首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The turnover of phospholipids in Escherichia coli B/r was analyzed in synchronously growing populations. The turnover of presynthesized phosphatidyl-glycerol and cardiolipin continued at a constant exponential rate throughout the division cycle.  相似文献   

3.
A pair of putatively isogenic pss(Ts) and pss+ (phosphatidylserine synthetase structural gene) strains was constructed and analyzed, together with the revertants, for the physiological consequences of cessation of the optimal synthesis of phosphatidylethanolamine (PE). Their in vivo and in vitro abilities to synthetize PE and the growth rates at different temperatures were determined. The rate of PE synthesis by OS2101 pss(Ts) was inversely related to the culture temperature. OS2101 in a low-salt broth medium stopped division and formed filamentous cells with declining viability upon the elevation of culture temperature from 27 to 42 or 44 degrees C, whereas the syntheses of deoxyribonucleic acid, ribonucleic acid, and protein were not affected. Proper concentrations of cations such as Na+, K+, NH4+, and Mg2+ or of sucrose could remedy the division and growth of OS2101 at the restrictive temperature without restoring normal PE synthesis. A remedial effect other than osmotic protection of these effectors and an adaptive regulatory mechanism for PE formation are suggested.  相似文献   

4.
Stepwise changes in the rate of phosphatidylethanolamine and phospholipid synthesis during the cell division cycle of Escherichia coli B/r were observed. The cell ages at the increases were found to be a function of the growth rate. At each growth rate, the increase occurred around the time new rounds of chromosome replication were inaugurated in the cycle.  相似文献   

5.
Cell division of the Escherichia coli lon- mutant   总被引:14,自引:0,他引:14  
Summary Escherichia coli lon -cells were subjected to treatments which produced a decrease in the DNA/mass ratio of the cell. Thymine starvation, a shift-up from minimal medium to rich medium, and exposure to BUdR each caused greater inhibition of cell division in lon -cells than in lon +cells. DNA metabolism was found to be the same in both lon +and lon -cells during these treatments. The results are consistent with the hypothesis that the lon -defect leads to inhibition of cell division under conditions which produce a decreased DNA/mass ratio.  相似文献   

6.
The pleiotropic character of the envC chain-forming mutant of Escherichia coli was found to include leakage of periplasmic enzymes and an abnormal tendency to autolyse. Washed suspensions of envC cells released murein fragments into the supernatant, and cell extracts from the mutant were richer than those of wild type in exo-beta-N-acetylglucosaminidase (187% of the wild-type value) and in soluble endopeptidase (256%) activities, but n-acetylmuramoylamidase, D,D-carboxypeptidase, L,Dj-carboxypeptidase and transglycosylase were not markedly different. When envC cells were grown in medium containing 0.58 M-sucrose, the chains broke up into rods, the L,D-carboxypeptidase activity increased about sixfold and D,Dj-carboxypeptidase 1B about twofold. It is suggested that L,D-carboxypeptidase is involved in septum splitting. The results suggest that the triggering of autolysis in E. coli envC depends on the alteration of envelope constituents rather than on an enhanced activity of murein hydrolases.  相似文献   

7.
The role of phospholipid metabolism in the functioning of the bacterial envelope was investigated in the chain-forming Escherichia coli envC. Lysophosphatidylethanolamine (LPE) which accumulated in this strain during growth was identified as the product of phosphatidylethanolamine (PE) hydrolysis by a phospholipase A1, i.e. 2-acylLPE. Isotopically labelled LPE transferred into intact mutant and parent cells by liposome/bacteria interaction was rapidly reacylated to PE. However, in envC the final PE/LPE ratio was lower than that in the parent, thus showing that the fate of LPE is modified. Crude cell extracts degraded LPE to a lesser extent in envC than in the parent but were unable to promote reacylation activity under our experimental conditions. In both strains, the lysophospholipase activity was neither calcium-dependent nor inhibited by the SH-group inhibitors pHMB or pCMPS, and hydrolysed 1-acylLPE as well as 2-acylLPE. These results indicate the existence of a deacylation-reacylation cycle in E. coli and show that this cycle is perturbed in envC cells, especially at the lysophospholipase step.  相似文献   

8.
Temperature-sensitive conditional lethal mutants in phosphatidylserine decarboxylase (psd) accumulate large amounts of phosphatidylserine under nonpermissive conditions (42 degrees C) prior to cell death. In addition, the ratio of cardiolipin to phosphatidylglycerol is increased. At an intermediate temperature (37 degrees C), high levels of phosphatidylserine can be maintained with little effect on cell growth or viability. Under these conditions, both the rate of induction and the function of the lactose transport system are normal. At 42 degrees C addition of Mg2+ or Ca2+ to mutant cultures produces a partial phenotypic suppression. Growth is prolonged and the filaments normally present at 42 degrees C do not form. Upon transfer to the nonpermissive temperature, there is a considerable lag before accumulation of phosphatidylserine begins and the growth rate is affected. Based on the kinetics of heat inactivation of phosphatidylserine decarboxylase activity in extracts, in intact nongrowing cells, and in growing cells, it appears that the enzyme newly synthesized at 42 degrees C is more thermolabile in vivo than enzyme molecules previously inserted into the membrane at the lower temperature. Thus, the older, stable enzymatic activity must be diluted during growth before physiological effects are observed.  相似文献   

9.
H Adler  R Mural    B Suttle 《Journal of bacteriology》1992,174(7):2072-2077
Genetic evidence indicates that Oxys-6, an oxygen-sensitive mutant of Escherichia coli AB1157, is defective in the region of the hemB locus. Oxys-6 is capable of growth under aerobic conditions only if cultures are initiated at low-inoculum levels. Aerobic liquid cultures are limited to a cell density of 10(7) cells per ml by the accumulation of a metabolically produced, low-molecular-weight, heat-stable material in complex organic media. Both Oxys-6 and AB1157 cells produce the material, but only aerobic cultures of the mutant are inhibited by it. The material is produced by both intact cells and cell extracts in complex media. This reaction also occurs when the amino acid L-lysine is substituted for complex media.  相似文献   

10.
11.
Unusual properties of a new division mutant of Escherichia coli   总被引:5,自引:0,他引:5  
The properties of a division mutant of Escherichia coli were investigated. At 42 degrees C, this mutant forms nonseptate, multinucleate, filamentous cells typical of division mutants, and at the permissive temperature, is sensitive to ultraviolet (UV) irradiation. Temperature and UV sensitivities are probably due to a single mutation. The mutant phenotype is dominant to wild type. The mutant cells make DNA nearly as effectively as control cells at 42 degrees C or following UV irradiation. They exhibit normal host-cell reactivation capacities and can express all manifestations of the SOS response with the exception of Weigle reactivation. The genetic lesion which mediates this pleiotropic effect is located very close to the leu locus of the linkage map.  相似文献   

12.
Growth and division of Escherichia coli.   总被引:2,自引:16,他引:2  
  相似文献   

13.
The product of the ftsW gene has been identified as a polypeptide that, like the related RodA protein, shows anomalous mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. FtsW is produced at low levels that can be increased by altering the translation initiation region of the mRNA. Overproduction of FtsW strongly inhibits cell growth. A new mutant allele, ftsW201, causes a temperature-dependent block in the initiation stage of cell division which is similar to the division block in ftsZ mutants. The block in initiation of division in the ftsW201 allele is shown to be independent of FtsZ or the FtsZ inhibitor, SulA. In addition, the ftsW201 mutant is hypersensitive to overproduction of the division initiation protein FtsZ at the permissive temperature. Our results suggest a role for FtsW in an early stage of division which may involve an interaction with FtsZ.  相似文献   

14.
15.
Synchronous cells of the thermosensitive division-defective Escherichia coli strain MACI (divA) divided at the restrictive temperature (42 degrees C) if they were allowed to grow at 42 degrees C for a certain period before protein synthesis was inhibited by adding chloramphenicol (CAP) or rifampicin. The completion of chromosome replication was not required for such divA-independent division. Synchronous cells of strain MACI divided in the presence of an inhibitor of DNA synthesis, nalidixic acid, if they were shifted to 42 degrees C and CAP or rifampicin was added after some time; cells of the parent strain MC6 (div A+) treated in the same way did not divide. These data suggest that coupling of cell division to DNA synthesis depends on the divA function. The ability to divide at 42 degrees C, whether or not chromosome termination was allowed, was directly proportional to the mean cell volume of cultures at the time of CAP addition, suggesting that cells have to be a certain size to divide under these conditions. The period of growth required for CAP-induced division had to be at the restrictive temperature; when cells were grown at 30 degrees C, in the presence of nalidixic acid to prevent normal division, they did not divide on subsequent transfer to 42 degrees C followed, after a period, by protein synthesis inhibition. A model is proposed in which the role of divA as a septation initiator gene is to differentiate surface growth sites by converting a primary unregulated structure, with the capacity to make both peripheral wall and septum, to a secondary structure committed to septum formation.  相似文献   

16.
Escherichia coli strain 15--28 is a mutant which during exponential growth contains large amounts of a '47S' ribonucleoprotein precursor to 50S ribosomes. The '47S particles' are more sensitive to ribonuclease than are 50S ribosomes. The 23 S RNA of 47S particles may be slightly undermethylated, but cannot be distinguished from the 23S RNA of 50S ribosomes by sedimentation or electrophoresis. Isolated particles have 10--15% less protein than do 50S ribosomes; proteins L16, L28 and L33 are absent. Comparison with precursor particles studied by other workers in wild-type strains of E. coli suggests that the assembly of 50S ribosomes in strain 15--28 is atypical.  相似文献   

17.
A Mutant of Escherichia coli 15T? (555-7) has been isolated which grows at a rate equal to that of the wild type at division times of 40 min or less, but grows faster than normal at division times greater than 40 min. At division times greater than 40 min the division time of the mutant is identical to the chromosome synthesis time of the wild type in the same medium. In one slow-growth medium (M9-aspartic acid) chromosome synthesis and gap times of the mutant were measured and the time required for synthesis of a chromosome was approximately the same as that of the wild type, but the gap in DNA synthesis observed in the mutant was only about 12% of that observed in wild type.  相似文献   

18.
A new temperature-sensitive mutant of E. coli, defective in cell division, was isolated after selection for tolerance to colicin E2. The mutant strain, ASHI24, growing in either minimal or complex medium, commences filament formation immediately upon shift to high temperature. High densities of bacteria or the presence of 0-44 M-sucrose prevents filament formation at 42 degrees C and division continues. Filament formation in the mutant is reversible and upon return to 29 degrees C the multinucleate filaments divide up into normal-sized bacteria by a series of rapid but sequential divisions. In the presence of chloramphenicol at 29 degrees C, 25% of these division sites are still expressed. A genetic locus designated ftsH, apparently controlling both temperature sensitivity and filament formation, was provisionally mapped at minute 80 on the E. coli K12 map.  相似文献   

19.
ftsZ is an essential cell division gene in Escherichia coli.   总被引:7,自引:21,他引:7       下载免费PDF全文
The ftsZ gene is thought to be an essential cell division gene in Escherichia coli. We constructed a null allele of ftsZ in a strain carrying additional copies of ftsZ on a plasmid with a temperature-sensitive replication defect. This strain was temperature sensitive for cell division and viability, confirming that ftsZ is an essential cell division gene. Further analysis revealed that after a shift to the nonpermissive temperature, cell division ceased when the level of FtsZ started to decrease, indicating that septation is very sensitive to the level of FtsZ. Subsequent studies showed that nucleoid segregation was normal while FtsZ was decreasing and that ftsZ expression was not autoregulated. The null allele could not be complemented by lambda 16-2, even though this bacteriophage can complement the thermosensitive ftsZ84 mutation and carries 6 kb of DNA upstream of the ftsZ gene.  相似文献   

20.
Description of an incompatibility mutant of Escherichia coli   总被引:3,自引:9,他引:3       下载免费PDF全文
A mutant Hfr strain of Escherichia coli which has an impaired incompatibility function but is normal for other F factor functions has been isolated. This Inc(-) Hfr permits the maintenance and transfer of both the integrated F factor and an F' factor. F' factors have been isolated from the integrated F factor of the Inc(-) Hfr strain. When these episomes were tested in matings with Hfr or F' strains, they did not differ in any observed way from wild-type F' factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号