首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 120 毫秒
1.
Data on the prevalence of hereditary diseases in five regions of the Kostroma province were obtained and analysed. It was shown that the ascertainment was close to the truncate selection for the rural population and to the single selection for the urban population. Segregational analysis proved the rightness of the material subdivision, according to the type of inheritance. The load of hereditary diseases (for the registered forms) in the population was: 0.78 +/- 0.08 X 10(-3) for autosomal dominant, 0.75 +/- 0.08 X 10(-3) for autosomal-recessive and 0.54 +/- 0.1 X 10(-3) for X-linked recessive disorders. The dynamics of the load of hereditary diseases in the populations with different structure is discussed.  相似文献   

2.
The load of hereditary diseases was estimated on the basis of data obtained during medical-genetic study of the population of four districts of Khorezm province. The load of autosomal recessive disorders comprised 2-3 X 10(-3) affected, that of autosomal dominant disorders - 0.4-0.5 X 10(-3) and that of X-linked disorders - 0.2-0.4 X 10(-3) males. The main part of patients with autosomal recessive disorders belonged to separate families randomly spread over the populations. A trend for local accumulation of families with the same disorder was observed in small populations. It was shown that overall frequency of autosomal recessive genes per individual increased with the increase in the population size.  相似文献   

3.
The spectrum and prevalence rate of hereditary pathology in Kanevskii and Bryukhovetskii raions (districts) of Krasnodar krai (territory) were analyzed. The total size of the studied population was 145,937. The prevalence rate of monogenic hereditary pathology was estimated. This value was 1.08 +/- 0.08, 0.72 +/- 0.07, and 0.20 +/- 0.06 per 1000 people for autosomal dominant (AD), autosomal recessive (AR), and X-linked (XL) recessive diseases, respectively. Forty-two AD (158 affected persons in 82 families), 32 AR (105 affected persons in 82 families), and 6 XL disease entities (13 affected persons in 8 families) were found. A slight genetic subdivision was found in the populations of Kanevskii and Bryukhovetskii raions. However, it was not found to affect the prevalence of hereditary pathology.  相似文献   

4.
Medical-genetic study of the population of Kostroma (the total size of the population analysed approx. 250,000) was carried on. The load of hereditary diseases in the population (per 1000) was 0.75 for autosomal dominant, 0.49 for autosomal recessive and 0.17 for X-linked recessive disorders. Significant differences in the prevalence of autosomal recessive hereditary disorders between rural populations and the population of Kostroma were observed. The dependence of the load of autosomal recessive pathology on random inbreeding was shown for the whole Kostroma province.  相似文献   

5.
Medical-genetic study was carried out in the population of Kirov Province (population size about 120.000). 203 families with 334 affected with hereditary disorders were registered. The correctness of pathology classification for the inheritance type was confirmed by segregational analysis. The load of hereditary diseases in the population was: 1.25 +/- 0.06 for autosomal dominant, 1.37 +/- 0.07 for autosomal recessive and 0.22 +/- 0.06 for X-linked recessive disorders. It is suggested that variability in the values of the load of autosomal recessive disorders is determined to the large extent by genetic structure of the population.  相似文献   

6.
The analysis of the spectrum of hereditary diseases in the population of the Krasnodar province is performed and the influence of the population dynamics factors on the spectrum is discussed. More than 130 nosological forms were discovered in the population of approx. 200,000. Among these, there are 63 autosomal dominant, 49 autosomal recessive and 17 X-linked recessive forms. Of the most frequent autosomal dominant diseases (more than 1 per 50,000) autosomal recessive and X-linked recessive disorders 13, 7 and 7 forms, respectively, were picked up. The coefficient of diversity of hereditary diseases (the number of nosological forms per 10 inhabitants) with different types of inheritance is higher in the Krasnodar population, as compared with the Kostroma population. The problem of similarity of the "nucleus" of autosomal-recessive disorders in Russian populations is discussed.  相似文献   

7.
Summarized data of medical genetic survey of the population of Republic of Sakha (Yakutia) are presented. The number of the population examined constituted 1000700 individuals (including 424500000 of urban and 576,200 of rural population, respectively). Regarding the ethnicity, 33 regions of the Republic examined were at most inhabited by Yakuts (36%) and Russians (55%). A total of 400 families (606 patients) with autosomal dominant, 274 families (369 patients) with autosomal recessive, and 42 families (53 patients) with X-linked pathologies were detected. The segregation analysis performed showed good correlation with the expected type of inheritance for both dominant and recessive diseases. The prevalence rate of monogenic hereditary diseases for rural and urban populations, as well as for solely Yakuts, was calculated. It was shown that weighted average prevalence of dominant (0.68; 1.44) and recessive (0.43; 0.86) disorders in Yakuts was two times higher than in total population examined.  相似文献   

8.
Summarized data of medical genetic survey of the population of Republic of Sakha (Yakutia) are presented. The number of the population examined constituted 1 000 700 individuals (including 424 500 of urban and 576 200 of rural population, respectively). Regarding the ethnicity, 33 regions of the Republic examined were at most inhabited by Yakuts (36%) and Russians (55%). A total of 400 families (606 patients) with autosomal dominant, 274 families (369 patients) with autosomal recessive, and 42 families (53 patients) with X-linked pathologies were detected. The segregation analysis performed showed good correlation with the expected type of inheritance for both dominant and recessive diseases. The prevalence rate of monogenic hereditary diseases for rural and urban populations, as well as for solely Yakuts, was calculated. It was shown that weighted average prevalence of dominant (0.68; 1.44) and recessive (0.43; 0.86) disorders in Yakuts was two times higher than in total population examined.  相似文献   

9.
Medical-genetic study was carried out in the population of Khorezm province (population size above 200 000 persons). Hereditary pathology was ascertained among families having two or more members affected with chronic non-infectious diseases. 155 families with 348 members affected with hereditary diseases were registered. The most frequent were autosomal recessive diseases (55 nosological forms in 104 families with 271 affected), then followed the autosomal dominant conditions (10 nosological forms in 21 families with 53 affected). The less frequent was X-linked recessive pathology (6 forms in 12 families with 20 affected). The main part of cases of autosomal recessive pathology were found in separate families and were not observed during previous medical-genetic studies in Uzbekistan. Three autosomal recessive conditions are probably new forms of hereditary pathology. The important role of assortative matings in manifestation of rare autosomal recessive genes in Uzbek population is discussed.  相似文献   

10.
A genetic epidemiological study of hereditary diseases of the nervous system (HDNS) was conducted in the cities of Volgograd and Volzhsky for the first time. In total, 1 323 500 individuals were examined including the populations of Volgograd and Volzhsky (1 012 800 and 310 700 persons, respectively). The prevalence of neurological diseases with autosomal dominant (AD), autosomal recessive (AR), and X-linked recessive inheritance was estimated. These data were compared with the estimates previously obtained for different population of the Russian Federation. A decrease was found in general HDNS load in Volgograd and Volzhsky. The compared populations were shown to differ in a contribution of AD, AR, and X-linked recessive diseases into the HDNS load formation. The possible effect of population dynamics factors on the HDNS load structure is discussed.  相似文献   

11.
The diversity of hereditary pathology in 5 regions of Kostroma district was studied. 32 nosological forms of autosomal dominant, 30 autosomal recessive and 7 X-linked recessive disorders were found. The most frequent autosomal dominant disorders were: neurofibromatosis, pigmentary degeneration of retina, hypochondroplasia, ichtiosis, idiopathic scoliosis. The most frequent among the autosomal recessive disorders were: oligophrenia, pigmentary degeneration of retina, muscular atrophy of juvenile Kugelberg--Welander type, congenital cataract. The most frequent X-linked disorders were: muscular Duchenne type dystrophy and hemophilia A. Analysis of mutant gene distribution over the territory by the study of birthplaces of probands and their parents was carried out.  相似文献   

12.
The results of a medical genetic survey of the population of four raions (176535 individuals) of Rostov oblast (Dubovsky, Zimovnikovsky, Myasnikovsky, and Krasnosulinsky raions) are presented. The load of autosomal dominant (AD), autosomal recessive (AR), and X-linked hereditary diseases for urban and rural population was calculated, and the diversity of monogenic hereditary diseases (MHD) was reviewed. The nosological spectrum of MHD constituted 117 diseases (63 diseases with AD inheritance; 38, with AR inheritance; and 16, with X-linked inheritance). The analysis showed that the incidence of MHD among the population of Rostov oblast was 1: 336. Considerable differentiation in the prevalence rates of MHD (AD, AR, and X-linked pathologies) among certain raions was revealed.  相似文献   

13.
Medico-genetical study of populations living in Krasnodar district was carried out. The mean value of genetic load contributed by autosomal dominant diseases composed 0.92 +/- 0.06, this value being 0.56 +/- 0.04 for autosomal recessive and 0.36 +/- 0.05 for X-linked recessive disorders per one thousand. Comparative analysis of genetical load in urban and rural populations demonstrated that they had no differences in relation to genetical load contributed by autosomal recessive and X-linked recessive disorders. At the same time, significant differences were noted between the populations concerning genetic load contributed by autosomal-dominant disorders.  相似文献   

14.
A genetic epidemiological study of hereditary diseases of the nervous system (HDNS) was conducted in the cities of Volgograd and Volzhsky for the first time. In total, 1 323 500 individuals were examined including the populations of Volgograd and Volzhsky (1 012 800 and 310 700 persons, respectively). The prevalence of neurological diseases with autosomal dominant (AD), autosomal recessive (AR), and X-linked recessive inheritance was estimated. These data were compared with the estimates previously obtained for different population of the Russian Federation. A decrease was found in general HDNS load in Volgograd and Volzhsky. The compared populations were shown to differ in a contribution of AD, AR, and X-linked recessive diseases into the HDNS load formation. The possible effect of population dynamics factors on the HDNS load structure is discussed.  相似文献   

15.
The diversity of Mendelian hereditary pathology has been studied in Sakha Republic (Yakutia). The sample comprised 1 000 700 subjects, including 363 316 Yakuts, 14 428 Evenks, 8668 Evens, 550 263 Russians, and 64 025 subjects from other ethnic groups. Fifty-one autosomal dominant (AD) diseases, including five diseases with frequencies of 1 : 50 000 or higher; 40 autosomal recessive (AR) diseases, including eight diseases with frequencies of 1 : 50 000 or higher in the Yakut population; and five X-linked diseases have been detected.  相似文献   

16.
The diversity of Mendelian hereditary pathology has been studied in Sakha Republic (Yakutia). The sample comprised 1 000 700 subjects, including 363 316 Yakuts, 14 428 Evenks, 8668 Evens, 550 263 Russians, and 64 025 subjects from other ethnic groups. Fifty-one autosomal dominant (AD) diseases, including five diseases with frequencies of 1 : 50 000 or higher; 40 autosomal recessive (AR) diseases, including eight diseases with frequencies of 1 : 50 000 or higher in the Yakut population; and five X-linked diseases have been detected.  相似文献   

17.
The results of integrated study of the genetic structure and prevalence of monogenic hereditary diseases (MHDs) in the child population of three republics of Russia are summarized. Eight raions (districts) of the Republic of Bashkortostan and six districts of each Republic of Chuvashia and Republic of Udmurtia has been surveyed. The total population surveyed was 782184 people, with children accounting for 24.67% of them (192992 children). The loads of autosomal dominant (AD), autosomal recessive (AR), and X-linked MHDs have been calculated separately for urban and rural populations; differences between individual populations in the MHD load have been found. The differentiation of subpopulations with respect to MHD prevalence is explained by differences in the degree of subdivision. The MHD spectrum in the child population of the three republics comprises 222 disease entities, including 121 AD, 83 AR, and 18 X-linked diseases. Group of highly prevalent MHDs in regional child populations have been determined. The mean fitness of MHD patients in Bashkortostan has been calculated; it is 0.87, 0.04 and 0.16 for AD, AR, and X-linked diseases, respectively. Analysis has demonstrated that the prevalence rates of MHDs in the child populations of the republics of Chuvashia, Udmurtia, and Bashkortostan are 1, 1.2, and 1.4%, respectively.  相似文献   

18.
The diversity of monogenic hereditary diseases (HDs) (autosomal dominant (AD), autosomal recessive (AR), and X-linked diseases) has been studied in five districts of Bashkortostan Republic: Burzyanskii, Abzelilovskii, Baimak, Salavatskii, and Arkhangel’skoe raions. The spectrum of HDs comprised 144 diseases, including 83, 48, and 13 AD, AR, and X-linked diseases. Most of them were found earlier during studies in ten other regions of Russia (Kirov, Kostroma, Tver’, Bryansk, and Rostov oblasts, and Krasnodar krai, and the republics of Adygea, Marii El, Udmurtia, and Chuvashia). Foci of local accumulation of some AD, AR, and X-linked diseases have been found in individual districts. Data on the gene frequencies for the HDs have been used for cluster analysis, which has shown the gene geographic position of Bashkirs among nine ethnic populations of Russia: Russians (Kostroma, Kirov, and Rostov oblasts and Krasnodar krai), Chuvashes (Chuvashia), Adygeans (Adygea), Maris (Marii El), Udmurts (Udmurtia), and Bashkirs (Bashkortostan).  相似文献   

19.
The first population genetic study of hereditary disorders of the nervous system (HDNS) in Vladimir oblast was carried out. A total of 1,622,900 subjects, including 1,306,200 from the urban and 316,700 from the rural population, were tested. The population examined was characterized by virtually homogenous ethnic structure, with Russians constituting 95.76%. Pooled prevalence of HDNS in Vladimir oblast corresponded to the average prevalence for other Russian populations. Substantial differences between urban and rural populations in respect of the population load of HDNS and its nosological structure were not observed. A total of 22 nosological forms of HDNS were revealed, including thirteen autosomal dominant (193 families with 272 affected individuals), seven autosomal recessive (59 families with 66 affected individuals), and two X-linked (15 families with 17 affected individuals) diseases. The composition of the HDNS spectrum "nucleus" in Vladimir oblast displayed a number of differences from that in the majority of other populations examined. The HDNS in different regions of the area tested were characterized by different prevalence and spectrum. The data obtained may constitute a basis for regional registration of HDNS in Vladimir oblast.  相似文献   

20.
The large-scale screening for hereditary diseases in five regions of the Tashauz province was carried out. More than 50 families represented by persons with different nosological forms of hereditary diseases, were found. The role of drift in rare mutant gene dynamics was shown. The load of hereditary diseases was mainly connected with autosomal recessive forms and shown to vary between the regions from 0,34 to 1,29 pro mille.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号