首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All vertebrates contain two nonmuscle myosin II heavy chains, A and B, which differ in tissue expression and subcellular distributions. To understand how these distinct distributions are controlled and what role they play in cell migration, myosin IIA and IIB were examined during wound healing by bovine aortic endothelial cells. Immunofluorescence showed that myosin IIA skewed toward the front of migrating cells, coincident with actin assembly at the leading edge, whereas myosin IIB accumulated in the rear 15-30 min later. Inhibition of myosin light-chain kinase, protein kinases A, C, and G, tyrosine kinase, MAP kinase, and PIP3 kinase did not affect this asymmetric redistribution of myosin isoforms. However, posterior accumulation of myosin IIB, but not anterior distribution of myosin IIA, was inhibited by dominant-negative rhoA and by the rho-kinase inhibitor, Y-27632, which also inhibited myosin light-chain phosphorylation. This inhibition was overcome by transfecting cells with constitutively active myosin light-chain kinase. These observations indicate that asymmetry of myosin IIB, but not IIA, is regulated by light-chain phosphorylation mediated by rho-dependent kinase. Blocking this pathway inhibited tail constriction and retraction, but did not affect protrusion, suggesting that myosin IIB functions in pulling the rear of the cell forward.  相似文献   

2.
Myosin light-chain phosphatase.   总被引:5,自引:0,他引:5       下载免费PDF全文
1. A method for the isolation of a new enzyme, myosin light-chain phosphatase, from rabbit white skeletal muscle by using a Sepharose-phosphorylated myosin light-chain affinity column is described. 2. The enzyme migrated as a single component on electrophoresis in sodium dodecyl sulphate/polyacrylamide gel at pH7.0, with apparent mol.wt. 70000. 3. The enzyme was highly specific for the phosphorylated P-light chain of myosin, had pH optima at 6.5 and 8.0 and was not inhibited by NaF. 4. A Ca2+-sensitive 'ATPase' (adenosine triphosphatase) system consisting of myosin light-chain kinase, myosin light-chain phosphatase and the P-light chain is described. 5. Evidence is presented for a phosphoryl exchange between Pi, phosphorylated P-light chain and myosin light-chain phosphatase. 6. Heavy meromyosin prepared by chymotryptic digestion can be phosphorylated by myosin light-chain kinase. 7. The ATPase activities of myosin and heavy meromyosin, in the presence and absence of F-actin, were not significantly changed (+/- 10%) by phosphorylation of the P-light chain.  相似文献   

3.
1-(5-Isoquinolinesulfonyl)-2-methylpiperazine (H-7), which has been identified as a potent inhibitor of protein kinase C in vitro (Hidaka, H., Inagaki, M., Kawamoto, S., and Sasaki, Y. (1984) Biochemistry, in press), enhanced serotonin release from human platelets that was induced by the 12-O-tetradecanoyl phorbol 13-acetate and correspondingly decreased incorporation of radioactive phosphate into a 20,000-dalton protein. H-7 did not affect the protein phosphorylation or the serotonin secretion in unstimulated platelets. A phosphopeptide with a molecular weight of 20,000 has previously been identified as a light chain (LC20) of platelet myosin and both protein kinase C and Ca2+-calmodulin-dependent myosin light-chain kinase have been shown to be involved in its phosphorylation. Two-dimensional peptide mapping following tryptic hydrolysis revealed that H-7 selectively inhibited the protein kinase C-catalyzed phosphorylation of myosin light chain. This pharmacological evidence suggests that Ca2+-activated, phospholipid-dependent myosin light-chain phosphorylation may play an inhibitory role in the release reaction.  相似文献   

4.
Activation of smooth muscle myosin light-chain kinase (MLCK) causes contraction. Here we have proven that MLCK controls Ca2+ entry (CE) in endothelial cells (ECs): MLCK antisense oligonucleotides strongly prevented bradykinin (BK)- and thapsigargin (TG)-induced endothelial Ca2+ response, while MLCK sense did not. We also show that the relevant mechanism is not phosphorylation of myosin light-chain (MLC): MLC phosphorylation by BK required CE, but MLC phosphorylation caused by the phosphatase inhibitor calyculin A did not trigger Ca2+ response. Most important, we provide for the first time strong evidence that, in contrast to its role in smooth muscle cells, activation of MLCK in ECs stimulates the production of important endothelium-derived vascular relaxing factors: MLCK antisense and MLCK inhibitors abolished BK- and TG-induced nitric oxide production, and MLCK inhibitors substantially inhibited acetylcholine-stimulated hyperpolarization of smooth muscle cell membrane in rat mesenteric artery. These results indicate that MLCK controls endothelial CE, but not through MLC phosphorylation, and unveils a hitherto unknown physiological function of the enzyme: vasodilation through its action in endothelial cells. The study discovers a counter-balancing role of MLCK in the regulation of vascular tone.  相似文献   

5.
Myosin and myosin light-chain kinase have been isolated and characterized from small quantities of normal and SV40-transformed, murine astrocytic neuroglial cells in culture and from intact normal mouse brain. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis of the astrocyte myosins revealed a heavy chain of 200,000 daltons and two light chains of 20,000 and 15,000 daltons. These myosins are similar to other cytyplasmic myosins. The astrocyte 20,000-dalton light chain can be phosphorylated by an endogenous myosin light-chain kinase which has properties similar to those of the myosin light-chain kinase found in human platelets. No differences were detected in either the astrocyte myosins or myosin light-chain kinases between (a) the normal and transformed cells, (b) the transformed cells grown at the permissive and nonpermissive temperatures, or (c) the SV40 wild-type and A-mutant transformants.  相似文献   

6.
Exposure of 32P-labelled isolated rat adipocytes or epididymal fat-pads to insulin resulted in an increase in the phosphorylation of a heat-stable acid-soluble protein of Mr 22 000. The phosphorylation of this protein was unaffected by isoprenaline (isoproterenol) in intact cells, nor was its phosphorylation catalysed by exposure in vitro to the cyclic AMP-dependent protein kinase or smooth-muscle myosin light-chain kinase. The properties of the Mr-22 000 protein include: heat-stability; solubility in 1% trichloroacetic acid; pI 4.9; elution at apparent Mr 37 500 on gel filtration; and it contains both phosphoserine and phosphothreonine. It can be distinguished from the heat-stable phosphatase inhibitor 1 of adipose tissue (inhibitor 1A) and the phosphorylated form of adipose-tissue myosin light chain by several criteria. Its identity, and the possible functional significance of the insulin-stimulated phosphorylation, remain problems for future study.  相似文献   

7.
We have partially purified a protein kinase from rat pancreas that phosphorylates two light-chain subunits of pancreatic myosin, a doublet with components of 18 and 20 kDa. This protein kinase was purified approx. 1000-fold by sequential (NH4)2SO4 fractionation, gel filtration, ion-exchange and affinity chromatography on calmodulin-Sepharose 4B. The resultant enzyme preparation is free of cyclic AMP-dependent protein kinase, protein kinase C and calmodulin-dependent type I or II kinase activities. The purified protein kinase is completely dependent on Ca2+ and calmodulin, and phosphorylates a 20 kDa light-chain subunit of intact gizzard myosin, suggesting that it belongs to a class of enzymes known as myosin light-chain kinase (MLCK). The apparent Km values of the putative pancreatic MLCK for ATP (73 microM), gizzard myosin light chains (18 microM) and calmodulin (2 nM) are similar to those reported for MLCKs isolated from smooth muscle, platelet and other sources. The enzyme is half-maximally activated at a free Ca2+ concentration of 2.5 microM. A single component of the affinity-purified kinase reacts with antibodies to turkey gizzard MLCK. The apparent molecular mass of this component is 138 kDa. Immunoprecipitation of a pancreatic homogenate with these antibodies decreases calmodulin-dependent kinase activity for pancreatic myosin by over 85%. The immunoprecipitate contains a single electrophoretic band of 138 kDa. Tryptic phosphopeptide analyses of pancreatic myosin, phosphorylated by either gizzard or pancreatic MLCK, are identical. Thus the enzyme that we have purified from rat pancreas is a MLCK, as judged by (1) absolute dependence on Ca2+ and calmodulin, (2) high affinity for calmodulin, (3) narrow substrate specificity for the light-chain subunit of myosin, and (4) reactivity with antibodies to turkey gizzard MLCK. These studies establish the existence of a pancreatic MLCK which may be responsible for regulating myosin phosphorylation and enzyme secretion in situ.  相似文献   

8.
Rap1 enhances integrin-mediated adhesion but the link between Rap1 activation and integrin function in collagen phagocytosis is not defined. Mass spectrometry of Rap1 immunoprecipitates showed that the association of Rap1 with nonmuscle myosin heavy-chain II-A (NMHC II-A) was enhanced by cell attachment to collagen beads. Rap1 colocalized with NM II-A at collagen bead-binding sites. There was a transient increase in myosin light-chain phosphorylation after collagen-bead binding that was dependent on myosin light-chain kinase but not Rho kinase. Inhibition of myosin light-chain phosphorylation, but not myosin II-A motor activity inhibited collagen-bead binding and Rap activation. In vitro binding assays demonstrated binding of Rap1A to filamentous myosin rods, and in situ staining of permeabilized cells showed that NM II-A filaments colocalized with F-actin at collagen bead sites. Knockdown of NM II-A did not affect talin, actin, or β1-integrin targeting to collagen beads but targeting of Rap1 and vinculin to collagen was inhibited. Conversely, knockdown of Rap1 did not affect localization of NM II-A to beads. We conclude that MLC phosphorylation in response to initial collagen-bead binding promotes NM II-A filament assembly; binding of Rap1 to myosin filaments enables Rap1-dependent integrin activation and enhanced collagen phagocytosis.  相似文献   

9.
Effects of melittin, an amphipathic polypeptide, on various species of protein kinases were investigated. It was found that melittin inhibited the newly identified phospholipid-sensitive Ca2+-dependent protein kinase (from heart, brain, spleen and neutrophils) and the cardiac myosin light-chain kinase, a calmodulin-sensitive Ca2+-dependent enzyme. In contrast, melittin had little or no effect on either the holoenzymes of the cardiac cyclic AMP-dependent and cyclic GMP-dependent protein kinases or the catalytic subunit of the former. Kinetic analysis indicated that melittin inhibited phospholipid-sensitive Ca2+-dependent protein kinase non-competitively with respect to ATP (Ki = 1.3 microM); although exhibiting complex kinetics, its inhibition of the enzyme was overcome by phosphatidylserine (a phospholipid cofactor), but not by protein substrate (histone H1) or Ca2+. On the other hand, melittin inhibited myosin light-chain kinase non-competitively with respect to ATP (Ki = 1.4 microM) or Ca2+ (Ki = 1.9 microM), and competitively with respect to calmodulin (Ki = 0.08 microM); although exhibiting complex kinetics, its inhibition of the enzyme was reversed by myosin light chains (substrate protein). The present findings indicate the presence of functionally important hydrophobic or hydrophilic loci on the Ca2+-dependent protein kinases, but not on the cyclic nucleotide-dependent class of protein kinase, with which melittin can interact. Moreover, the kinetic data suggest that melittin inhibited myosin light-chain kinase by interacting with a site on the enzyme the same as, or proximal to, the calmodulin-binding site, thus interfering with the formation of active enzyme-calmodulin-Ca2+ complex.  相似文献   

10.
1. The light-chain components of myosin from cardiac muscle (19000 and 27000 daltons) and of rabbit soleus and crureus muscles (19000, 27000 and 29000 daltons) were characterized. 2. The 19000-dalton components in carciac- and red-skeletal-muscle myosins were spontaneously modified to a component of slightly higher net negative charge. 3. The 19000-dalton component in cardiac and red skeletal muscles and their modified forms were phosphorylated by myosin light-chain kinase. 4. Evidence was obtained for the presence of myosin light-chain kinase in cardiac and red skeletal muscles. 5. Myosin light-chain kinase catalysed the phosphorylation of the whole light-chain fraction from white and red skeletal muscle at similar rates. The light-chain fraction of cardiac-muscle myosin was phosphorylated at a significantly lower rate. 6. The light-chain components of cardiac-muscle myosin and their phosphorylated froms were separated by ion-exchange chromatography and their amino acid compositions determined.  相似文献   

11.
Properties of caldesmon isolated from chicken gizzard.   总被引:5,自引:4,他引:1       下载免费PDF全文
Chicken gizzard smooth muscle contains two major calmodulin-binding proteins: caldesmon (11.1 microM; Mr 141 000) and myosin light-chain kinase (4.6 microM; Mr 136 000), both of which are associated with the contractile apparatus. The amino acid composition of caldesmon is distinct from that of myosin light-chain kinase and is characterized by a very high glutamic acid content (25.5%), high contents of lysine (13.6%) and arginine (10.3%), and a low aromatic amino acid content (2.4%). Caldesmon lacked myosin light-chain kinase and phosphatase activities and did not compete with either myosin light-chain kinase or cyclic nucleotide phosphodiesterase (both calmodulin-dependent enzymes) for available calmodulin, suggesting that calmodulin may have distinct binding sites for caldesmon on the one hand and myosin light-chain kinase and cyclic nucleotide phosphodiesterase on the other. Consistent with the lack of effect of caldesmon on myosin phosphorylation, caldesmon did not affect the assembly or disassembly of myosin filaments in vitro. As previously shown [Ngai & Walsh (1984) J. Biol. Chem. 259, 13656-13659], caldesmon can be reversibly phosphorylated. The phosphorylation and dephosphorylation of caldesmon were further characterized and the Ca2+/calmodulin-dependent caldesmon kinase was purified; kinase activity correlated with a protein of subunit Mr 93 000. Caldesmon was not a substrate of myosin light-chain kinase or phosphorylase kinase, both calmodulin-activated protein kinases.  相似文献   

12.
The chemotactic migration toward platelet-derived growth factor-BB of SM3, a cell line established from rabbit aorta smooth muscle, was examined by the Boyden chamber method. Myosin light-chain (MLC) kinase inhibitors ML-9 and wortmannin, and the Rho kinase inhibitor Y-27632 effectively reduced the migration. However, neither membrane ruffling nor the phosphorylation of MLC was inhibited concomitantly. The reduction is discussed with reference to a novel property of MLC kinase, which stimulates myosin ATPase activity without phosphorylating MLC [Ye et al. (1999) Proc. Natl. Acad. Sci. USA 96, 6666-6671].  相似文献   

13.
Calmodulin contains several binding sites for hydrophobic compounds. The apparent specificity of various 'calmodulin antagonists' for these sites was investigated. The Ki values for the inhibition of calmodulin-activated cyclic-nucleotide phosphodiesterase and myosin light-chain kinase was determined. In addition, the Kd values of the same compounds for binding to calmodulin were measured. The compounds could be separated into four groups. Group I and II compounds inhibited competitively the activation of the phosphodiesterase and myosin light-chain kinase by calmodulin. Group I compounds inhibited the activation of the phosphodiesterase and myosin light-chain kinase at identical concentrations. In contrast, group II compounds inhibited the activation of the phosphodiesterase at 5-10-fold lower concentrations than that of myosin light-chain kinase. Group III compounds inhibited the activation of these enzymes by an uncompetitive mechanism. Group IV compounds inhibited the activation of the phosphodiesterase with Ki values above 10 microM and did not affect the activation of myosin light-chain kinase. Binding of [3H]bepridil to calmodulin under equilibrium conditions yielded one high-affinity site (apparent Kd 0.4 microM) and four low affinity sites (apparent Kd 44 microM). Group I compounds interfered with the binding of bepridil to the high and low-affinity sites in a competitive manner. Group II compounds interfered in a non-competitive manner with the high-affinity site and apparently competed only with one of the low-affinity sites. Group III compounds did not compete with any of the bepridil-binding sites. Nimodipine, a group III compound, bound to one site on calmodulin with a Kd value of 1.1 microM. Other dihydropyridines competed with [3H]nimodipine for this site. The group I and II compounds, trifluoperazine and prenylamine, did not affect the binding of [3H]nimodipine. These data show that 'calmodulin antagonists' can be differentiated into at least three distinct groups. Kinetic and binding data suggest that the three groups bind to at least three different sites on calmodulin. Selective occupation of these sites may inhibit specifically the activation of distinct enzymes.  相似文献   

14.
The basic mechanism by which calmodulin activates bovine-cardiac muscle myosin light-chain kinase was investigated using highly purified preparations of mixed bovine-cardiac myosin light chains or isolated myosin light chain 2. The apparent contamination of these substrate proteins by calmodulin, as detected by activation of calmodulin-sensitive phosphodiesterase, was less than 4 parts/million and was undetectable by antibodies against calmodulin. The apparent KA for calmodulin was 2 nM and 20 nM in the presence of isolated myosin light-chain 2 and mixed myosin light chains, respectively. Purified bovine cardiac troponin C activated myosin light-chain kinase by about 10% at a concentration of 2 microM. Mixed myosin light chains were phosphorylated in the absence and presence of calmodulin and in the presence of calcium with a V of 11.1 and 11.0 mumol phosphate transferred min-1 (mg enzyme)-1, respectively. The apparent Km values for mixed myosin light chains were 8.0 and 0.35 mg/ml in the absence and presence of calmodulin, respectively. Similarly calmodulin lowered the Km value for isolated myosin light-chain 2 over 20-fold and increased the V value only about 1.5-fold. Activity observed in the absence of calmodulin was dependent on the presence of calcium and was suppressed by chelating free calcium either before or during a phosphorylation reaction. The apparent KA for calcium was 1.2 microM and 0.4 microM in the absence and presence of calmodulin. Activity in the absence of calmodulin was inhibited at very high concentrations of the 'specific' calmodulin antagonists W-7, trifluoperazine and R24571 with apparent IC50 values of 0.3 mM, 0.2 mM and 0.02 mM. Antibiotics raised against calmodulin suppressed completely the kinase activity in the presence of calmodulin but had no effect on the activity measured in its absence. These results suggest that calmodulin stimulates the activity of bovine-cardiac myosin light-chain kinase by increasing over 20-fold the affinity for its substrate myosin light-chain 2.  相似文献   

15.
Modulator-deficient myosin light-chain kinase from rabbit skeletal muscle was purified by modulator protein-Sepharose 4B affinity chromatography. The purified protein showed a single band (MW 80,000) on polyacrylamide gel electrophoresis in sodium dodecyl sulfate, and it exists as a monomer in the native state as determined by gel filtration. The modulator-deficient myosin light-chain kinase (MW 80,000), modulator protein (MW 16,500) and Ca2+ were essential for the kinase activity. The half-maximal activity of the kinase in the presence of excess modulator protein with 10 mM MgCl2 was at pCa 5.1, where full activity of actomyosin-ATPase is observed in the presence of the troponin--tropomyosin system. Assuming a rapid equilibrium between myosin light-chain kinase and two substrates, ATP and g2 light-chain, Km values for ATP and g2 light chain were evaluated as 0.28 mM and 0.024 mM, respectively. Vm/e was 5.7 s-1.  相似文献   

16.
We have previously isolated two Ca2+, calmodulin-dependent protein kinases with molecular weights of 120,000 (120K enzyme) and 640,000 (640K enzyme), respectively, by gel filtration analysis from rat brain. Chicken gizzard myosin light-chain kinase and the 120K enzyme phosphorylated two light chains of brain myosin, whereas the 640K enzyme phosphorylated both the two light chains and the heavy chain. The phosphopeptides of the light chains digested by Staphylococcus aureus V8 protease were similar among chicken gizzard myosin light-chain kinase, the 120K enzyme, and the 640K enzyme. Only the seryl residue in the light chains and the heavy chain was phosphorylated by the enzymes. The phosphorylation of brain myosin by any of these enzymes led to an increase in actin-activated Mg-ATPase activity. The results suggest that brain myosin is regulated by brain Ca2+, calmodulin-dependent protein kinases in a similar but distinct mechanism in comparison with that of smooth muscle myosin.  相似文献   

17.
The present study characterized the signalling pathways initiated by the bioactive lipid, LPA (lysophosphatidic acid) in smooth muscle. Expression of LPA(3) receptors, but not LPA(1) and LPA(2), receptors was demonstrated by Western blot analysis. LPA stimulated phosphoinositide hydrolysis, PKC (protein kinase C) and Rho kinase (Rho-associated kinase) activities: stimulation of all three enzymes was inhibited by expression of the G(alphaq), but not the G(alphai), minigene. Initial contraction and MLC(20) (20 kDa regulatory light chain of myosin II) phosphorylation induced by LPA were abolished by inhibitors of PLC (phospholipase C)-beta (U73122) or MLCK (myosin light-chain kinase; ML-9), but were not affected by inhibitors of PKC (bisindolylmaleimide) or Rho kinase (Y27632). In contrast, sustained contraction, and phosphorylation of MLC(20) and CPI-17 (PKC-potentiated inhibitor 17 kDa protein) induced by LPA were abolished selectively by bisindolylmaleimide. LPA-induced activation of IKK2 {IkappaB [inhibitor of NF-kappaB (nuclear factor kappaB)] kinase 2} and PKA (protein kinase A; cAMP-dependent protein kinase), and degradation of IkappaBalpha were blocked by the RhoA inhibitor (C3 exoenzyme) and in cells expressing dominant-negative mutants of IKK2(K44A) or RhoA(N19RhoA). Phosphorylation by Rho kinase of MYPT1 (myosin phosphatase targeting subunit 1) at Thr(696) was masked by phosphorylation of MYPT1 at Ser(695) by PKA derived from IkappaB degradation via RhoA, but unmasked in the presence of PKI (PKA inhibitor) or C3 exoenzyme and in cells expressing IKK2(K44A). We conclude that LPA induces initial contraction which involves activation of PLC-beta and MLCK and phosphorylation of MLC(20), and sustained contraction which involves activation of PKC and phosphorylation of CPI-17 and MLC(20). Although Rho kinase was activated, phosphorylation of MYPT1 at Thr(696) by Rho kinase was masked by phosphorylation of MYPT1 at Ser(695) via cAMP-independent PKA derived from the NF-kappaB pathway.  相似文献   

18.
Inhibition of Rho-associated protein kinase (ROCK) activity in glioma C6 cells induces changes in actin cytoskeleton organization and cell morphology similar to those observed in other types of cells with inhibited RhoA/ROCK signaling pathway. We show that phosphorylation of myosin light chains (MLC) induced by P2Y? receptor stimulation in cells with blocked ROCK correlates in time with actin cytoskeleton reorganization, F-actin redistribution and stress fibers assembly followed by recovery of normal cell morphology. Presented results indicate that myosin light-chain kinase (MLCK) is responsible for the observed phosphorylation of MLC. We also found that the changes induced by P2Y? stimulation in actin cytoskeleton dynamics and morphology of cells with inhibited ROCK, but not in the level of phosphorylated MLC, depend on the presence of calcium in the cell environment.  相似文献   

19.
Toxoplasma gondii is an obligate intracellular parasite that actively invades mammalian cells using a unique form of gliding motility that critically depends on actin filaments in the parasite. To determine if parasite motility is driven by a myosin motor, we examined the distribution of myosin and tested the effects of specific inhibitors on gliding and host cell invasion. A single 90 kDa isoform of myosin was detected in parasite lysates using an antisera that recognizes a highly conserved myosin peptide. Myosin was localized in T. gondii beneath the plasma membrane in a circumferential pattern that overlapped with the distribution of actin. The myosin ATPase inhibitor, butanedione monoxime (BDM), reversibly inhibited gliding motility across serum-coated slides. The myosin light-chain kinase inhibitor, KT5926, also blocked parasite motility and greatly reduced host cell attachment; however, these effects were primarily caused by its ability to block the secretion of microneme proteins, which are involved in cell attachment. In contrast, while BDM partially reduced cell attachment, it prevented invasion even under conditions in which microneme secretion was not affected, indicating a potential role for myosin in cell entry. Collectively, these results indicate that myosin(s) probably participate(s) in powering gliding motility, a process that is essential for cell invasion by T. gondii .  相似文献   

20.
1. It is confirmed that myosin light-chain kinase is a protein of mol.wt. about 80,000 that is inactive in the absence of calmodulin. 2. In the presence of 1 mol of calmodulin/mol of kinase 80-90% of the maximal activity is obtained. 3. Crude preparations of the whole light-chain fraction of rabbit fast-skeletal-muscle myosin contain enough calmodulin to activate the enzyme. A method for the preparation of calmodulin-free P light chain is described. 4. A procedure is described for the isolation of calmodulin from rabbit fast skeletal muscle. 5. Rabbit fast-skeletal-muscle calmodulin is indistinguishable from bovine brain calmodulin in its ability to activate myosin light-chain kinase. The other properties of these two proteins are also very similar. 6. Rabbit fast-skeletal-muscle troponin C was about 10% as effective as calmodulin as activator for myosin light-chain kinase. 7. By chromatography on a Sepharose-calmodulin affinity column evidence was obtained for the formation of a Ca2+-dependent complex between calmodulin and myosin light-chain kinase. 8. Troponin I from rabbit fast skeletal muscle and histone IIAS were phosphorylated by fully activated myosin light-chain kinase at about 1% of the rate of the P light chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号