately before speciation of O. latipes and O. curvinotus.  相似文献   

7.
The teleost fish, Oryzias curvinotus, is a closely related species to the medaka, Oryzias latipes, and both species have the DMY gene, which is required for male development in O. latipes. It suggests that the molecular function of the DMY gene and the following molecular events of sex differentiation are conserved between these two species. In the present study, we obtained interspecific hybrids between O. curvinotus and O. latipes and demonstrated sex-reversed XY females in the hybrids. The incidence of sex-reversed females in F1 XY hybrids between O. curvinotus females and O. latipes males, and hybrids between O. latipes females and O. curvinotus males were 21% and 100%, respectively. These results indicate that DMY does not always determine maleness in hybrid fish even though it is able to specify normal male development on its native genetic background and suggest that there are some differences between DMY(latipes) and DMY(curvinotus) alleles. Appearance of XY females in F1 hybrids also suggests that an autosomal or X-liked gene(s) from the maternal species interferes in the function of the paternal DMY gene in the male-determining process of the hybrid fish. These hybrid fish would supply a new experimental approach for investigating the genetic and molecular pathway of testis determination and differentiation.  相似文献   

8.
Although sex determination systems in animals are diverse, sex-determining genes have been identified only in mammals and some invertebrates. Recently, DMY (DM domain gene on the Y chromosome) has been found in the sex-determining region on the Y chromosome of the teleost medaka fish, Oryzias latipes. Functional and expression analyses of DMY show it to be the leading candidate for the male-determining master gene of the medaka. Although some work is required to define DMY as the master sex-determining gene, medaka is expected to be a good experimental animal for investigating the precise mechanisms involved in primary sex determination in non-mammalian vertebrates. In this article, the process of identification of DMY and is summarized and the origins of DMY and sexual development of the medaka's gonads are reviewed. In addition, putative functions of DMY are discussed.  相似文献   

9.
The male sex-determining gene, DMY, of the medaka is considered to have arisen via gene duplication of DMRT1. In the medaka, both genes are expressed in Sertoli cell lineage cells, but their temporal expression patterns are quite different. DMY expression starts just before the sex-determining period, whereas DMRT1 expression occurs during the testicular differentiation period. To evaluate the alterations to the expression patterns of the DMRT1 genes after duplication, we analyzed the morphological gonadal sex differentiation processes and expression patterns of DMRT1 in Oryzias luzonensis and Oryzias mekongensis, which are closely related to the medaka but do not have DMY. Male-specific upregulation of DMRT1 in these two species occurred during the testicular differentiation period, similar to the case for DMRT1 in the medaka. These findings suggest that DMY acquired a novel temporal expression pattern after duplication and that this event played a critical role in the evolutionary process of this gene.  相似文献   

10.
11.
Silene latifolia is a dioecious plant with heteromorphic sex chromosomes that have originated only ~10 million years ago and is a promising model organism to study sex chromosome evolution in plants. Previous work suggests that S. latifolia XY chromosomes have gradually stopped recombining and the Y chromosome is undergoing degeneration as in animal sex chromosomes. However, this work has been limited by the paucity of sex-linked genes available. Here, we used 35 Gb of RNA-seq data from multiple males (XY) and females (XX) of an S. latifolia inbred line to detect sex-linked SNPs and identified more than 1,700 sex-linked contigs (with X-linked and Y-linked alleles). Analyses using known sex-linked and autosomal genes, together with simulations indicate that these newly identified sex-linked contigs are reliable. Using read numbers, we then estimated expression levels of X-linked and Y-linked alleles in males and found an overall trend of reduced expression of Y-linked alleles, consistent with a widespread ongoing degeneration of the S. latifolia Y chromosome. By comparing expression intensities of X-linked alleles in males and females, we found that X-linked allele expression increases as Y-linked allele expression decreases in males, which makes expression of sex-linked contigs similar in both sexes. This phenomenon is known as dosage compensation and has so far only been observed in evolutionary old animal sex chromosome systems. Our results suggest that dosage compensation has evolved in plants and that it can quickly evolve de novo after the origin of sex chromosomes.  相似文献   

12.
A sex-determining gene, DMY, which is comparable to the SRY gene in mammals, has been identified in the medaka, Oryzias latipes. Although Oryzias curvinotus, a closely related species to O. latipes also has DMY, this gene has not been found in other Oryzias fishes. It has recently been demonstrated that the sex chromosomes of Oryzias dancena and Oryzias hubbsi differ from those of O. latipes and these species have XX/XY and ZZ/ZW systems, respectively. This may suggest that Oryzias species have evolved different sex-determining genes on different sex chromosomes. In the present study, we investigated the sex determination mechanism in Oryzias minutillus, which is closely related to O. dancena and O. hubbsi. Linkage analysis using 14 isolated sex-linked DNA markers showed that this species has an XX/XY sex determination system. These sex-linked markers were located on linkage group 8 of O. latipes, suggesting that the sex chromosomes of O. minutillus are homologous to the autosomes of other Oryzias species. Furthermore, fluorescence in situ hybridization using a tightly sex-linked marker demonstrated that the XY sex chromosomes of O. minutillus and O. dancena were not homologous. These findings provide additional evidence for independent origins of sex chromosomes and sex-determining genes in these closely related species.  相似文献   

13.
Although the sex-determining gene DMY has been identified on the Y chromosome in the medaka (Oryzias latipes), this gene is absent in most Oryzias species, suggesting that closely related species have different sex-determining genes. Here, we investigated the sex-determination mechanism in O. dancena, which does not possess the DMY gene. Since heteromorphic sex chromosomes have not been reported in this species, a progeny test of sex-reversed individuals produced by hormone treatment was performed. Sex-reversed males yielded all-female progeny, indicating that O. dancena has an XX/XY sex-determination system. To uncover the cryptic sex chromosomes, sex-linked DNA markers were screened using expressed sequence tags (ESTs) established in O. latipes. Linkage analysis of isolated sex-linked ESTs showed a conserved synteny between the sex chromosomes in O. dancena and an autosome in O. latipes. Fluorescence in situ hybridization (FISH) analysis of these markers confirmed that sex chromosomes of these species are not homologous. These findings strongly suggest an independent origin of sex chromosomes in O. dancena and O. latipes. Further analysis of the sex-determining region in O. dancena should provide crucial insights into the evolution of sex-determination mechanisms in vertebrates.  相似文献   

14.
DMY, the first sex-determining gene to be described in a nonmammal vertebrate was recently characterized in the medaka fish (Oryzias latipes). It is homologous to DMRT1, a conserved gene of the sex determination cascade in vertebrates. We have checked the near complete genomes of two other percomorph fishes, Tetraodon nigroviridis and Takifugu rubripes, for supplementary homologs of DMRT1 and DMY. We also compared the new gene, DMY, to its homolog DMRT1 from all available vertebrates. Finally, we found evidence for sex-specific expression and alternative splicing of the homolog from T. nigroviridis. Our results show that DMY is a recent duplicate of DMRT1 in the medaka. Its role in sex determination was not acquired through an acceleration of evolutionary rates, but by translocation to the Y chromosome and possibly changes at key positions.  相似文献   

15.
A new mutant that has neither male nor female secondary sex characters was found in the medaka, Oryzias latipes. Both XX and XY mature mutants had gonads with many spermatozoa, but spawning did not occur when the mutants were paired with normal males or normal females. F1 progeny were successfully obtained by artificial insemination using unfertilized eggs from wild-type females and spermatozoa of the XY mutant. The mutant phenotype did not occur in the F1 progeny from this cross. Incrossing among the F1 progeny produced 17 mutant offspring out of 68 progeny (25%), demonstrating that the mutant phenotype is caused by a single recessive mutation. This mutant was named scl (sex character-less). Because papillary processes, a male secondary sex character, were induced in the XY mutants by androgen administration, it seems that the androgen receptor is functioning normally. We found a loss-of-function type mutation in the P450c17 gene of the mutant; this gene encodes a steroidogenic enzyme required for the production of estrogen and androgen. The scl phenotype was completely linked to the mutant genotype of P450c17, strongly suggesting that mutation at the P450c17 locus is responsible for the scl mutant phenotype.  相似文献   

16.
Campomelic dysplasia (Cd) occurs combined with sex reversal resulting in XY females. The recent identification of candidate genes for sex determination/differentiation and of a sex determining region on the human Y chromosome prompted the authors to study these genes for mutations in patients with Cd and sex reversal. In a total of five cases, no evidence for a mutation in the genes SRY, ZFY, ZFX, MEA and some anonymous Y-linked sequences was found. In addition to Southern analysis, gene expression of ZFY, ZFX and MEA was found to be normal as well. It is concluded that sex reversal in this condition is due to mutation in a so far unidentified gene which may act secondary to the testis-determining factor (TDF).  相似文献   

17.
Male-to-female 64,XY sex reversal is a frequently reported chromosome abnormality in horses. Despite this, the molecular causes of the condition are as yet poorly understood. This is partially because only limited molecular information is available for the horse Y chromosome (ECAY). Here, we used the recently developed ECAY map and carried out the first comprehensive study of the Y chromosome in XY mares (n=18). The integrity of the ECAY in XY females was studied by FISH and PCR using markers evenly distributed along the euchromatic region. The results showed that the XY sex reversal condition in horses has two molecularly distinct forms: (i) a Y-linked form that is characterized by Y chromosome deletions and (ii) a non-Y-linked form where the Y chromosome of affected females is molecularly the same as in normal males. Further analysis of the Y-linked form (13 cases) showed that the condition is molecularly heterogeneous: the smallest deletions spanned about 21 kb, while the largest involved the entire euchromatic region. Regardless of the size, all deletions included the SRY gene. We show that the deletions were likely caused by inter-chromatid recombination events between repeated sequences in ECAY. Further, we hypothesize that the occurrence of SRY-negative XY females in some species (horse, human) but not in others (pig, dog) is because of differences in the organization of the Y chromosome. Finally, in contrast to the Y-linked SRY-negative form of equine XY sex reversal, the molecular causes of SRY-positive XY mares (5 cases) remain as yet undefined.  相似文献   

18.
Seabream gonadotropin-releasing hormone (sbGnRH)-the chief preoptic area-hypothalamus (POA-H) form of GnRH in tilapia is involved in sexual maturation. In this study, we investigated the qualitative changes in ontogeny of sbGnRH immunoreactivity (ir-), between sexes to understand its impending role during sex differentiation. For this, the differences in immunocytochemical localization of sbGnRH in genetically male (XY) and female (XX) fish were studied from 1 day after hatching (dah), through the critical period of sex differentiation (7-21 dah) to 40 dah and mature Nile tilapia. Specific antisera against sbGnRH were used for immunolocalization. SbGnRH ir- neurons were observed in POA-H as early as 5 and 15 dah in XY fish and XX fish, respectively. Higher ir- was detected in the POA-H of XY tilapia compared with XX population till 10 dah. There was a qualitative drop in sbGnRH ir- neurons/cell bodies in POA-H around 20 dah till 30 dah in XY population compared with other durations. SbGnRH ir- cells were detected in pituitary of XX fish by 15 dah and in XY fish around 10 dah but seemed to drop down by 20 dah in XY whereas it continued to remain steady in XX fish. The sbGnRH ir- in XY fish showed a rise from 35 dah and thence till 40 dah. This study revealed subtle differences in POA-H and pituitary sbGnRH ir- during early development between genetic male and female fish with possible implications in sex differentiation.  相似文献   

19.
In vertebrates, sex differences in the brain have been attributed to differences in gonadal hormone secretion; however, recent evidence in mammals and birds shows that sex chromosome-linked genes, independent of gonadal hormones, also mediate sex differences in the brain. In this study, we searched for genes that were differentially expressed between the sexes in the brain of a teleost fish, medaka (Oryzias latipes), and identified two sex chromosome genes with male-biased expression, cntfa (encoding ciliary neurotrophic factor a) and pdlim3a (encoding PDZ and LIM domain 3 a). These genes were found to be located 3–4 Mb from and on opposite sides of the Y chromosome-specific region containing the sex-determining gene (the medaka X and Y chromosomes are genetically identical, differing only in this region). The male-biased expression of both genes was evident prior to the onset of sexual maturity. Sex-reversed XY females, as well as wild-type XY males, had more pronounced expression of these genes than XX males and XX females, indicating that the Y allele confers higher expression than the X allele for both genes. In addition, their expression was affected to some extent by sex steroid hormones, thereby possibly serving as focal points of the crosstalk between the genetic and hormonal pathways underlying brain sex differences. Given that sex chromosomes of lower vertebrates, including teleost fish, have evolved independently in different genera or species, sex chromosome genes with sexually dimorphic expression in the brain may contribute to genus- or species-specific sex differences in a variety of traits.  相似文献   

20.
Testicular type Sox9 is the most upstream conserved gene in the sex determining cascade among vertebrate. However, in medaka, only one Sox9 gene was identified as expressed in the ovary; no other Sox9 gene was reported expressed in the testis. We explored the medaka genome and cloned a novel testicular type Sox9 cDNA. Phylogenetic analysis revealed that both our isolated Sox9 and the already reportedly cloned medaka Sox9 belongs zebrafish Sox9a branch. Therefore, we named our gene Sox9a2. Unexpectedly, Sox9a2 mRNA was expressed in somatic cells surrounding germ cells at similar high levels in both sexes during early gonadal sex differentiation. However, at the initial stage of testicular tubules development, the expression of Sox9a2 was maintained only in XY gonads, and was remarkably reduced in XX gonads. These results suggest that Sox9a2 is not involved in early sex determination and differentiation, but is involved in the later development of testicular tubules in medaka.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号