首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions between Ca2+ and C-reactive protein (CRP) have been characterized using a surface plasmon resonance (SPR) biosensor. The protein was immobilized on a sensor chip, and increasing concentrations of Ca2+ or phosphocholine were injected. Binding of Ca2+ induced a 10-fold higher signal than expected from the molecular weight of Ca2+. It was interpreted to result from the conformational change that occurs on binding of Ca2+. Two sites with different characteristics were distinguished: a high-affinity site with KD = 0.03 mM and a low-affinity site with KD = 5.45 mM. The pH dependencies of the two Ca2+ interactions were different and enabled the assignment of the different sites in the three-dimensional structure of CRP. There was no evidence for cooperativity in the phosphocholine interaction, which had KD = 5 μM at 10 mM Ca2+. SPR biosensors can clearly detect and quantify the binding of very small molecules or ions to immobilized proteins despite the theoretically very low signals expected on binding, provided that significant conformational changes are involved. Both the interactions and the conformational changes can be characterized. The data have important implications for the understanding of the function of CRP and suggest that Ca2+ is an efficient regulator under physiological conditions.  相似文献   

2.
Schubert F  Zettl H  Häfner W  Krauss G  Krausch G 《Biochemistry》2003,42(34):10288-10294
We report a kinetic and thermodynamic analysis of interactions between ssDNA and replication protein A (RPA) using surface plasmon resonance (SPR) and fluorescence correlation spectroscopy (FCS) at variable temperature. The two methods yield different values for the Gibbs free energy but nearly the same value for the reaction enthalpy of ssDNA-RPA complex formation. The Gibbs free energy was determined by SPR and FCS to be -62.6 and -54.7 kJ/mol, respectively. The values for the reaction enthalpy are -64.4 and -66.5 kJ/mol. It is concluded that the difference in Gibbs free energy measured by the two methods is due to different reaction entropies. The entropic contribution to the free energy at 25 degrees C is -1.8 kJ/mol for SPR and -11.8 kJ/mol for FCS. In SPR, the reaction is restricted to two dimensions because of immobilization of the DNA molecules to the sensor surface. In contrast, FCS is able to follow complex formation without spatial restrictions. In consequence, the reaction entropy determined from SPR experiments is lower than for FCS experiments.  相似文献   

3.
Sialyltransferases are enzymes responsible for the important sialylation of glycoconjugates. Since crystal structures are not available, other tools are needed to study enzymatic mechanisms. As a model, we used human alpha2,6-sialyltransferase. A putative acceptor-binding domain containing the small and the very small sialyl motifs was randomly mutated. This resulted in enzymes with altered enzymatic activity. Affinity chromatography demonstrated that their binding to donor substrate was maintained. To illustrate the role of the mutated domain in acceptor binding, a method based on surface plasmon resonance was set up. Only at low salt and high acceptor concentration was association of wild-type ST6GalI with asialofetuin demonstrated. As expected, this interaction was affected by cytidine 5'-monophospho-N-acetylneuraminic acid, the donor substrate, which proves the specificity of the interaction. Different types of mutants were found. For some, the drop in activity could be explained by loss in affinity for the acceptor. For others, the catalytic center, but not the acceptor-binding site, was affected. Neither acceptor binding nor catalytic activity were limited to the sialyl motifs. To our knowledge, this is the first example in which surface plasmon resonance is successfully used to demonstrate the binding of a glycosyltransferase to its natural acceptor.  相似文献   

4.
Kinetic studies of RNA-protein interactions using surface plasmon resonance   总被引:4,自引:0,他引:4  
Although structural, biochemical, and genetic studies have provided much insight into the determinants of specificity and affinity of proteins for RNA, little is currently known about the kinetics that underlie RNA-protein interactions. Protein-RNA complexes are dynamic, and the kinetics of binding and release could influence many processes, such as the ability of RNA-binding proteins to compete for binding sites, the sequential assembly of ribonucleoprotein complexes, and the ability of bound RNA to move between cellular compartments. Therefore, to attain a complete and biologically relevant understanding of RNA-protein interactions, complex formation must be studied not only in equilibrated reactions, but also as a dynamic process. BIACORE, a surface plasmon resonance-based biosensor technology, allows intermolecular interactions to be measured in real time, and can provide both equilibrium and kinetic information about complex formation. This technology is a powerful tool with which to study the dynamics of RNA-protein interactions. We have used BIACORE extensively to obtain detailed insight into the interaction between RNA and proteins carrying RNA recognition motif domains. Here we discuss the physical principles on which BIACORE is based, and the required instrumentation. We describe how to design well-controlled RNA-protein interaction experiments aimed at yielding high-quality data, and outline the steps required for data analysis. In addition, we present examples to illustrate how kinetic studies have provided us with unique insights into the interaction of the spliceosomal U1A protein and the neuronal HuD protein with their respective RNA targets.  相似文献   

5.
Cell surface expression of the epithelial Na(+) channel ENaC is regulated by the ubiquitin ligase Nedd4. Binding of the WW domains of Nedd4 to the PY region in the carboxy tails of beta and gammaENaC, results in channel ubiquitination and degradation. Kinetic analysis of these interactions has been done using surface plasmon resonance. Synthetic peptides corresponding to the PY regions of beta and gammaENaC were immobilized on a sensor chip and "real-time" kinetics of their binding to recombinant WW proteins was determined. Specificity of the interactions was established by competition experiment, as well as by monitoring effects of a point mutation known to impair Nedd4/ENaC binding. These data provides the first determination of association, dissociation and equilibrium constants for the interactions between WW2 and beta or gammaENaC.  相似文献   

6.
We performed a basic experiment for the rapid, on-line, real-time measurement of hepatitis B surface antigen using a surface plasmon resonance biosensor. We immobilized anti-HBsAg (hepatitis B surface antigen) polyclonal antibody, as a ligand, to the dextran layer on a CM5 chip surface that had previously been activated byN-hydroxysuccinimide. A sample solution containing HBsAg was fed through a microfluidic channel, and the reflecting angle change due to the mass increase from the binding was detected. The binding characteristics between HBsAg and its polyclonal antibody followed the typical monolayer adsorption isotherm. When the entire immobilized antibody had interacted, no additional, non-specific binding occurred, suggesting the immunoreaction was very specific. The bound antigen per unit mass of the antibody was independent of the immobilized ligand density. No significant steric hindrance was observed at an immobilization density of approximately 17.6 ng/mm2. The relationship between the HBsAg concentration in the sample solution and the antigen bound to the ligand was linear up to ca. 40 μg/mL. This linearity was much higher than that of the ELISA method. It appeared the antigen-antibody binding increased as the immobilized ligand density increased. In summary, this study showed the potential of this SPR biosensor-based method as a rapid, simple and multi-sample on-line assay. Once properly validated, it may serve as a more efficient method for HBsAg quantification for replacing the ELISA.  相似文献   

7.
Duverger E  Frison N  Roche AC  Monsigny M 《Biochimie》2003,85(1-2):167-179
The specificity, the strength, the kinetics and some thermodynamic parameters of sugar-protein interactions are easily assessed by surface plasmon resonance (SPR). This paper intends to present both theoretical and practical considerations. This includes: the principle of SPR, the analysis according to Langmuir and Scatchard, the problems linked either to mass transport limitation, to the heterogeneity of the immobilized ligand density or to the non-linearity due to cluster effects. The non-linearity may be taken into account by either one of two ways: the fractal or the Sips approaches that have been developed with the aim of linearizing the data. In addition, selected data obtained by using either immobilized carbohydrates or immobilized lectins are summarized. The SPR has also been found useful to collect information concerning oligosaccharide structure as well as lectin-sugar specificity and to develop new tools with medical applications. Finally, a series of practical considerations are gathered in the hope of avoiding some of the common pitfalls arising in sugar-lectin interaction studies based on the use of SPR.  相似文献   

8.
Substrate-supported planar lipid bilayers are generated most commonly by the adsorption and transformation of phospholipid vesicles (vesicle fusion). We have recently demonstrated that simultaneous measurements of surface plasmon resonance (SPR) and surface plasmon fluorescence spectroscopy (SPFS) are highly informative for monitoring lipid membranes on solid substrates. SPR and SPFS provide information on the amount and topography of adsorbed lipid membranes, respectively. In this study, the vesicle fusion process was studied in detail by measuring SPR-SPFS at a higher rate and plotting the obtained fluorescence intensity versus film thickness. We could track the initial adsorption of vesicles, the onset of vesicle rupture occurring at certain vesicle coverage of the surface, and the autocatalytic transformation into planar bilayers. We also monitored vesicle fusion of the same vesicle suspensions by quartz crystal microbalance with dissipation monitoring (QCM-D). We compared the results obtained from SPR-SPFS and QCM-D to highlight the unique information provided by SPR-SPFS.  相似文献   

9.
10.
Para‐maleimidophenyl (p‐MP) modified gold surfaces have been prepared by one‐step electrochemical deposition and used in surface plasmon resonance (SPR) studies. Therefore, a FITC mimotope peptide (MP1, 12 aa), a human mucin 1 epitope peptide (MUC, 9 aa) and a protein with their specific antibodies were used as model systems. The peptides were modified with an N‐terminal cysteine for covalent and directed coupling to the maleimido functionalized surface by means of Michael addition. The coupling yield of the peptide, the binding characteristics of antibody and the unspecific adsorption of the analytes were investigated. The results expand the spectrum of biosensors usable with p‐MP by widely used SPR and support its potential to be versatile for several electrochemical and optical biosensors. This allows the combination of an electrochemical and optical read‐out for a broad variety of biomolecular interactions on the same chip. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The lipid binding behaviour of the antimicrobial peptides magainin 1, melittin and the C-terminally truncated analogue of melittin (21Q) was studied with a hybrid bilayer membrane system using surface plasmon resonance. In particular, the hydrophobic association chip was used which is composed of long chain alkanethiol molecules upon which liposomes adsorb spontaneously to create a hybrid bilayer membrane surface. Multiple sets of sensorgrams with different peptide concentrations were generated. Linearisation analysis and curve fitting using numerical integration analysis were performed to derive estimates for the association (k(a)) and dissociation (k(d)) rate constants. The results demonstrated that magainin 1 preferentially interacted with negatively charged dimyristoyl-L-alpha-phosphatidyl-DL-glycerol (DMPG), while melittin interacted with both zwitterionic dimyristoyl-L-alpha-phosphatidylcholine and anionic DMPG. In contrast, the C-terminally truncated melittin analogue, 21Q, exhibited lower binding affinity for both lipids, showing that the positively charged C-terminus of melittin greatly influences its membrane binding properties. Furthermore the results also demonstrated that these antimicrobial peptides bind to the lipids initially via electrostatic interactions which then enhances the subsequent hydrophobic binding. The biosensor results were correlated with the conformation of the peptides determined by circular dichroism analysis, which indicated that high alpha-helicity was associated with high binding affinity. Overall, the results demonstrated that biosensor technology provides a new experimental approach to the study of peptide-membrane interactions through the rapid determination of the binding affinity of bioactive peptides for phospholipids.  相似文献   

12.
Human cytomegalovirus (CMV) is a large enveloped virus that encodes multiple glycoproteins required for virus-cell binding and fusion. To assess the binding properties of antibodies with target glycoprotein in a natural context of infection, we investigated the feasibility of using the surface plasmon resonance (SPR) technique for studying the direct binding of antibodies with CMV virions. Direct immobilization of whole virions to sensor surface and a surface regeneration procedure allowed for quantitative and reproducible measurements of binding affinity and binding kinetics of antibody–whole virion interactions. The conformational and functional integrity of viral particles was not compromised by the regeneration condition as evaluated with antibodies recognizing conformational epitopes and by electron microscopy. Binding of an irrelevant antibody was not observed, indicating the high specificity of the method. A panel of anti-gB antibodies was measured and the binding affinities correlated fairly well with those determined by ELISA. These data demonstrated that the interaction of anti-gB antibody with whole virion of large enveloped CMV can be quantitatively studied using SPR. This method has been successfully applied for screening and selection of anti-CMV antibodies and can be potentially extended to study antibody–glycoprotein interactions of other related herpesviruses.  相似文献   

13.
Interactions between the immobilized weak-affinity monoclonal IgG antibody 39.5, which is specific for the glucose-alpha 1,4-glucose motif, and various oligosaccharides were studied with surface plasmon resonance technology. The antibody was immobilized at high levels on the surface of the sensor chip and different concentrations of the analytes were injected at 25 and 40 degrees C. The 39.5 antibody exhibited specific binding to maltose, tetraglucose and maltotriose, with dissociation constants Kd in the range from 0.07 mM (25 degrees C) to 1.0 mM (40 degrees C). Association and dissociation rate constants (ka and kd) were rapid and baseline was obtained almost immediately after the end of each antigen injection. This excluded the need for a regeneration step but also made calculation of the kinetic values impossible. Owing to the weak affinity and the small size of the analytes (< 1000 Da), a careful design of control surfaces is demanded to exclude artefactual results.  相似文献   

14.
Substrate-supported planar lipid bilayer membranes are attractive model cellular membranes for biotechnological applications such as biochips and sensors. However, reliable fabrication of the lipid membranes on solid surfaces still poses significant technological challenges. In this study, simultaneous surface plasmon resonance (SPR) and surface plasmon fluorescence spectroscopy (SPFS) measurements were applied to the monitoring of adsorption and subsequent reorganization of phospholipid vesicles on solid substrates. The fluorescence intensity of SPFS depends very sensitively on the distance between the gold substrate and the fluorophore because of the excitation energy transfer to gold. By utilizing this distance dependency, we could obtain information about the topography of the adsorbed membranes: Adsorbed vesicles could be clearly distinguished from planar bilayers due to the high fluorescence intensity. SPSF can also incorporate various analytical techniques to evaluate the physicochemical properties of the adsorbed membranes. As an example, we demonstrated that the lateral mobility of lipid molecules could be estimated by observing the recovery of fluorescence after photobleaching. Combined with the film thickness information obtained by SPR, SPR-SPFS proved to be a highly informative technique to monitor the lipid membrane assembly processes on solid substrates.  相似文献   

15.
A surface plasmon resonance (SPR) assay without surface regeneration was developed for rapid and sensitive detection of chloramphenicol (CAP). A CAP-amine derivative was synthesized using a polyethylene glycol chain attached to the CAP through a carbamate linkage and immobilized onto a Biacore dextran surface. This chemically modified surface significantly changed the binding behavior between antibody and CAP, shown by both fast association and fast dissociation rates, and created a rapid and sensitive SPR immunoassay of the CAP without any regeneration. The limits of detection achieved for CAP were 32.2 pg/ml in aqueous buffer and 42.4 pg/ml in honey-spiked samples.  相似文献   

16.
Previous studies have characterized interactions between the ubiquitin ligase Nedd4-1 and the epithelial Na(+) channel (ENaC). Such interactions control the channel cell surface expression and activity. Recently, evidence has been provided that a related protein, termed Nedd4-2, is likely to be the true physiological regulator of the channel. Unlike Nedd4-1, Nedd4-2 also interacts with the aldosterone-induced channel activating kinase sgk-1. The current study uses surface plasmon resonance to quantify the binding of the four WW domains of Nedd4-2 to synthetic peptides corresponding to the PY motifs of ENaC and sgk-1. The measurements demonstrate that WW3 and WW4 are the only Nedd4-2 domains interacting with both ENaC and sgk-1 and that their binding constants are in the 1-6 microM range.  相似文献   

17.
Surface plasmon resonance with an alkane L1 chip was used to investigate the binding of uropathogenic Escherichia coli, carrying adhesion receptors, to globotetraosylceramide (globoside; GbO4). The immobilization of globoside was reproducible and resulted in a stable globoside layer on the L1 chip. The data indicated that the globoside-immobilized L1 chip could be used for studying interactions with live or chemically fixed E. coli. The results indicated that the dissociation time was significantly reduced in glutaraldehyde-fixed E. coli as compared to living cells. Overall, the report demonstrates the significance of the L1 chip in terms of sensitivity, specificity, handling, and speed when studying globoside/E. coli interactions. This model may assist in screening for compounds that can inhibit the binding of uropathogenic E. coli to glycolipid ligands on target cells.  相似文献   

18.
We have developed a simple assay method for the evaluation of estrogen receptor (ER) binding capacity of chemicals without the use of radio- or fluorescence-labeled compounds. We used the solution competition assay by the BIACORE biosensor, a surface plasmon resonance biosensor, with estradiol as a ligand, human recombinant ER(alpha) (hrER(alpha)) as a high molecular weight (hmw) interactant and test chemicals as analytes. For the ligand, aminated estradiol with a spacer molecule (E2-17PeNH) was synthesized and immobilized on a carboxymethyl dextran-coated sensor chip by the amine coupling method. The injection of the hmw interactant hrER(alpha) to the biosensor raised the sensorgram, indicating its binding to the ligand E2-17PeNH. The binding of test chemicals to hrERalpha was determined as a reduction in the hrER(alpha) binding to E2-17PeNH. The dissociation constant for the binding to hrER(alpha) was calculated for estrone (4.29 x 10(-9)M), estradiol (4.04 x 10(-10)M), estriol (8.35 x 10(-10)M), tamoxifen (2.16 x 10(-8)M), diethylstilbestrol (1.46 x 10(-10)M), bisphenol A (1.35 x 10(-6)M) and 4-nonylphenol (7.49 x 10(-6)M), by plotting the data according to an equation based on mass action law. This method can also be used as a high throughput screening method.  相似文献   

19.
Considerable interest has been focused on telomerase because of its potential use in assays for cancer diagnosis, and for anti-telomerase drugs as a strategy for cancer chemotherapy. A number of assays based on the polymerase chain reaction (PCR) have been developed for evaluation of telomerase activity. To overcome the disadvantages of the conventional telomerase assay [telomeric repeat amplification protocol (TRAP)] related to PCR artifacts and troublesome post-PCR procedures, we have developed a telomeric repeat elongation (TRE) assay which directly measures telomerase activity as the telomeric elongation rate by biosensor technology using surface plasmon resonance (SPR). 5′-Biotinylated oligomers containing telomeric repeats were immobilized on streptavidin-pretreated dextran sensor surfaces in situ using the BIACORE apparatus. Subsequently, the oligomers associated with the telomerase extracts were elongated in the BIACORE apparatus. The rate of TRE was calculated by measuring the SPR signals. We examined elongation rates by the TRE assay in 18 cancer and three normal human fibroblast cell lines, and 12 human primary carcinomas and matching normal tissues. The elongation rates increased in a concentration- and time-dependent manner. Those of cancer cells were two to 10 times higher than fibroblast cell lines and normal tissues. Telomerase activities and its inhibitory effects of anti-telomerase agents as measured by both the TRE and TRAP assays showed a good correlation. Our assay allows precise quantitative comparison of a wide range of human cells from somatic cells to carcinoma cells. TRE assay is suitable for practical use in the assessment of telomerase activity in preclinical and clinical trials of telomerase-based therapies, because of its reproducibility, rapidity and simplicity.  相似文献   

20.
Surface plasmon resonance (SPR) measurements were used to screen refolding conditions to identify a physicochemical environment which gives an acceptable refolding yield for samples of glutathione-S-transferase (GST) denatured in 6 M guanidine hydrochloride and 32 mM dithiothreitol. The SPR measurements were performed on carboxymethylcellulose coated chips that could accommodate two separate flow paths. One side of the chip was derivatized with immobilized glutathione and the other with goat anti-GST antibody. This created a dual-derivatized chip capable of showing both the presence of GST and providing a measure of enzyme activity. The dual-derivatized chip could be regenerated using a two-step washing procedure and reused to analyze multiple samples from a screening study of protein refolding conditions. SPR measurements have been shown to be suitable for screening protein refolding conditions due to the high sensitivity, ease of chip regeneration and the ability to incorporate a control in the experimental design. The combination of such advantages with the high-throughput automated SPR systems currently available may be a valuable approach to determine conditions suitable for protein refolding following insoluble expression in a bacterial host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号