首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thiol-disulphide oxidoreductases catalyse the formation or breakage of disulphide bonds to control the red-ox status of a variety of proteins. Their activity is compartmentalized, as exemplified by the distinct roles these enzymes play in the cytoplasm and periplasm of Gram-negative bacteria. In this issue of Molecular Microbiology , an article from Lars Hederstedt and collaborators at Lund University sheds light on another member of this superfamily of proteins, the thioredoxin-like protein StoA from Bacillus subtilis . Interestingly, StoA function is required in yet another subcellular compartment: the intermembrane space that separates forespores from mother cells in endospore-forming bacteria. Specifically, this study demonstrates that the high-molecular-weight penicillin-binding protein SpoVD, which contains two exposed cysteine residues and whose extracellular domain is located in the intermembrane space, is a substrate of StoA. As formation of a disulphide bond most likely inactivates SpoVD activity, the converse breakage of that bond in a process catalysed by StoA appears to be the trigger that initiates peptidoglycan synthesis in sporulating cells.  相似文献   

2.
Endospore cortex peptidoglycan synthesis is not required for bacterial growth but essential for endospore heat resistance. It therefore constitutes an amenable system for research on peptidoglycan biogenesis. The Bacillus subtilis sporulation‐specific class B penicillin‐binding protein (PBP) SpoVD and many homologous PBPs contain two conserved cysteine residues of unknown function in the transpeptidase domain – one as residue x in the SxN catalytic site motif and the other in a flexible loop near the catalytic site. A disulfide bond between these residues blocks the function of SpoVD in cortex synthesis. With a combination of experiments with purified proteins and B. subtilis mutant cells, it was shown that in active SpoVD the two cysteine residues most probably interact by hydrogen bonding and that this is important for peptidoglycan synthesis in vivo. It was furthermore demonstrated that the sporulation‐specific thiol‐disulfide oxidoreductase StoA reduces SpoVD and that requirement of StoA for cortex synthesis can be suppressed by two completely different types of structural alterations in SpoVD. It is concluded that StoA plays a critical role mainly during maturation of SpoVD in the forespore outer membrane. The findings advance our understanding of essential PBPs and redox control of extra‐cytoplasmic protein disulfides in bacterial cells.  相似文献   

3.
Bacillus subtilis is an endospore-forming bacterium. There are indications that protein disulfide linkages occur in spores, but the role of thiol-disulfide chemistry in spore synthesis is not understood. Thiol-disulfide oxidoreductases catalyze formation or breakage of disulfide bonds in proteins. CcdA is the only B. subtilis thiol-disulfide oxidoreductase that has previously been shown to play some role in endospore biogenesis. In this work we show that lack of the StoA (YkvV) protein results in spores sensitive to heat, lysozyme, and chloroform. Compared to CcdA deficiency, StoA deficiency results in a 100-fold-stronger negative effect on sporulation efficiency. StoA is a membrane-bound protein with a predicted thioredoxin-like domain probably localized in the intermembrane space of the forespore. Electron microscopy of spores of CcdA- and StoA-deficient strains showed that the spore cortex is absent in both cases. The BdbD protein catalyzes formation of disulfide bonds in proteins on the outer side of the cytoplasmic membrane but is not required for sporulation. Inactivation of bdbD was found to suppress the sporulation defect of a strain deficient in StoA. Our results indicate that StoA is a thiol-disulfide oxidoreductase that is involved in breaking disulfide bonds in cortex components or in proteins important for cortex synthesis.  相似文献   

4.
The requirement of peptidoglycan synthesis for growth complicates the analysis of interactions between proteins involved in this pathway. In particular, the latter steps that involve membrane-linked substrates have proven largely recalcitrant to in vivo analysis. Here, we have taken advantage of the peptidoglycan synthesis that occurs during sporulation in Bacillus subtilis to examine the interactions between SpoVE, a nonessential, sporulation-specific homolog of the well-conserved and essential SEDS (shape elongation, division, and sporulation) proteins, and SpoVD, a nonessential class B penicillin binding protein. We found that localization of SpoVD is dependent on SpoVE and that SpoVD protects SpoVE from in vivo proteolysis. Co-immunoprecipitations and fluorescence resonance energy transfer experiments indicated that SpoVE and SpoVD interact, and co-affinity purification in Escherichia coli demonstrated that this interaction is direct. Finally, we generated a functional protein consisting of an SpoVE-SpoVD fusion and found that a loss-of-function point mutation in either part of the fusion resulted in loss of function of the entire fusion that was not complemented by a wild-type protein. Thus, SpoVE has a direct and functional interaction with SpoVD, and this conclusion will facilitate understanding the essential function that SpoVE and related SEDS proteins, such as FtsW and RodA, play in bacterial growth and division.  相似文献   

5.
The penicillin-binding proteins (PBPs) of Bacillus subtilis were examined after incubation of vegetative and sporulating cultures with chloramphenicol, an inhibitor of protein synthesis. The results indicate that the sporulation-specific increases in vegetative PBPs 2B and 3 and the appearance of two new PBPs, 4* and 5*, depend on concurrent protein synthesis, which is most likely to be de novo synthesis of the PBPs rather than synthesis of an activator or processing enzyme. It was also learned that in vivo the PBPs differ in their individual stabilities, which helps to explain some of the quantitative changes that occur in the PBP profile during sporulation. All the membrane-bound PBPs, except possibly PBP 1, were found to be stable in the presence of crude extracts of sporulating cells that contained proteolytic activity.  相似文献   

6.
Decoyinine, an inhibitor of GMP synthetase, was used to induce sporulation under catabolite-repressed conditions in Bacillus subtilis. Sporulation-specific penicillin-binding proteins 4* and 5* were produced in abundance, and there was an increase in vegetative penicillin-binding proteins 2B and 3. These results, which were completely blocked by addition of guanosine, suggest that synthesis of penicillin-binding proteins is neither catabolite repressed nor directly dependent on the stringent response.  相似文献   

7.
The prfA genes of Bacillus stearothermophilus and Bacillus subtilis are in an operon downstream of the ponA gene encoding penicillin-binding protein 1 (PBP1), a major enzyme involved in peptidoglycan synthesis. The specific function of the 23- to 24-kDa PrfA protein is unknown but this protein plays some role in nucleoid segregation and the functions of PrfA and PBP1 are interrelated. We overexpressed B. stearothermophilus and B. subtilis PrfA in Escherichia coli and purified the proteins to homogeneity by cation exchange and gel filtration chromatography. The protein is a monomer in solution, and circular dichroism spectroscopy revealed an abundance of beta-sheet secondary structure. Crystals of B. stearothermophilus PrfA were also obtained and diffracted X-rays to 1.8 A resolution.  相似文献   

8.
The penicillin-binding protein that is thought to be the lethal target of penicillin in Bacillus megaterium (protein 1) has been purified to greater than 95% homogeneity. The membrane-bound penicillin-binding proteins were solubilized with a non-ionic detergent and partially separated from each other by ion-exchange chromatography on DEAE-Sepharose CL-6B. Protein 1 was subsequently purified by covalent affinity chromatography on ampicillin-affinose. Bacillus licheniformis contains an equivalent penicillin-binding protein (protein 1) that can be more readily purified to virtual homogeneity in a one-step procedure. It was separated from the other penicillin-binding proteins by utilizing the observation that in this organism, this particular protein is the only one whose covalent complex with benzylpenicillin subsequently breaks down. Membranes were treated with saturating concentrations of benzylpenicillin followed by the removal of free penicillin and further incubation to allow the complex between benzylpenicillin and protein 1 to break down. The penicillin-binding proteins were then solubilized and applied to a column of ampicillin-affinose to which only protein 1 was bound as the other penicillin-binding proteins still had benzylpenicillin bound to them. Pure protein 1 was eluted from the affinity resin with hydroxylamine. The interaction of benzylpenicillin with purified protein 1 has been studied by separating unbound antibiotic from the benzylpenicillin . protein complex by paper electrophoresis. Benzylpenicillin reacts with the protein rapidly to form a covalent complex and the fully saturated complex has a molar ratio of bound [14C] benzylpenicillin: protein of 0.7:1. The complex breaks down, obeying first-order kinetics, with a half-life of 16 min at 35 degrees C, a value identical to that obtained with the membrane-bound protein. The concentration of benzylpenicillin that results in the formation of 50% of the maximum amount of benzylpenicillin . protein complex is that at which the molar amount of benzylpenicillin present is equal to 50% of the molar amount of penicillin-binding protein, rather than being a measure of any of the kinetic parameters of the binding reaction. This observation may be significant in the interpretation of previous results where the amounts of penicillins needed to kill cells or to inhibit penicillin-sensitive reactions have been expressed as concentrations. The possible importance of the breakdown of beta-lactam . protein complexes in the clinical use of these antibiotics is discussed.  相似文献   

9.
In Bacillus subtilis, antibiotics that impair cell wall synthesis induce a characteristic stress response including the sigma(W) and sigma(M) regulons and the previously uncharacterized yoeB gene. Here we demonstrate that YoeB is a cell wall-associated protein with weak sequence similarity to a noncatalytic domain of class B penicillin-binding proteins. A yoeB-null mutant exhibits an increased rate of autolysis in response to cell wall-targeting antibiotics or nutrient depletion. This phenotype does not appear to be correlated with gross alterations in peptidoglycan structure or levels of autolysins. Promoter dissection experiments define a minimal region necessary for antibiotic-mediated induction of yoeB, and this region is highly conserved preceding yoeB homologs in close relatives of B. subtilis. These results support a model in which induction of YoeB in response to cell envelope stress decreases the activity of autolysins and thereby reduces the rate of antibiotic-dependent cell death.  相似文献   

10.
Escherichia coli uses the DsbA/DsbB system for introducing disulphide bonds into proteins in the cell envelope. Deleting either dsbA or dsbB or both reduces disulphide bond formation but does not entirely eliminate it. Whether such background disulphide bond forming activity is enzyme-catalysed is not known. To identify possible cellular factors that might contribute to the background activity, we studied the effects of overexpressing endogenous proteins on disulphide bond formation in the periplasm. We find that overexpressing PspE, a periplasmic rhodanese, partially restores substantial disulphide bond formation to a dsbA strain. This activity depends on DsbC, the bacterial disulphide bond isomerase, but not on DsbB. We show that overexpressed PspE is oxidized to the sulphenic acid form and reacts with substrate proteins to form mixed disulphide adducts. DsbC either prevents the formation of these mixed disulphides or resolves these adducts subsequently. In the process, DsbC itself gets oxidized and proceeds to catalyse disulphide bond formation. Although this PspE/DsbC system is not responsible for the background disulphide bond forming activity, we suggest that it might be utilized in other organisms lacking the DsbA/DsbB system.  相似文献   

11.
The chromosomal beta-lactamase (penicillinase, penP) gene from Bacillus licheniformis 749/C has been cloned in Escherichia coli. The locations of the target sites for various restriction enzymes on the 4.2-kilobase EcoRI fragment were determined. By matching the restriction mapping data with the potential nucleotide sequences of the penP gene deduced from known protein sequence, we established the exact position of the penP gene on the fragment. A bifunctional plasmid vector carrying the penP gene, plasmid pOG2165, was constructed which directs the synthesis of the heterologous beta-lactamase in both E. coli and Bacillus subtilis hosts. The protein synthesized in E. coli and B. subtilis is similar in size to the processed beta-lactamase made in B. licheniformis. Furthermore, the beta-lactamase made in B. subtilis is efficiently secreted by the host into the culture medium, indicating that B. subtilis is capable of carrying out the post-translational proteolytic cleavage(s) to convert the membrane-bound precursor enzyme into the soluble extracellular form.  相似文献   

12.
Penicillin-binding protein 5 is the most abundant penicillin-binding protein in the vegetative membranes of Bacillus subtilis and accounts for 95% of the D,D-carboxypeptidase activity of the cell. The structural gene for penicillin-binding protein 5 was mapped to a genetically conserved region near guaB at 0 degrees on the B. subtilis chromosome, and immunoassays revealed that there is conservation of this major penicillin-binding protein among related species.  相似文献   

13.
We have observed that the process of sporulation of the ispA-deficient mutant was delayed under phase-contrast microscopy. The protein profiles of the ispA-deficient mutant have been analyzed using two-dimensional gel electrophoresis. The results of a proteomic analysis using MALDI-TOF MS indicated that a sporulation-associated protein, pro- [Formula: see text], was upregulated, while two other sporulation-associated proteins, SpoVD and SpoVR, were downregulated in the ispA-deficient mutant. It has been known that pro- [Formula: see text] is a precursor of [Formula: see text] and is required for gene expression related to the late stage of sporulation. Moreover, SpoVD and SpoVR are known to be involved in the formation of the spore cortex. Based on these observations, we propose that the delay in the sporulation process observed in the ispA-deficient mutant may be due to a failure of [Formula: see text] to signal sporulation. This phenomenon may be further enhanced by insufficient amount of SpoVD and SpoVR for cortex formation. In this study, we have revealed for the first time a possible pathway for the regulation of sporulation-associated proteins via IspA.  相似文献   

14.
The characteristic shape of a bacterial cell is a function of the three dimensional architectures of the cell envelope and is determined by the balance between lateral wall extension and synthesis of peptidoglycan at the division septum. The three dimensional patterns of cell wall synthesis in the bacterium Bacillus subtilis is influenced by actin-like proteins that form helical coils in the cell and by the MreCD membrane proteins that link the cytoskeletal elements with the penicillin-binding proteins that carry out peptidoglycan synthesis. Recent genetic studies have provided important clues as to how these proteins are arranged in the cell and how they function to regulate cell shape.  相似文献   

15.
The bacterial endospore cortex peptidoglycan is synthesized between the double membranes of the developing forespore and is required for attainment of spore dehydration and dormancy. The Bacillus subtilis spoVB, spoVD and spoVE gene products are expressed in the mother cell compartment early during sporulation and play roles in cortex synthesis. Here we show that mutations in these genes block synthesis of cortex peptidoglycan and cause accumulation of peptidoglycan precursors, indicating a defect at the earliest steps of peptidoglycan polymerization. Loss of spoIV gene products involved in activation of later, sigma(K)-dependent mother cell gene expression results in decreased synthesis of cortex peptidoglycan, even in the presence of the SpoV proteins that were synthesized earlier, apparently due to decreased precursor production. Data show that activation of sigma(K) is required for increased synthesis of the soluble peptidoglycan precursors, and Western blot analyses show that increases in the precursor synthesis enzymes MurAA, MurB, MurC and MurF are dependent on sigma(K) activation. Overall, our results indicate that a decrease in peptidoglycan precursor synthesis during early sporulation, followed by renewed precursor synthesis upon sigma(K) activation, serves as a regulatory mechanism for the timing of spore cortex synthesis.  相似文献   

16.
The comG operon of Bacillus subtilis encodes seven proteins essential for the binding of transforming DNA to the competent cell surface. We have explored the processing of the ComG proteins and the cellular localization of six of them. All of the proteins were found to be membrane associated. The four proteins with N-terminal sequence motifs typical of type 4 prepilins (ComGC, GD, GE and GG) are processed by a pathway that requires the product of comC , also an essential competence gene. The unprocessed forms of ComGC and GD behave like integral membrane proteins. Pre-ComGG differs from pre-ComGC and pre-ComGD, in that it is accessible to proteolysis only from the cytoplasmic face of the membrane and at least a portion of it behaves like a peripheral membrane protein. The mature forms of these proteins are translocated to the outer face of the membrane and are liberated when peptidoglycan is hydrolysed by lysozyme or mutanolysin. ComGG exists in part as a disulphide-cross-linked homodimer in vivo . ComGC was found to possess an intramolecular disulphide bond. The previously identified homodimer form of this protein is not stabilized by disulphide bond formation. ComGF behaves as an integral membrane protein, while ComGA, a putative ATPase, is located on the inner face of the membrane as a peripheral membrane protein. Possible roles of the ComG proteins in DNA binding to the competent cell surface are discussed in the light of these and other results.  相似文献   

17.
18.
Bacillus subtilis penicillin-binding protein PBP1 has been implicated in cell division. We show here that a PBP1 knockout strain is affected in the formation of the asymmetric sporulation septum and that green fluorescent protein-PBP1 localizes to the sporulation septum. Localization of PBP1 to the vegetative septum is dependent on various cell division proteins. This study proves that PBP1 forms part of the B. subtilis cell division machinery.  相似文献   

19.
Work on two diverse rod-shaped bacteria, Escherichia coli and Bacillus subtilis, has defined a set of about 10 conserved proteins that are important for cell division in a wide range of eubacteria. These proteins are directed to the division site by the combination of two negative regulatory systems. Nucleoid occlusion is a poorly understood mechanism whereby the nucleoid prevents division in the cylindrical part of the cell, until chromosome segregation has occurred near midcell. The Min proteins prevent division in the nucleoid-free spaces near the cell poles in a manner that is beginning to be understood in cytological and biochemical terms. The hierarchy whereby the essential division proteins assemble at the midcell division site has been worked out for both E. coli and B. subtilis. They can be divided into essentially three classes depending on their position in the hierarchy and, to a certain extent, their subcellular localization. FtsZ is a cytosolic tubulin-like protein that polymerizes into an oligomeric structure that forms the initial ring at midcell. FtsA is another cytosolic protein that is related to actin, but its precise function is unclear. The cytoplasmic proteins are linked to the membrane by putative membrane anchor proteins, such as ZipA of E. coli and possibly EzrA of B. subtilis, which have a single membrane span but a cytoplasmic C-terminal domain. The remaining proteins are either integral membrane proteins or transmembrane proteins with their major domains outside the cell. The functions of most of these proteins are unclear with the exception of at least one penicillin-binding protein, which catalyzes a key step in cell wall synthesis in the division septum.  相似文献   

20.
The analysis of disulphide bond containing proteins in the Protein Data Bank (PDB) revealed that out of 27,209 protein structures analyzed, 12,832 proteins contain at least one intra-chain disulphide bond and 811 proteins contain at least one inter-chain disulphide bond. The intra-chain disulphide bond containing proteins can be grouped into 256 categories based on the number of disulphide bonds and the disulphide bond connectivity patterns (DBCPs) that were generated according to the position of half-cystine residues along the protein chain. The PDB entries corresponding to these 256 categories represent 509 unique SCOP superfamilies. A simple web-based computational tool is made freely available at the website http://www.ccmb.res.in/bioinfo/dsbcp that allows flexible queries to be made on the database in order to retrieve useful information on the disulphide bond containing proteins in the PDB. The database is useful to identify the different SCOP superfamilies associated with a particular disulphide bond connectivity pattern or vice versa. It is possible to define a query based either on a single field or a combination of the following fields, i.e., PDB code, protein name, SCOP superfamily name, number of disulphide bonds, disulphide bond connectivity pattern and the number of amino acid residues in a protein chain and retrieve information that match the criterion. Thereby, the database may be useful to select suitable protein structural templates in order to model the more distantly related protein homologs/analogs using the comparative modeling methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号