首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stiffness of articular cartilage is a nonlinear function of the strain amplitude and strain rate as well as the loading history, as a consequence of the flow of interstitial water and the stiffening of the collagen fibril network. This paper presents a full investigation of the interplay between the fluid kinetics and fibril stiffening of unconfined cartilage disks by analyzing over 200 cases with diverse material properties. The lower and upper elastic limits of the stress (under a given strain) are uniquely established by the instantaneous and equilibrium stiffness (obtained numerically for finite deformations and analytically for small deformations). These limits could be used to determine safe loading protocols in order that the stress in each solid constituent remains within its own elastic limit. For a given compressive strain applied at a low rate, the loading is close to the lower limit and is mostly borne directly by the solid constituents (with little contribution from the fluid). In contrast, however in case of faster compression, the extra loading is predominantly transported to the fibrillar matrix via rising fluid pressure with little increase of stress in the nonfibrillar matrix. The fibrillar matrix absorbs the loading increment by self-stiffening: the quicker the loading the faster the fibril stiffening until the upper elastic loading limit is reached. This self-protective mechanism prevents cartilage from damage since the fibrils are strong in tension. The present work demonstrates the ability of the fibril reinfored poroelastic models to describe the strain rate dependent behavior of articular cartilage in unconfined compression using a mechanism of fibril stiffening mainly induced by the fluid flow.  相似文献   

2.
The depth dependence of material properties of articular cartilage, known as the zonal differences, is incorporated into a nonlinear fibril-reinforced poroelastic model developed previously in order to explore the significance of material heterogeneity in the mechanical behavior of cartilage. The material variations proposed are based on extensive observations. The collagen fibrils are modeled as a distinct constituent which reinforces the other two constituents representing proteoglycans and water. The Young's modulus and Poisson's ratio of the drained nonfibrillar matrix are so determined that the aggregate compressive modulus for confined geometry fits the experimental data. Three nonlinear factors are considered, i.e. the effect of finite deformation, the dependence of permeability on dilatation and the fibril stiffening with its tensile strain. Solutions are extracted using a finite element procedure to simulate unconfined compression tests. The features of the model are then demonstrated with an emphasis on the results obtainable only with a nonhomogeneous model, showing reasonable agreement with experiments. The model suggests mechanical behaviors significantly different from those revealed by homogeneous models: not only the depth variations of the strains which are expected by qualitative analyses, but also, for instance, the relaxation-time dependence of the axial strain which is normally not expected in a relaxation test. Therefore, such a nonhomogeneous model is necessary for better understanding of the mechanical behavior of cartilage.  相似文献   

3.
Collagen fibril reinforcement was incorporated into a nonlinear poroelastic model for articular cartilage in unconfined compression. It was found that the radial fibrils play a predominant role in the transient mechanical behavior but a less important role in the equilibrium response of cartilage. The radial fibrils are in tension and can be highly stressed during compression, in contrast to low compressive stresses in all directions for the proteoglycan matrix after a small initial compression. The strain dependent fibril stiffening produces strong nonlinear transient response; the fibrils provide extra stiffness to balance a rising fluid pressure and to restrain stress increase in the proteoglycans. The fibril reinforcement, induced by the fluid pressure and flow, also accounts for a complex pattern of strain-magnitude and strain-rate dependence of cartilage stiffness.  相似文献   

4.
Observations in compression tests of articular cartilage have revealed unequal load increments for compression and release of the same amplitude applied to a disk with an identical previously imposed compression (in equilibrium). The mechanism of this asymmetric transient response is investigated here using a nonlinear fibril-reinforced model. It is found that the asymmetry is predominantly produced by the fibril stiffening with its tensile strain. In addition, allowing the hydraulic permeability to decrease significantly with compressive dilatation of cartilage increases the transient fibril strain, resulting in a stronger asymmetry. Large deformation also enhances the asymmetry as a consequence of stronger fibril stiffening.  相似文献   

5.
Over the last two decades, considerable progress has been reported in the field of cartilage mechanics that impacts our understanding of the role of interstitial fluid pressurization on cartilage lubrication. Theoretical and experimental studies have demonstrated that the interstitial fluid of cartilage pressurizes considerably under loading, potentially supporting most of the applied load under various transient or steady-state conditions. The fraction of the total load supported by fluid pressurization has been called the fluid load support. Experimental studies have demonstrated that the friction coefficient of cartilage correlates negatively with this variable, achieving remarkably low values when the fluid load support is greatest. A theoretical framework that embodies this relationship has been validated against experiments, predicting and explaining various outcomes, and demonstrating that a low friction coefficient can be maintained for prolonged loading durations under normal physiological function. This paper reviews salient aspects of this topic, as well as its implications for improving our understanding of boundary lubrication by molecular species in synovial fluid and the cartilage superficial zone. Effects of cartilage degeneration on its frictional response are also reviewed.  相似文献   

6.
This biomechanical study reports strain gradients in patellofemoral joint cross-sections of seven porcine specimens in response to 1% unconfined axial compression subsequent to specific amounts of off-set strain. Strain distributions were quantified with a customized laser-based electronic speckle pattern interferometry (ESPI) system in a non-contact manner, delivering high-resolution, high-sensitivity strain maps over entire patellofemoral cartilage cross-sections. Strain reports were evaluated to determine differences in strain magnitudes between the superficial, middle, and deep cartilage layers in femoral and patellar cartilage. In addition, the effect of 5%, 10%, 15%, and 20% off-set strain on depth-dependent strain gradients was quantified. Regardless of the amount of off-set strain, the superficial layer of femoral cartilage absorbed the most strain, and the deep layer absorbed the least strain. These depth-dependent strain gradients were most pronounced for 5% off-set strain, at which the superficial layer absorbed on average 5.7 and 23.7 times more strain as compared to the middle and deep layers, respectively. For increased off-set strain levels, strain gradients became less pronounced. At 20% off-set strain, differences in layer-specific strain were not statistically significant, with the superficial layer showing a 1.4 fold higher strain as the deep layer. Patellar cartilage exhibited similar strain gradients and effects of off-set strain, although the patellar strain was on average 19% larger as compared to corresponding femoral strain reports. This study quantified for the first time continuous strain gradients over patellofemoral cartilage cross-sections. Next to provision of a detailed functional characterization of normal diarthrodial joints, this novel experimental approach holds considerable attraction to investigate joint degenerative processes.  相似文献   

7.
8.
The time-dependent lateral expansion and load relaxation of cartilage cylinders subjected to unconfined compression were simultaneously recorded. These measurements were used to (1) test the assumption of incompressibility for articular cartilage, (2) measure the Poisson's ratio of articular cartilage in compression and (3) investigate the relationship between stress relaxation and volumetric change. Mechanical tests were performed on fetal, calf, and adult humeral head articular cartilage. The instantaneous Poisson's ratio of adult cartilage was 0.49+/-0.08 (mean+S.D.), thus confirming the assumption of incompressibility for this tissue. The instantaneous Poisson's ratio was significantly lower for calf (0. 38+/-0.04) and fetal cartilage (0.36+/-0.04). The equilibrium Poisson's ratio, i.e. true Poisson's ratio of the solid matrix, was significantly higher for the adult tissue (0.26+/-0.11) compared to both the fetal (0.09+/-0.02) and calf (0.11+/-0.03) cartilage. A linear relationship between time-matched load and lateral expansion after the first minute of stress relaxation was observed.  相似文献   

9.
At mechanical equilibrium, articular cartilage is usually characterized as an isotropic elastic material with no interstitial fluid flow. In this study, the equilibrium properties (Young's modulus, aggregate modulus and Poisson's ratio) of bovine humeral, patellar and femoral cartilage specimens (n=26) were investigated using unconfined compression, confined compression, and indentation tests. Optical measurements of the Poisson's ratio of cartilage were also carried out. Mean values of the Young's modulus (assessed from the unconfined compression test) were 0.80+/-0.33, 0.57+/-0.17 and 0.31+/-0.18MPa and of the Poisson's ratio (assessed from the optical test) 0.15+/-0.06, 0.16+/-0.05 and 0.21+/-0.05 for humeral, patellar, and femoral cartilages, respectively. The indentation tests showed 30-79% (p<0.01) higher Young's modulus values than the unconfined compression tests. In indentation, values of the Young's modulus were independent of the indenter diameter only in the humeral cartilage. The mean values of the Poisson's ratio, obtained indirectly using the mathematical relation between the Young's modulus and the aggregate modulus in isotropic material, were 0.16+/-0.06, 0.21+/-0.05, and 0.26+/-0.08 for humeral, patellar, and femoral cartilages, respectively. We conclude that the values of the elastic parameters of the cartilage are dependent on the measurement technique in use. Based on the similar values of Poisson's ratios, as determined directly or indirectly, the equilibrium response of articular cartilage under unconfined and confined compression is satisfactorily described by the isotropic elastic model. However, values of the isotropic Young's modulus obtained from the in situ indentation tests are higher than those obtained from the in vitro unconfined or confined compression tests and may depend on the indenter size in use.  相似文献   

10.
This study investigated the abilities of the linear biphasic poroviscoelastic (BPVE) model and the linear biphasic poroelastic (BPE) model to simulate the effect of variable ramp strain rates on the unconfined compression stress relaxation response of articular cartilage. Curve fitting of experimental data showed that the BPVE model was able to successfully account for the ramp strain rate-dependent viscoelastic behavior of articular cartilage under unconfined compression, while the BPE model was able to account for the complete viscoelastic response at a slow strain rate, but only the long-term viscoelastic response at faster strain rates. We concluded that the short-term viscoelastic behavior of articular cartilage, when subjected to a fast ramp strain rate, is primarily governed by a fluid flow-independent (intrinsic) viscoelastic mechanism, whereas the long-term viscoelastic behavior is governed by a fluid flow-dependent (biphasic) viscoelastic mechanism. Furthermore, a linear viscoelastic representation of the solid stress was found to be a valid model assumption for the simulation of ramp strain rate-dependent relaxation behaviors of articular cartilage within the range of ramp strain rates investigated.  相似文献   

11.
The biphasic poroviscoelastic (BPVE) model was curve fit to the simultaneous relaxation of reaction force and lateral displacement exhibited by articular cartilage in unconfined compression (n=18). Model predictions were also made for the relaxation observed in reaction force during indentation with a porous plane-ended metal indenter (n=4), indentation with a nonporous plane ended metal indenter (n=4), and during confined compression (n=4). Each prediction was made using material parameters resulting from curve fits of the unconfined compression response of the same tissue. The BPVE model was able to account for both the reaction force and the lateral displacement during unconfined compression very well. Furthermore, model predictions for both indentation and confined compression also followed the experimental data well. These results provide substantial evidence for the efficacy of the biphasic poroviscoelastic model for articular cartilage, as no successful cross-validation of a model simulation has been demonstrated using other mathematical models.  相似文献   

12.
This study investigated the ability of the linear biphasic poroelastic (BPE) model and the linear biphasic poroviscoelastic (BPVE) model to simultaneously predict the reaction force and lateral displacement exhibited by articular cartilage during stress relaxation in unconfined compression. Both models consider articular cartilage as a binary mixture of a porous incompressible solid phase and an incompressible inviscid fluid phase. The BPE model assumes the solid phase is elastic, while the BPVE model assumes the solid phase is viscoelastic. In addition, the efficacy of two additional models was also examined, i.e., the transversely isotropic BPE (TIBPE) model, which considers transverse isotropy of the solid matrix within the framework of the linear BPE model assumptions, and a linear viscoelastic solid (LVE) model, which assumes that the viscoelastic behavior of articular cartilage is solely governed by the intrinsic viscoelastic nature of the solid matrix, independent of the interstitial fluid flow. It was found that the BPE model was able to accurately account for the lateral displacement, but unable to fit the short-term reaction force data of all specimens tested. The TIBPE model was able to account for either the lateral displacement or the reaction force, but not both simultaneously. The LVE model was able to account for the complete reaction force, but unable to fit the lateral displacement measured experimentally. The BPVE model was able to completely account for both lateral displacement and reaction force for all specimens tested. These results suggest that both the fluid flow-dependent and fluid flow-independent viscoelastic mechanisms are essential for a complete simulation of the viscoelastic phenomena of articular cartilage.  相似文献   

13.
Unconfined compression test has been frequently used to study the mechanical behaviors of articular cartilage, both theoretically and experimentally. It has also been used in explant and gel-cell-complex studies in tissue engineering. In biphasic and poroelastic theories, the effect of charges fixed on the proteoglycan macromolecules in articular cartilage is embodied in the apparent compressive Young's modulus and the apparent Poisson's ratio of the tissue, and the fluid pressure is considered to be the portion above the osmotic pressure. In order to understand how proteoglycan fixed charges might affect the mechanical behaviors of articular cartilage, and in order to predict the osmotic pressure and electric fields inside the tissue in this experimental configuration, it is necessary to use a model that explicitly takes into account the charged nature of the tissue and the flow of ions within its porous interstices. In this paper, we used a finite element model based on the triphasic theory to study how fixed charges in the porous-permeable soft tissue can modulate its mechanical and electrochemical responses under a step displacement in unconfined compression. The results from finite element calculations showed that: 1) A charged tissue always supports a larger load than an uncharged tissue of the same intrinsic elastic moduli. 2) The apparent Young's modulus (the ratio of the equilibrium axial stress to the axial strain) is always greater than the intrinsic Young's modulus of an uncharged tissue. 3) The apparent Poisson's ratio (the negative ratio of the lateral strain to the axial strain) is always larger than the intrinsic Poisson's ratio of an uncharged tissue. 4) Load support derives from three sources: intrinsic matrix stiffness, hydraulic pressure and osmotic pressure. Under the unconfined compression, the Donnan osmotic pressure can constitute between 13%-22% of the total load support at equilibrium. 5) During the stress-relaxation process following the initial instant of loading, the diffusion potential (due to the gradient of the fixed charge density and the associated gradient of ion concentrations) and the streaming potential (due to fluid convection) compete against each other. Within the physiological range of material parameters, the polarity of the electric potential depends on both the mechanical properties and the fixed charge density (FCD) of the tissue. For softer tissues, the diffusion effects dominate the electromechanical response, while for stiffer tissues, the streaming potential dominates this response. 6) Fixed charges do not affect the instantaneous strain field relative to the initial equilibrium state. However, there is a sudden increase in the fluid pressure above the initial equilibrium osmotic pressure. These new findings are relevant and necessary for the understanding of cartilage mechanics, cartilage biosynthesis, electromechanical signal transduction by chondrocytes, and tissue engineering.  相似文献   

14.
Cartilage tissue engineering is concerned with developing in vitro cartilage implants that closely match the properties of native cartilage, for eventual implantation to replace damaged cartilage. The three components to cartilage tissue engineering are cell source, such as in vitro expanded autologous chondrocytes or mesenchymal progenitor cells, a scaffold onto which the cells are seeded and a bioreactor which attempts to recreate the in vivo physicochemical conditions in which cartilage develops. Although much progress has been made towards the goal of developing clinically useful cartilage constructs, current constructs have inferior physicochemical properties than native cartilage. One of the reasons for this is the neglect of mechanical forces in cartilage culture. Bioreactors have been defined as devices in which biological or biochemical processes can be re-enacted under controlled conditions e.g. pH, temperature, nutrient supply, O2 tension and waste removal. The purpose of this review is to detail the role of bioreactors in the engineering of cartilage, including a discussion of bioreactor designs, current state of the art and future perspectives.  相似文献   

15.
Bone tissue engineering: the role of interstitial fluid flow   总被引:18,自引:0,他引:18  
It is well established that vascularization is required for effective bone healing. This implies that blood flow and interstitial fluid (ISF) flow are required for healing and maintenance of bone. The fact that changes in bone blood flow and ISF flow are associated with changes in bone remodeling and formation support this theory. ISF flow in bone results from transcortical pressure gradients produced by vascular and hydrostatic pressure, and mechanical loading. Conditions observed to alter flow rates include increases in venous pressure in hypertension, fluid shifts occurring in bedrest and microgravity, increases in vascularization during the injury-healing response, and mechanical compression and bending of bone during exercise. These conditions also induce changes in bone remodeling. Previously, we hypothesized that interstitial fluid flow in bone, and in particular fluid shear stress, serves to mediate signal transduction in mechanical loading- and injury-induced remodeling. In addition, we proposed that a lack or decrease of ISF flow results in the bone loss observed in disuse and microgravity. The purpose of this article is to review ISF flow in bone and its role in osteogenesis.  相似文献   

16.
Dynamic light scattering and Fourier transform infrared spectroscopy were used to study the formation of prefibrillar aggregates and fibrils of bovine pancreatic insulin at 60°C and at pH 1. The kinetics of disintegration of the prefibrillar aggregates were also studied using these techniques after a quench to 25°C. These experiments reveal that formation of prefibrillar aggregates is reversible under the solution conditions studied and show that it is possible to significantly reduce the nucleation (lag) times associated with the onset of fibril growth in bovine pancreatic insulin solutions by increasing the concentration of prefibrillar aggregates in solution. These results provide convincing evidence that less structured prefibrillar aggregates can act as fibril-forming intermediates.  相似文献   

17.
Y Lanir 《Biorheology》1987,24(2):189-205
The response of a cartilage disc to unconfined compressive loading under small deformations is analyzed. The cartilage is considered as a transversely isotropic bicomponent (solid-fluid) tissue. Concentration effects (commonly termed osmotic pressure) are accounted for. The tissue's permeability is taken to be isotropic. Its concentration force is assumed to vary linearly with volume. The analysis shows that if the tissue's fibrous structure is taken into consideration, then the instantaneous response to a step loading depends on the tissue's elasticity and on its concentration force. The subsequent creep response, under commonly used experimental conditions, has a time constant which depends on the concentration force and permeability, but independent of its elastic response. The equilibrium volume is predicted to depend only on the concentration force. Where data is available it confirms the model's predictions. It is concluded from the present analysis that inclusion of concentration effects and the tissue's fibrous structure has significant consequences in terms of the relative roles of the collagen fibers (solid) vs. the ground substance (fluid) in the response of the cartilage to compressive loading.  相似文献   

18.
19.
A finite element analysis is used to study a previously unresolved issue of the effects of platen-specimen friction on the response of the unconfined compression test; effects of platen permeability are also determined. The finite element formulation is based on the linear KLM biphasic model for articular cartilage and other hydrated soft tissues. A Galerkin weighted residual method is applied to both the solid phase and the fluid phase, and the continuity equation for the intrinsically incompressible binary mixture is introduced via a penalty method. The solid phase displacements and fluid phase velocities are interpolated for each element in terms of unknown nodal values, producing a system of first order differential equations which are solved using a standard numerical finite difference technique. An axisymmetric element of quadrilateral cross-section is developed and applied to the mechanical test problem of a cylindrical specimen of soft tissue in unconfined compression. These studies show that interfacial friction plays a major role in the unconfined compression response of articular cartilage specimens with small thickness to diameter ratios.  相似文献   

20.
Experimental evidence indicates that the biosynthetic activity of chondrocytes is associated with the mechanical environment. For example, excessive, repetitive loading has been found to induce cell death, morphological and cellular damage, as seen in degenerative joint disease, while cyclic, physiological-like loading has been found to trigger a partial recovery of morphological and ultrastructural aspects in osteoarthritic human articular chondrocytes. Mechanical stimuli are believed to influence the biosynthetic activity via the deformation of cells. However, the in situ deformation of chondrocytes for cyclic loading conditions has not been investigated experimentally or theoretically. The purpose of the present study was to simulate the mechanical response of chondrocytes to cyclic loading in unconfined compression tests using a finite element model. The material properties of chondrocytes and extracellular matrix were considered to be biphasic. The time-histories of the shape and volume variations of chondrocytes at three locations (i.e., surface, center, and bottom) within the cartilage were predicted for static and cyclic loading conditions at two frequencies (0.02 and 0.1 Hz) and two amplitudes (0.1 and 0.2 MPa). Our results show that cells at different depths within the cartilage deform differently during cyclic loading, and that the depth dependence of cell deformation is influenced by the amplitude of the cyclic loading. Cell deformations under cyclic loading of 0.02 Hz were found to be similar to those at 0.1 Hz. We conclude from the simulation results that, in homogeneous cartilage layers, cell deformations are location-dependent, and further are affected by load magnitude. In physiological conditions, the mechanical environment of cells are even more complex due to the anisotropy, depth-dependent inhomogeneity, and tension-compression non-linearity of the cartilage matrix. Therefore, it is feasible to speculate that biosynthetic responses of chondrocytes to cyclic loading depend on cell location and load magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号