首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allene oxide cyclase: a new enzyme in plant lipid metabolism   总被引:10,自引:0,他引:10  
The mechanism of the biosynthesis of 12-oxo-10,15(Z)-phytodienoic acid (12-oxo-PDA) from 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid in preparations of corn (Zea mays L.) was studied. In the initial reaction the hydroperoxide was converted into an unstable allene oxide, 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid, by action of a particle-bound hydroperoxide dehydrase. A new enzyme, allene oxide cyclase, catalyzed subsequent cyclization of allene oxide into 9(S),13(S)-12-oxo-PDA. In addition, because of its chemical instability, the allene oxide underwent competing nonenzymatic reactions such as hydrolysis into alpha- and gamma-ketol derivatives as well as spontaneous cyclization into racemic 12-oxo-PDA. (+/-)-cis-12,13-Epoxy-9(Z)-octadecenoic acid and (+/-)-cis-12,13-epoxy-9(Z),15(Z)-octadecadienoic acid, in which the epoxy group was located in the same position as in the allene oxide substrate, served as potent inhibitors of corn allene oxide cyclase. On the other hand, the isomeric (+/-)-cis-9,10-epoxy-12(Z)-octadecenoic acid had little inhibitory effect. Allene oxide cyclase was present in the soluble fraction of corn homogenate and had a molecular weight of about 45,000 as judged by gel filtration. The enzyme activity was detected in several plant tissues, the highest levels being observed in potato tubers and in leaves of spinach and white cabbage.  相似文献   

2.
3.
4.
5.
Catalase activities were measured and compared in liver, kidney, heart, and lung of American Leopard Frogs (Rana pipiens complex). The order of activities was found to be liver greater than kidney greater than heart approximately lung. The liver enzyme was found to be inhibited by aminotriazole, cyanide, and azide and appears to peroxidatively oxidize ethanol.  相似文献   

6.
7.
8.
RIFL (refeeding induced in fat and liver) is highly expressed in brown and white fat as well as in liver. In white adipose tissue and liver, RIFL expression is induced by refeeding and is also elevated in ob/ob mice. The function of RIFL is unknown, and there is some evidence to suggest it may be secreted. RIFL expression is induced during adipogenesis in rodent and human model systems, and cellular knockdown and mouse knockout studies demonstrate that RIFL expression correlates with lipid levels. Overall, these studies indicate that RIFL is a new important player in lipid metabolism.  相似文献   

9.
The final urinary excretion product of selenium detoxification is trimethylselenonium ion. An assay has been developed for the enzyme, S-adenosylmethionine:thioether S-methyltransferase, responsible for this final methylation reaction. This assay employed high pressure liquid chromatography separation and quantitation of the trimethylselenonium ion produced by thioether methyltransferase acting on S-adenosylmethionine and dimethyl selenide. The enzyme was shown to reside primarily in the cytosol of mouse lung (30 pmol/mg protein/min) and liver (7 pmol/mg protein/min). Purification from mouse lung to a preparation that exhibited a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was achieved by DEAE, gel filtration, and chromatofocusing chromatographies. Thioether methyltransferase is monomeric with a molecular weight of 28,000 and has a pI of 5.3. The pH optimum was 6.3, and Km values for dimethyl selenide and S-adenosylmethionine were 0.4 and 1.0 microM, respectively. The enzyme was inhibited 50% by 25 microM sinefungin, an analog of S-adenosylmethionine, or 40 microM S-adenosylhomocysteine, the reaction product. Pure thioether methyltransferase methylated selenium in dimethyl selenide, tellurium in dimethyl telluride, and S in dimethyl sulfide and many other thioethers. These data suggest a general role for this novel enzyme in the synthesis of onium compounds with increased aqueous solubility helpful in their excretion.  相似文献   

10.
Phosphomannose isomerase (pmi, EC 5.3.1.8) was purified to homogeneity from a wild strain of Xanthomonas campestris. The apparent molecular weight as determined by SDS-PAGE and Sephadex G-100 Superfine was found to be 58 kDa. The purified enzyme showed a single band on acrylamide gel electrophocusing with pI = 5.25. The optimum pH was 7.0 and the Km for D-mannose-6-phosphate was 2 mM. Pmi can be activated by bivalent cations with the order of Co2+>Zn2+>Mn2+>Ni2+>Ca2+. Addition of low concentration of ZnCl2 (2 x 10-7 M) in the growth medium resulted in the enhancement of pmi activity to around 2.5 x fold. The half life of pmi, as it was measured by the addition of chloramphenicol, was 110 min, whereas in the medium supplemented with ZnCl2 was 270 min. Chemical modification experiments implied the existence of one histidyl residue located at or near the active site.  相似文献   

11.
The peroxisomal acyl-CoA oxidase family plays an essential role in lipid metabolism by catalyzing the conversion of acyl-CoA into trans-2-enoyl-CoA during fatty acid beta-oxidation. Here, we report the X-ray structure of the FAD-containing Arabidopsis thaliana acyl-CoA oxidase 1 (ACX1), the first three-dimensional structure of a plant acyl-CoA oxidase. Like other acyl-CoA oxidases, the enzyme is a dimer and it has a fold resembling that of mammalian acyl-CoA oxidase. A comparative analysis including mammalian acyl-CoA oxidase and the related tetrameric mitochondrial acyl-CoA dehydrogenases reveals a substrate-binding architecture that explains the observed preference for long-chained, mono-unsaturated substrates in ACX1. Two anions are found at the ACX1 dimer interface and for the first time the presence of a disulfide bridge in a peroxisomal protein has been observed. The functional differences between the peroxisomal acyl-CoA oxidases and the mitochondrial acyl-CoA dehydrogenases are attributed to structural differences in the FAD environments.  相似文献   

12.
Regulation of lipid metabolism: a tale of two yeasts   总被引:1,自引:0,他引:1  
Eukaryotic cells synthesize multiple classes of lipids by distinct metabolic pathways in order to generate membranes with optimal physical and chemical properties. As a result, complex regulatory networks are required in all organisms to maintain lipid and membrane homeostasis as well as to rapidly and efficiently respond to cellular stress. The unicellular nature of yeast makes it particularly vulnerable to environmental stress and yeast has evolved elaborate signaling pathways to maintain lipid homeostasis. In this article we highlight the recent advances that have been made using the budding and fission yeasts and we discuss potential roles for the unfolded protein response (UPR) and the SREBP-Scap pathways in coordinate regulation of multiple lipid classes.  相似文献   

13.
Ferredoxin-NADP(+) reductase catalyses NADP(+) reduction, being specific for NADP(+)/H. To understand coenzyme specificity determinants and coenzyme specificity reversion, mutations at the NADP(+)/H pyrophosphate binding and of the C-terminal regions have been simultaneously introduced in Anabaena FNR. The T155G/A160T/L263P/Y303S mutant was produced. The mutated enzyme presents similar k(cat) values for NADPH and NADH, around 2.5 times slower than that reported for WT FNR with NADPH. Its K(m) value for NADH decreased 20-fold with regard to WT FNR, whereas the K(m) for NADPH remains similar. The combined effect is a much higher catalytic efficiency for NAD(+)/H, with a minor decrease of that for NADP(+)/H. In the mutated enzyme, the specificity for NADPH versus NADH has been decreased from 67,500 times to only 12 times, being unable to discriminate between both coenzymes. Additionally, giving the role stated for the C-terminal Tyr in FNR, its role in the energetics of the FAD binding has been analysed.  相似文献   

14.
15.
Several components of membrane rafts play a critical role in cytokinesis. A recent paper reports a new lipid component of these rafts required for proper cell division.  相似文献   

16.
Small-molecule metabolism: an enzyme mosaic   总被引:5,自引:0,他引:5  
Escherichia coli has been a popular organism for studying metabolic pathways. In an attempt to find out more about how these pathways are constructed, the enzymes were analysed by defining their protein domains. Structural assignments and sequence comparisons were used to show that 213 domain families constitute 90% of the enzymes in the small-molecule metabolic pathways. Catalytic or cofactor-binding properties between family members are often conserved, while recognition of the main substrate with change in catalytic mechanism is only observed in a few cases of consecutive enzymes in a pathway. Recruitment of domains across pathways is very common, but there is little regularity in the pattern of domains in metabolic pathways. This is analogous to a mosaic in which a stone of a certain colour is selected to fill a position in the picture.  相似文献   

17.
Lipid rafts are functional microdomains enriched with sphingolipids and cholesterol. The fatty acyl chain composition of sphingolipids is a critical factor in the localization of lipids in lipid rafts. The recent studies suggest that lipid rafts are more heterogeneous than previously thought. In addition, our discovery of a new glycolipid, phosphatidylglucoside (PtdGlc), also supports the notion of raft heterogeneity. The complete structural characterization of PtdGlc shows that it consists solely of saturated fatty acyl chains: C18:0 at the sn-1 and C20:0 at the sn-2 positions of the glycerol backbone. This unique fatty acyl composition comprising a single molecular species rarely occurs in known mammalian lipids. Although the structure of PtdGlc is similar to that of phosphatidylinositol, PtdGlc localizes to the outer leaflet of the plasma membrane and is possibly involved in cell-cell interaction signaling in the central nervous system.  相似文献   

18.
19.
The dimeric enzyme triosephosphate isomerase (TIM) has a very tight and rigid dimer interface. At this interface a critical hydrogen bond is formed between the main chain oxygen atom of the catalytic residue Lys13 and the completely buried side chain of Gln65 (of the same subunit). The sequence of Leishmania mexicana TIM, closely related to Trypanosoma brucei TIM (68% sequence identity), shows that this highly conserved glutamine has been replaced by a glutamate. Therefore, the 1.8 A crystal structure of leishmania TIM (at pH 5.9) was determined. The comparison with the structure of trypanosomal TIM shows no rearrangements in the vicinity of Glu65, suggesting that its side chain is protonated and is hydrogen bonded to the main chain oxygen of Lys13. Ionization of this glutamic acid side chain causes a pH-dependent decrease in the thermal stability of leishmania TIM. The presence of this glutamate, also in its protonated state, disrupts to some extent the conserved hydrogen bond network, as seen in all other TIMs. Restoration of the hydrogen bonding network by its mutation to glutamine in the E65Q variant of leishmania TIM results in much higher stability; for example, at pH 7, the apparent melting temperature increases by 26 degrees C (57 degrees C for leishmania TIM to 83 degrees C for the E65Q variant). This mutation does not affect the kinetic properties, showing that even point mutations can convert a mesophilic enzyme into a superstable enzyme without losing catalytic power at the mesophilic temperature.  相似文献   

20.
Beta-L-arabinosidase from Cajanus indicus: a new enzyme   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号