首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Arcanobacterium (Actinomyces) pyogenes, an animal pathogen, produces a hemolytic exotoxin, pyolysin (PLO). The gene encoding PLO was cloned, and sequence analysis revealed an open reading frame of 1,605 bp encoding a protein of 57.9 kDa. PLO has 30 to 40% identity with the thiol-activated cytolysins (TACYs) of a number of gram-positive bacteria. The activity of PLO was found to be very similar to those of other TACYs, except that it was not thiol activated. The highly conserved TACY undecapeptide is divergent in PLO; in particular, the cysteine residue required for thiol activation has been replaced with alanine. However, mutagenesis of the alanine residue to cysteine did not confer thiol activation on PLO, suggesting a conformational difference in the undecapeptide region of this toxin. Specific antibodies against purified, recombinant PLO completely neutralized the hemolytic activity of A. pyogenes, suggesting that this organism produces a single hemolysin. Furthermore, these antibodies could passively protect mice against lethal challenge with A. pyogenes, suggesting that like other TACYs PLO is an important virulence factor in the pathogenesis of this organism.  相似文献   

2.
The gene, designated hep, coding for a heparinase that degrades both heparin and heparan sulfate, was cloned from Bacillus circulans HpT298. Nucleotide sequence analysis showed that the open reading frame of the hep gene consists of 3,150 bp, encoding a precursor protein of 1,050 amino acids with a molecular mass of 116.5 kDa. A homology search found that the deduced amino acid sequence has partial similarity with enzymes belonging to the family of acidic polysaccharide lyases that degrade chondroitin sulfate and hyaluronic acid. Recombinant mature heparinase (111.2 kDa) was produced by the addition of IPTG from Escherichia coli harboring pETHEP with an open reading frame of the mature hep gene and was purified to homogeneity by SDS-polyacrylamide gel electrophoresis. Analyses of substrate specificity and degraded disaccharides indicated that the recombinant enzyme acts on both heparin and HS, as does heparinase purified from the wild-type strain.  相似文献   

3.
A highly heat-stable amylase gene from an obligately anaerobic and extremely thermophilic bacterium, Dictyoglomus thermophilum, was cloned and expressed in Escherichia coli. The nucleotide sequence of the amylase gene predicts a 686-amino-acid protein of relative molecular mass 81,200, which is consistent with that determined by sodium dodecyl sulfate/polyacrylamide gel electrophoresis of the purified enzyme. The NH2-terminal sequence determined using the enzyme purified from E. coli cells corresponds precisely to that predicted from the nucleotide sequence, except for the absence of the NH2-terminal methionine in the mature protein. When the amylase gene was expressed in E. coli cells, the enzyme was localized in the cytoplasmic fraction; this is probably explained by the absence of the signal sequence for secretion. By using the amylase purified from the E. coli transformant, some enzymatic properties, such as optimum pH, optimum temperature, pH-stability and heat-stability, were examined. The amylase was found to be a highly liquefying-type.  相似文献   

4.
A synthetic gene containing the coding sequence for the human cysteine proteinase inhibitor, cystatin A, was obtained by enzymatic assembly of 20 oligodeoxyribonucleotides which had been chemically synthesized by the solid phase phosphoramidite method. It was cloned into an Escherichia coli plasmid. The expression plasmid for cystatin A was constructed by introducing the synthetic gene downstream of the tac promoter of an E. coli plasmid which is a derivative of pKK223-3 with high copy number. The gene was expressed in E. coli JM109 without IPTG-induction. The expression of cystatin A was detected by SDS-polyacrylamide gel electrophoresis of the E. coli JM109 lysate, followed by immunoblotting using rabbit antiserum raised with human epidermal cystatin A and alkaline phosphatase-conjugated goat anti-rabbit IgG. The result showed that the molecular weight of the expression product is identical with that of the authentic protein and the antigenic properties are also the same. Furthermore, the expression product purified with a CM-papain Sepharose affinity column and FPLC system with a Mono-Q column showed the same inhibitory activity for various cysteine proteinases. Also, purified recombinant cystatin A was found to have identical amino acid composition, NH2-terminal amino acid sequence, and peptide-map on reverse phase HPLC with those of the authentic inhibitor.  相似文献   

5.
Transfer RNA (m7G46) methyltransferase catalyzes the methyl transfer from S-adenosylmethionine to N7 atom of the guanine 46 residue in tRNA. Analysis of the Aquifex aeolicus genome revealed one candidate open reading frame, aq065, encoding this gene. The aq065 protein was expressed in Escherichia coli and purified to homogeneity on 15% SDS-polyacrylamide gel electrophoresis. Although the overall amino acid sequence of the aq065 protein differs considerably from that of E. coli YggH, the purified aq065 protein possessed a tRNA (m7G46) methyltransferase activity. The modified nucleoside and its location were determined by liquid chromatography-mass spectroscopy. To clarify the RNA recognition mechanism of the enzyme, we investigated the methyl transfer activity to 28 variants of yeast tRNAPhe and E. coli tRNAThr. It was confirmed that 5'-leader and 3'-trailer RNAs of tRNA precursor are not required for the methyl transfer. We found that the enzyme specificity was critically dependent on the size of the variable loop. Experiments using truncated variants showed that the variable loop sequence inserted between two stems is recognized as a substrate, and the most important recognition site is contained within the T stem. These results indicate that the L-shaped tRNA structure is not required for methyl acceptance activity. It was also found that nucleotide substitutions around G46 in three-dimensional core decrease the activity.  相似文献   

6.
根据嗜水气单胞菌溶血素保护性抗原基因序列(GenBank Accession No. AF539467)设计一对引物, 以嗜水气单胞菌河北分离株基因组为模板, 经PCR扩增得到hly基因。序列分析表明, 该基因产物大小为1485 bp, 经测序与GenBank报道的多个嗜水气单胞菌hly基因序列一致性高于99%。将得到的hly基因定向克隆到原核表达载体pET-28a中构建原核重组质粒pET-28a- hly, 转化大肠杆菌 BL21(DE3)中, 得到重组菌株BL21(DE3)(pET-28a-hly), 经IPTG诱导后, SDS-PAGE分析可见一条56 kD的特异条带。Western blotting分析结果显示表达的Hly蛋白能与抗体发生特异性结合,说明其具有较好的免疫原性。将表达的溶血素蛋白制成类毒素疫苗免疫小鼠后, 具有较高的保护效力, 表明该类毒素疫苗有望作为预防由嗜水气单胞菌引起疾病的基因工程类毒素疫苗。  相似文献   

7.
A gene encoding the mucin-desulfating sulfatase in Prevotella strain RS2 has been cloned, sequenced, and expressed in an active form. A 600-bp PCR product generated using primers designed from amino acid sequence data was used to isolate a 5,058-bp genomic DNA fragment containing the mucin-desulfating sulfatase gene. A 1,551-bp open reading frame encoding the sulfatase proprotein was identified, and the deduced 517-amino-acid protein minus its signal sequence corresponded well with the published mass of 58 kDa estimated by denaturing gel electrophoresis. The sulfatase sequence showed homology to aryl- and nonarylsulfatases with different substrate specificities from the sulfatases of other organisms. No sulfatase activity could be detected when the sulfatase gene was cloned into Escherichia coli expression vectors. However, cloning the gene into a Bacteroides expression vector did produce active sulfatase. This is the first mucin-desulfating sulfatase to be sequenced and expressed. A second open reading frame (1,257 bp) was identified immediately upstream from the sulfatase gene, coding in the opposite direction. Its sequence has close homology to iron-sulfur proteins that posttranslationally modify other sulfatases. By analogy, this protein is predicted to catalyze the modification of a serine group to a formylglycine group at the active center of the mucin-desulfating sulfatase, which is necessary for enzymatic activity.  相似文献   

8.
The proteins in the culture supernatant (exoproteins) from Streptococcus pyogenes serotype M1 were separated by two-dimensional gel electrophoresis, and their N-terminal amino acid sequences were determined. The amino acid sequences were compared to sequences in the S. pyogenes genome database. The coding sequence showed similarity to sequences of two genes, mf2-v ( mf2 variant) and mf3, which had sequence similarity to genes encoding mitogenic factor (MF); MF has DNase activity. The recombinant genes were expressed in Escherichia coli and the proteins were synthesized. Mf2-v and Mf3 had DNase activity. The activity of Mf2-v was localized to the C-terminal half of the protein. The mf3 gene was shown to be present in most clinically isolated strains of S. pyogenes tested, and the mf2gene was detected in 20% of the isolates. The products of the mf2 and mf3 genes in clinically isolated S. pyogenes strains were thus shown to be DNases.  相似文献   

9.
10.
Nucleotide sequence of the Escherichia coli mutH gene.   总被引:8,自引:1,他引:8       下载免费PDF全文
The complete nucleotide sequence of mutH gene from E. coli has been determined. Based on the deduced amino acid sequence, the MutH protein has a molecular weight of 25.4 kdaltons in agreement with the previous estimates based on SDS-polyacrylamide gel electrophoresis of the purified protein. Deletion analysis of the DNA sequences upstream of mutH has identified the promoter region for this gene. Two independently isolated temperature sensitive alleles of the mutH gene have also been sequenced. One mutation results in an amino acid change at position 27 (thr to leu) while the other occurs at position 156 (asp to asn).  相似文献   

11.
From a cosmid gene bank of Bacillus cereus GP4 in Escherichia coli we isolated clones which, after several days of incubation, formed hemolysis zones on erythrocyte agar plates. These clones contained recombinant cosmids with B. cereus DNA insertions of varying lengths which shared some common restriction fragments. The smallest insertion was recloned as a PstI fragment into pJKK3-1, a shuttle vector which replicates in Bacillus subtilis and E. coli. When this recombinant plasmid (pJKK3-1 hly-1) was transformed into E. coli, it caused hemolysis on erythrocyte agar plates, but in liquid assays no external or internal hemolytic activity could be detected with the E. coli transformants. B. subtilis carrying the same plasmid exhibited hemolytic activity at levels comparable to those of the B. cereus donor strain. The hemolysin produced in B. subtilis seemed to be indistinguishable from cereolysin in its sensitivity to cholesterol, activation by dithiothreitol, and inactivation by antibodies raised against cereolysin. When the recombinant DNA carrying the cereolysin gene was used as a probe in hybridization experiments with chromosomal DNA from a streptolysin O-producing strain of Streptococcus pyogenes or from listeriolysin-producing strains of Listeria monocytogenes, no positive hybridization signals were obtained. These data suggest that the genes for these three SH-activated cytolysins do not have extended sequence homology.  相似文献   

12.
Hydroxyphenylpyruvate reductase (HPPR) is an enzyme involved in the biosynthesis of rosmarinic acid in Lamiaceae reducing hydroxyphenylpyruvates in dependence of NAD(P)H to the corresponding hydroxyphenyllactates. The HPPR protein was purified from suspension cells of Coleus blumei accumulating high levels of rosmarinic acid by ammonium sulfate precipitation, anion exchange chromatography, hydroxylapatite chromatography, chromatography on 2',5'-ADP-Sepharose 4B and SDS-polyacrylamide gel electrophoresis. The protein was tryptically digested and the peptides sequenced. Sequence information was used to isolate a full-length cDNA-clone for HPPR (EMBL accession number AJ507733) by RT-PCR, screening of a C. blumei cDNA-library and 5'-RACE-PCR. The open reading frame of the HPPR-cDNA consists of 939 nucleotides encoding a protein of 313 amino acid residues. The sequence showed that HPPR belongs to the family of D-isomer-specific 2-hydroxyacid dehydrogenases. The HPPR-cDNA was heterologously expressed in Escherichia coli and the protein was shown to catalyse the NAD(P)H-dependent reduction of 4-hydroxyphenylpyruvate to 4-hydroxyphenyllactate and 3,4-dihydroxyphenylpyruvate to 3,4-dihydroxyphenyllactate.  相似文献   

13.
An alpha-amylase gene from Bacillus sp. strain TS-23 was cloned and expressed by using its own promoter on the recombinant plasmid pTS917 in Escherichia coli. A cell fractionation experiment revealed that approximately 60% of the amylase activity was in the periplasmic space. Analysis and activity staining of the concentrated supernatant fraction by SDS-polyacrylamide gel electrophoresis showed an apparent protein band with a mol. wt of approximately 65,000. The amylase gene (amyA) consisted of an open reading frame of 1,845 bp encoding a protein of 613 amino acids with a calculated mol. wt of 69,543. The predicted amino acid sequence showed high homology with Bacillus species, E. coli and Salmonella typhimurium alpha-amylases. Deletion of 96 amino acids from the C-terminal portion of the amylase did not result in the loss of amylolytic activity. The truncated amylase, deletion of the first 50 amino acids from the N-terminus, was overexpressed in E. coli system and refolded to yield an activable enzyme.  相似文献   

14.
The gene encoding Leifsonia alcohol dehydrogenase (LSADH), a useful biocatalyst for producing (R)-chiral alcohols, was cloned from the genomic DNA of Leifsonia sp. S749. The gene contained an opening reading frame consisting of 756 nucleotides corresponding to 251 amino acid residues. The subunit molecular weight was calculated to be 24,999, which was consistent with that determined by polyacrylamide gel electrophoresis. The enzyme was expressed in recombinant Escherichia coli cells and purified to homogeneity by three column chromatographies. The predicted amino acid sequence displayed 30-50% homology to known short chain alcohol dehydrogenase/reductases (SDRs); moreover, the NADH-binding site and the three catalytic residues in SDRs were conserved. The recombinant E. coli cells which overexpressed lsadh produced (R)-form chiral alcohols from ketones using 2-propanol as a hydrogen donor with the highest level of productivity ever reported and enantiomeric excess (e.e.).  相似文献   

15.
K Poole  E Schiebel    V Braun 《Journal of bacteriology》1988,170(7):3177-3188
The nucleotide sequence of a 7.3-kilobase-pair fragment of DNA encoding a hemolytic activity from Serratia marcescens was determined. Two large open reading frames were identified, designated shlA (Serratia hemolysin) and shlB, capable of encoding polypeptides of 165, 056 and 61,897 molecular weight, respectively. Both reading frames were expressed in vivo. The shlB gene product was localized to the outer membrane of Escherichia coli cells harboring the S. marcescens hemolysin determinant. Consistent with this location, a signallike sequence was identified at the N terminus of the polypeptide predicted from the nucleotide sequence of the shlB gene. Hyperexpression of the shlB locus permitted the identification of two shlB-encoded polypeptides of 65,000 and 62,000 molecular weight, respectively. Determination of the N-terminal amino acid sequence of the purified 62,000-molecular-weight protein confirmed that it was the mature form of the ShlB protein initially synthesized as a precursor (65,000-molecular-weight protein). By using polyclonal antisera raised against the purified proteins, ShlA and ShlB were identified in the outer membrane of S. marcescens. The shlA gene product was shown to interact with erythrocyte membranes, confirming it as the hemolysin proper. Both hemolysis and the interaction of ShlA with erythrocyte membranes did, however, require the ShlB function. Progressive deletion of the C terminus of the ShlA protein gradually reduced hemolytic activity until 37% of the amino acids had been removed. Elimination of 54% of the amino acids produced a nonhemolytic protein which, however, was still capable of associating with erythrocyte membranes.  相似文献   

16.
The gene encoding a thermostable peroxidase was cloned from the chromosomal DNA of Bacillus stearothermophilus IAM11001 in Escherichia coli. The nucleotide sequence of the 3.1-kilobase EcoRI fragment containing the peroxidase gene (perA) and its flanking region was determined. A 2,193-base-pair open reading frame encoding a peroxidase of 731 amino acid residues (Mr, 82,963) was observed. A Shine-Dalgarno sequence was found 9 base pairs upstream from the translational starting site. The deduced amino acid sequence coincides with those of the amino terminus and four peptides derived from the purified peroxidase of B. stearothermophilus IAM11001. E. coli harboring a recombinant plasmid containing perA produced a large amount of thermostable peroxidase which comigrated on polyacrylamide gel electrophoresis with the B. stearothermophilus peroxidase. The peroxidase of B. stearothermophilus showed 48% homology in the amino acid sequence to the catalase-peroxidase of E. coli.  相似文献   

17.
A chitobiase gene from Vibrio parahemolyticus was cloned into plasmid pUC18 in Escherichia coli strain DH5 alpha. The plasmid construct, pC120, contained a 6.4 kb Vibrio DNA insert. The recombinant gene expressed chitobiase [EC 3.2.1.30] activity similar to that found in the native Vibrio. The enzyme was purified by ion exchange, hydroxylapatite and gel permeation chromatographies, and exhibited an apparent molecular weight of 80 kDa on SDS-polyacrylamide gel electrophoresis. Chitobiose and 6 more substrates, including beta-N-acetyl galactosamine glycosides, were hydrolyzed by the recombinant chitobiase, indicating its putative classification as an hexosaminidase [EC 3.2.1.52]. The enzyme was resistant to denaturation by 2 M NaCl, thermostable at 45 degrees C and active over a very unusual (for glycosyl hydrolases) pH range, from 4 to 10. The purified cloned chitobiase gave 4 closely focussed bands on an isoelectric focusing gel, at pH 4 to 6.5. The N-terminal 43 amino acid sequence shows no homology with other proteins in commercial databanks or in the literature, and from its N-terminal sequence, appears to be a novel protein, unrelated in sequence to chitobiases from other Vibrios reported and unrelated to hexosaminidases from other organisms.  相似文献   

18.
Pepsin-hydrolyzed collagen (atelocollagen) is a trimer, consisting of alpha 1 and alpha 2 monomers, and shows molecular species corresponding to a monomer, dimer (beta chain), and trimer (gamma chain) by SDS-polyacrylamide gel electrophoresis. Atelocollagen was purified from yellowfin tuna (Thunnus albacares) by salt precipitation and cation-exchange chromatography. Enzymatic hydrolysis of the atelocollagen by actinidain, a cysteine protease purified from kiwifruit, was analyzed by SDS-polyacrylamide gel electrophoresis. The triple helical structure unique to collagen was retained in the atelocollagen as judged by circular dichroism spectra. The actinidain-processed atelocollagen showed only monomeric alpha 1 and alpha 2 chains, with no beta and gamma chains, by SDS-polyacrylamide gel electrophoresis; nevertheless, it retained the typical triple helical structure. It is suggested that actinidain cleaved the atelocollagen molecule at specific sites on the inside of the inter-strand cross-linking peptides.  相似文献   

19.
The glgP gene, which codes for glycogen phosphorylase, was cloned from a genomic library of Escherichia coli. The nucleotide sequence of the glgP gene contained a single open reading frame encoding a protein consisting of 790 amino acid residues. The glgP gene product, a polypeptide of Mr 87,000, was confirmed by SDS-polyacrylamide gel electrophoresis. The deduced amino acid sequence showed that homology between glgP of E. coli and rabbit glgP, human glgP, potato glgP, and E. coli malP was 48.6, 48.6, 42.3, and 46.1%, respectively. Within this homologous region, the active site, glycogen storage site, and pyridoxal-5'-phosphate binding site are well conserved. The enzyme activity of glycogen phosphorylase increased after introduction on a multicopy of the glgP gene.  相似文献   

20.
Exiguobacterium sp. F42 was screened as a producer of an enzyme catalyzing the NADPH-dependent stereoselective reduction of ethyl 3-oxo-3-(2-thienyl)propanoate (KEES) to ethyl (S)-3-hydroxy-3-(2-thienyl)propanoate ((S)-HEES). (S)-HEES is a key intermediate for the synthesis of (S)-duloxetine, a potent inhibitor of the serotonin and norepinephrine uptake carriers. The responsible enzyme (KEES reductase) was partially purified, and the gene encoding KEES reductase was cloned and sequenced via an inverse PCR approach. Sequence analysis of the gene for KEES reductase revealed that the enzyme was a member of the short chain dehydrogenase/reductase family. The probable NADPH-interacting site and 3 catalytic residues (Ser-Tyr-Lys) were fully conserved. The gene was highly expressed in Escherichia coli, and the gene product was purified to homogeneity from the recombinant E. coli by simpler procedures than from the original host. The molecular mass of the purified enzyme was 27,500 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and 55,000 as determined by gel filtration chromatography. Our results show that this enzyme can be used for the practical production of (S)-HEES.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号