首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
BackgroundChromium (Cr) exists in the environment in two chemical forms; CrIII is an essential micronutrient for glucose and lipid metabolism, whereas CrVI is toxic and a recognised carcinogen through inhalation. Numerous studies have attempted to evaluate their transfer mechanisms from soil and solution media into plants, usually with respect to the hyperaccumulation, detoxification and tolerance of the plant to CrVI.MethodsIsotopically enriched species of Cr, added as 50CrIII and 53CrVI, were used to investigate transfer from solution into the root systems of Spinacia oleracea. In addition the effect of sulphate (SO42−), as a competitor for CrVI uptake, was investigated. Separation of 50CrIII and 53CrVI was undertaken using HPLC-ICP-QQQ following isolation of root solutions using freeze/thaw centrifugation.ResultsIrrespective of supplied CrVI concentration (250, 500 or 1000 μg L−1), the dominant species in both apoplastic (routed through cell wall and intercellular space as a passive mechanism) and symplastic (routed through cytoplasm as an active mechanism) root solutions was CrIII. There was evidence for CrVI reduction in the rhizosphere prior to uptake as an additional detoxification mechanism. Sulphate promoted uptake of CrVI through the active pathway, although increases in SO42- concentration did not yield a proportional increase in Cr symplastic solution concentration; CrIII was also the dominant species in these root solutions.ConclusionThe results indicate that Spinacia oleracea plants can effectively reduce CrVI to CrIII and that the uptake pathways for both CrIII and CrVI are more complex than previously reported. Further work is required to understand the physiological processes that result in the reduction of CrVI prior to, and during, uptake. The efficacy of sulphate to augment existing agricultural management strategies, such as liming and organic reincorporation, also requires further investigation to establish suitable application rates and applicability to other environmental contaminants.  相似文献   

2.
The chromium (CrIII and CrVI) removal capability of Rhizobium leguminosarum was checked by estimating the amount of chromium in the medium before and after inoculation. To determine the efficiency of R. leguminosarum in removal of chromium, the influence of physical and chemical parameters such as temperature, pH and different concentrations (0.1–1.0 mM) of trivalent (CrIII) and hexavalent (CrVI) chromium were studied. The chromium removal in aqueous solution by different size of active and inactivated biomass and immobilized cells of R. leguminosarum in a packed-bed column was also carried out. Results showed that in a medium containing up to 0.5 mM concentration of both CrIII and CrVI, R. leguminosarum showed optimal growth. The maximum chromium removal was at pH 7.0 and 35°C. Active biomass removed 84.4 ± 3.6% of CrIII and 77.3 ± 4.3% of CrVI in 24 h of incubation time. However, inactivated biomass removed maximum chromium after 36 h of incubation. Immobilized bacterial cells in a packed-bed column removed 86.4 ± 1.7% of CrIII and 83.8 ± 2.2% of CrVI in 16 and 20 h of incubation time, respectively.  相似文献   

3.
A computational study of chromium(VI) and (V) peroxides, which exhibit important genotoxic and mutagenic activity, is reported. Energies and equilibrium geometries for [CrVI(O)(O2)2(OH)], [CrVI(O)(O2)2(OH2)], [CrVI(O)(O2)2(py)], [CrVI(OH)(O2)2(OH2)]+, [CrV(O)(O2)2(OH2)] and species were calculated using molecular mechanics calculations (MMFF94 and MM+), quantum calculations with semi-empirical methods (RHF and UHF/PM3) and density functional theory (pBP86/DN* or pBP/DN* and B3LYP/6-31G(d). Equilibrium geometries for the compounds [CrV(O2)3(OH)]2− and [CrV(O2)4]3− were determined by molecular mechanics. Vibrational frequencies, standard thermodynamic quantities and electronic spectra were calculated using B3LYP/6-31G(d). The structural relationship between all these species and an explanation of the formation of peroxo species in the acid-basic pH range are given. An experimental study of peroxo species in basic medium was also performed (synthesis, X-ray powder diffraction patterns and infrared spectra of the peroxo complexes isolated) but did not confirm the existence of a tri-peroxo complex in the solid phase.  相似文献   

4.
Abstract

In this paper, we describe a series of laboratory experiments which quantify the rate of Cr6+ reduction by Fe0. The main goal of these experiments was to determine the removal efficiency of Cr6+ by iron. The results indicate that Fe0 reduces Cr6+ to Cr3+ under alkaline and slightly acidic conditions. The removal efficiency rises with an increase of the initial concentration of Cr6+ (1 mg/L to 10 mg/L) when the quantity of Fe0 is stable. The removal efficiency increases as the quantity of Fe0 is raised when other conditions are constant. The removal efficiency would not be affected by other inorganic ions unless they were present at very high concentrations. When the initial concentration Cr6+ is 10mg/L and pH is 6.5–7.7, the final concentration of Cr6+ in effluent is less than 0.05 mg/L and the total Fe is less than 0.3 mg/L in effluent.  相似文献   

5.
This is the first report on optimization of process variables for simultaneous bioremediation of pentachlorophenol (PCP) and Cr6+ employing traditional and response surface methodology (RSM). In a one-factor-at-a-time approach, the effect of PCP level exhibited maximum bacterial growth and Cr6+ (82%) and PCP (91.5%) removal at initial 100 mg PCP L?1 with simultaneous presence of 200 mg Cr6+ L?1 within a 36-h incubation. However, at varied Cr6+ concentrations, maximum growth and Cr6+ (97%) and higher PCP (59%) removal were achieved at 50 mg Cr6+ L?1 with simultaneous presence of 500 mg PCP L?1 within a 36-h incubation. The Box-Behnken design suggested 100% Cr6+ and 95% PCP remediation at 36 h under optimum conditions of 75?mg PCP and 160 mg Cr6+ L?1, pH 7.0, and 35°C; Cr6+ removal was further enhanced to 97% in bioreactor trial. Fourier transform infrared (FT-IR) analysis revealed the likely involvement of hydroxyl, amide, and phosphate groups in Cr3+ binding. Scanning electron microscopy and energy-dispersive x-ray spectroscopy (SEM-EDS) showed biosorption of reduced chromium on bacterial cell surface. This isolate can be employed for eco-friendly and effective in situ bioremediation of Cr6+ and PCP simultaneously.  相似文献   

6.
Chromium VI compounds have been shown to be carcinogenic in occupationally exposed humans, and to be genotoxic, mutagenic, and carcinogenic in a variety of experimental systems. In contrast, most chromium III compounds are relatively nontoxic, noncarcinogenic, and nonmutagenic. Reduction of Cr6+ leads to reactive intermediates, such as Cr5+, Cr4+, or other radical species. The molecular mechanism for the intracellular Cr6+ reduction has been the focus of recent studies, but the details are still not understood. Our study was initiated to compare the effect of Cr6+-hydroxyl radical formation and Cr6+-induced lipid peroxidation vs those of Cr3+. Electron spin responance measurements provide evidence for the formation of long-lived Cr5+ intermediates in the reduction of Cr6+ by glutathione reductase in the presence of NADPH and for the hydroxyl radical formation during the glutathione reductase catalyzed reduction of Cr6+. Hydrogen peroxide suppresses Cr5+ and enhances the formation of hydroxyl radical. Thus, Cr5+ intermediates catalyze generation of hydroxyl radicals from hydrogen peroxide through a Fenton-like reaction. Comparative effects of Cr6+ and Cr3+ on the development of lipid peroxidation were studied by using rat heart homogenate. Heart homogenate was incubated with different concentrations of Cr6+ compounds at 22°C for 60 min. Lipid peroxidation was determined as thiobarbituric acid reacting materiels (TBA-RM). The results confirm that Cr6+ induces lipid peroxidation in the rat heart homogenate. These observations might suggest a possible causative role of lipid peroxidation in Cr6+ toxicity. This enhancement of lipid peroxidation is modified by the addition of some metal chelators and antioxidants. Thus, strategies for combating Cr6+ toxicity should take into account the role of the hydroxy radicals, and hence, steps for blocking its chain propagation and preventing the formation of lipid peroxides.  相似文献   

7.
Biosorption of chromium to fungi   总被引:3,自引:0,他引:3  
Eighteen fungal strains were isolated from water and soil samples and tested for their ability to enrich chromium. The microorganism with the highest enrichment capacity, a zygomycete (Mucor hiemalis MP/92/3/4), was chosen for detailed investigations. Some basic tests such as the pH-dependence, the kinetics of the enrichment and the metal selectivity were carried out with the two most frequent oxidation states of chromium, the trivalent cation (Cr3+) and the hexavalent anion (CrO4 2–). With Cr3+ the enrichment showed a saturation kinetic reaching 70% of the maximum capacity after about 30 min, whereas with CrO4 2– a linear time course with a much lower metal enrichment was observed. The highest level of enrichment for Cr3+ was observed at pH 5.5 (21.4 mg/g dry wt), and for CrO4 2– at pH 1 (4.3 mg/g dry wt). Investigations concerning the metal enrichment selectivity resulted in the following series of decreasing ion uptake: Cr3+ > Cu2+ > Pb2+ > Ag+ > Al3+ > Co2+ > Zn2+ > Ni2+ > Fe2+ > Mo5+ > Cd2+ > 2– > CrO4 2– > VO3–, calculated on a molar basis. Trivalent chromium caused a staining of the outer cell wall region in transmission electron microscopy. The localization of chromium in the stained outer layers of the cell wall could be verified by electron energy loss spectroscopy. The enrichment of Cr3+ by M. hiemalis seemed to be mainly a passive biosorption to the cell wall, whereas for the uptake of CrO4 2– intracellular accumulation as well as biosorption is possible.  相似文献   

8.
The effect in vivo of hexavalent chromium (Cr6+) on the respiratory electron transport activity and production of superoxide (O2) radicals, was studied in submitochondrial particles (SMPs) prepared from mitochondria isolated from roots of 15‐day‐old pea (Pisum sativum L. cv. Azad) plants exposed to environmentally relevant (20 µm ) and acute (200 µm ) concentrations of chromium for 7 d. A concentration ‐dependent inactivation of electron transport activity from both NADH to O2 (NADH oxidase) and succinate to O2 (succinate oxidase) was observed. The electron transport activity was more sensitive to Cr6+ with NADH as the substrate than with succinate as the substrate. Although NADH dehydrogenase and succinate dehydrogenase were less affected, NADH: cytochrome c oxidoreductase and succinate: cytochrome c oxidoreductase activities were prominently affected by Cr6+. Cytochrome oxidase was the most susceptible complex of mitochondrial membranes to Cr6+, exhibiting maximal inactivation of activity both at 20 and 200 µm chromium concentrations. Cr6+ increased the generation of O2 radicals. This effect was more evident at 200 than at 20 µm . A significant increase in lipid peroxidation of mitochondrial membranes at 200 µm Cr6+ was the physiological impact of the metal‐induced enhanced generation of O2 radicals. An increase in superoxide dismutase (SOD) activity at 20 µm Cr6+ towards enhanced production of O2 radicals appeared to be a defence response in pea root mitochondria that, however, could not be sustained at 200 µm Cr6+. The results obtained concerning inactivation of mitochondrial electron transport and subsequent enhancement in the generation of O2 radicals suggest that root mitochondria are an important target of Cr6+‐induced oxidative stress in pea.  相似文献   

9.
Hexavalent chromium (Cr6 +) is a common pollutant transient metal with high toxicity in the environment. The toxicological effects partly result from oxidative damage due to the production of excessive reactive oxygen species (ROS) in the reductive process of Cr6 +. To explore the influence of ROS induced directly by Cr6 + on the oxidative stress generation and antioxidant system, the full length cDNAs of antioxidant-related genes cat, gpx1 and Cu/Zn-sod were successfully acquired from pengze crucian carp first and analyzed. Furthermore, the mRNA expression of the antioxidant genes encompassing catalase (cat), copper/zinc superoxide dismutase (Cu/Zn-sod) and glutathione peroxidase (gpx1), antioxidant enzyme activities of CAT, SOD, and GPx and total protein content were further studied in the gill, intestine and liver of pengze crucian carp (Carassius auratus var. Pengze) juveniles upon acute exposure to Cr6 + at concentrations of 0.1, 1.0, 10 and 100 mg/L for 4 days. Differential significant changes of the antioxidant enzymes and gene expression were observed in different tissues. The findings contribute to better understanding the antioxidant mechanisms induced by Cr6 + and selecting the organic-specific sensitive biomarkers to monitor the safety of the aquatic ecosystem.  相似文献   

10.
为深入了解Cr6+胁迫对人工湿地植物薏苡光合特性和微量元素吸收的影响,该文通过构筑微型垂直流薏苡(Coix lacryma-jobi)人工湿地,采用1/2 Hoagland’s营养液配制的含0、5、20、40 mg·L-1 Cr6+废水为灌溉用水,研究铬胁迫对人工湿地植物生长、光合特性、抗氧化酶活性和微量元素吸收等的影响。结果表明:(1)低浓度(5 mg·L-1)Cr6+对薏苡的株高、茎粗和分蘖影响不显著,高浓度(20、40 mg·L-1)Cr6+则显著抑制薏苡的生长。(2)低浓度Cr6+处理下,薏苡叶片净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)有不同程度的提高,提高幅度分别为6.8%~54.8%、13.0%~40.3%和9.1%~36.4%。高浓度Cr6+处理下,叶片Pn、Gs  相似文献   

11.
After intravenous administration of Na2 51CrO4 to rats the subcellular distribution of51Cr was determined at different time intervals after dosage. A time-related compartment shift from the cytosol into the mitochondrial and nuclear fractions was demonstrated. Dialysis studies indicated a firmer binding of51Cr to the mitochondrial and nuclear fractions than to the cytosol. Indirect evidence is presented that reduction from CrVI to CrIII takes place primarily inside the mitochondria. The hypothesis is put forward that reduction from CrVI to CrIII may take place at any intracellular site where electron donors are available. Electron donors in the different intracellular organelles are discussed.  相似文献   

12.
This study revealed heavy metal–induced physiological and biochemical alterations in crop seedlings by supplementing chelating agents in the nutrient solution. Hexavalent chromium (Cr+6) induces several toxic effects in hydroponically grown rice, wheat, and green gram seedlings. A noticeable decrease was observed in root length, shoot length, biomass content, and chlorophyll biosynthesis of the seedlings grown in the nutrient solutions supplemented with Cr+6 at 100 μM. The seedling growth was stimulated with supplement of chelating agents such as EDTA, DTPA, and EDDHA. An increase in proline content was noticed with the application of Cr+6 (100 μM) in nutrient solutions. Stimulated activities of antioxidant enzymes such as catalase and peroxidase were noticed with increasing concentrations of chromium. Cr bioaccumulation was significantly high in roots of seedlings treated with Cr+6 at 100 μM in nutrient solution. Shoot translocation of Cr as depicted by transportation index (Ti) values for different crops were enhanced with the application of chelating agents. The total accumulation rate (TAR) for Cr was enhanced with the supplementation of DTPA in rice and wheat, whereas the application of EDDHA was found effective for increasing the accumulation rate of Cr in green gram seedlings. This study demonstates the role of chelating agents in lessening the toxic effects of Cr+6. The chelating agents supplemented with Cr+6 in the culture medium enhanced the Cr bioavailability in plants.  相似文献   

13.
[目的] 为探究重金属对淡水绿藻生长的影响。[方法] 选取对水质检测具有明显指示作用的普通小球藻(Chlorella vulgaris)为实验材料,CdCl2·2H2O和CrCl3·7H2O提供重金属离子,探究不同浓度Cr3+和Cd2+在单一和复合胁迫下对藻细胞浓度、叶绿素a及相关抗氧化酶活性的影响。[结果] 随着Cr3+和Cd2+浓度不断增加,藻细胞浓度呈先增长后下降趋势;叶绿素a含量呈现先下降后升高再下降的现象,浓度为1 mg/L的单一和复合胁迫下有最大值,且毒性作用表现为Cr3+ < Cd2+ < Cr3++Cd2+;与藻细胞膜相关的丙二醛(MDA)和过氧化氢(H2O2)含量随着重金属离子浓度的增大而增长;重金属离子浓度低于10 mg/L时对藻细胞内抗氧化酶系统中的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)表现为促进作用,而大于10 mg/L时具有抑制作用。[结论] 结果表明在单一或复合重金属胁迫下,普通小球藻会充分调动与抗逆性相关的酶来维持自身的正常生长。  相似文献   

14.
Discharge of wastewater from electroplating and leather industries is a major concern for the environment due to the presence of toxic Cr6+ and other ions, such as sulfate, nitrate, phosphate, etc. This study evaluated the potential of Tradescantia pallida, a plant species known for its Cr bioaccumulation, for the simultaneous removal of Cr6+, SO42?, NO3?, and PO43?. The effect of different co-ions on Cr6+ removal by T. pallida was examined following the Plackett-Burman design of experiments carried out under batch hydroponics conditions. The results revealed a maximum removal of 84% Cr6+, 87% SO42?, 94% NO3? and 100% PO43? without any phytotoxic effect on the plant for an initial Cr6+ concentration in the range 5–20 mg L?1. SO42? and NO3? enhanced Cr uptake at a high initial Cr concentration (20 mg L?1), whereas PO43? did not affect Cr uptake both at high and low initial Cr concentrations. The Cr6+ removal kinetics in the presence of different ions was well described by the pseudo-second-order kinetic model which revealed that both biosorption and bioaccumulation of the metal played an important role in Cr6+ removal. Increase in the total carbohydrate and protein content of the plant following Cr6+ and co-ions exposure indicated a good tolerance of the plant toward Cr6+ toxicity. Furthermore, enhancement in the lipid peroxidation and catalase activity in T. pallida upon Cr6+ exposure revealed a maximum stress-induced condition in the plant. Overall, this study demonstrated a very good potential of the plant T. pallida for Cr6+ removal from wastewater even in the presence of co-ions.  相似文献   

15.
Pit corrosion of mild steel in seawater increased with Cr3+ concentration. SEM observations showed that increasing Cr3+ concentration caused microbes in biofilm on the steel surface to aggregate forming clusters. AFM images suggested that pit corrosion occurred largely on the mild steel surface between clusters, and only little corrosion on the surface covered by microbes.  相似文献   

16.
Biosorption of Heavy Metals by Marine Algae   总被引:7,自引:0,他引:7  
The ability of four different algae (three brown and one red) that have not been previously studied to adsorb Cr3+, Co2+, Ni2+, Cu2+, and Cd2+ ions was investigated. The metal uptake was dependent on the type of biosorbent, with different accumulation affinities towards the tested elements. The HCl-treated biomass decreased the metal biosorptive capacity particularly in the case of Cr3 adsorption with Laurencia obtusa. The extent of uptake of the different metals with the tested algae was assessed under different conditions such as pH, time of algal residence in solution with the metal, and concentration of algal biomass. The rate of uptake of the different metals was very fast in the first 2 h; thereafter the increase in metal uptake was insignificant. The amount of the metal uptake (5–15 mg range) increased steeply by increasing the weight of the biomass. An exception was L. obtusa, where a parallel increase of the uptake of different metals was observed on increasing the algal mass from 5 to 50 mg. Received: 21 December 1999 / Accepted: 24 April 2000  相似文献   

17.
Bioaccessibility measurements have the potential to improve the accuracy of risk assessments and reduce the potential costs of remediation when they reveal that the solubility of chemicals in a matrix (e.g., soil) differs markedly from that in the critical toxicity study (i.e., the key study from which a toxicological or toxicity reference value is derived). We aimed to apply this approach to a brownfield site contaminated with chromium, and found that the speciation was CrIII, using a combination of alkaline digestion/diphenylcarbazide complexation and X-ray absorption near edge structure analysis. The bioaccessibility of Cr2O3, the compound on which a reference dose for CrIII is based, was substantially lower (<0.1%) than that of the CrIII in the soils, which was a maximum of 9%, giving relative bioaccessibility values of 13,000% in soil. This shows that the reference dose is based on essentially an insoluble compound, and thus we suggest that other compounds be considered for toxicity testing and derivation of reference dose. Two possibilities are CrCl3·6H2O and KCr(SO4)2·12H2O, which have been used for derivation of ecological toxicity reference values and are soluble at a range of dosing levels in our bioaccessibility tests.  相似文献   

18.
Electrospray ionization mass spectrometry (ESI MS) has been conducted on the ammonium and alkali metal (A=Li+, Na+ and K+) dichromate systems. A large number of previously unknown polyoxochromate species have been characterized. Major series that have been identified include [Ax+1HxCrVIxO4x]+ (Li+, x=1-5; Na+, x=1-7; K+, x=1-4) and [A2x−1CrVIxO4x−1]+ (Li+, x=2, 3; Na+, x=2-4; K+, x=2, 3) in the alkali metal dichromate systems, and [HCrVIxO3x+1] (x=1-5) in the ammonium dichromate system. Several series also contain mixed oxidation state species, ranging from Cr(V) to Cr(II) in conjunction with Cr(VI), which is consistent with the ease of reduction of Cr(VI). Negative ion ESI MS spectra clearly demonstrate the existence of [HCrO4] as the most abundant ion at −20 V, suggesting that its existence in solution is not just hypothetical, as was previously thought. The polymerization units for the series observed include {AHCrO4}, {A2CrO4} and {CrO3}, with the latter prominent in the alkali metal systems. This presumably arises from the fragmentation of dichromate, A2Cr2O7→{A2CrO4}+{CrO3}. Moreover, the ESI MS of the dichromate compounds have illustrated that the preservation of tetrahedral stereochemistry is of paramount importance for these systems, which leads to only limited polymerization compared to the related molybdate and tungstate systems.  相似文献   

19.
Kinetic aspects of the bacterial reduction of hexavalent chromium (chromate: CrO2-4) were investigated using Enterobacter cloacae strain HO1. E. cloacae strain HO1 could reduce hexavalent chromium to the trivalent form (Cr3+) anaerobically. High concentrations of CrO2-4 inhibited the reduction, and a substrate inhibition model gave a good fit to the observed data. The rate of chromate reduction was proportional to cell density. The effect of temperature on the reduction rate followed the Arrhenius equation. The rate of chromate reduction was also dependent on pH and the concentrations of carbon and energy sources in the culutre medium. Amino acids including asparagine, methionine, serine and threonine were utilized effectively as carbon and energy sources for chromate reduction.  相似文献   

20.
Summary In unfixed cryostat sections of the brains of early postnatal and adult rats, we screened for cells containing vimentin-positive intermediate filaments (VI+-IFs) by applying a panel of four monoclonal antibodies (Mabs VI-01, VI-02, VI-05 and VI-5B3) using indirect immunofluorescence. All of the Mabs stained VI+-IFs in the stromal part of the choroid plexus, in endothelial cells of blood vessels and in meninges in both adult and immature brains, although with varying strength (VI-5B3 and VI-01 stained more strongly than VI-05 and VI-02). In the brain parenchyma of adults, intense staining was mainly localized in ventricular ependymal cells (VI-5B3/VI-01>VI-02/VI-05) and fibrous astrocyte-like cells (FAs). In the immature brain, the ependymall cells were activated in appearance, with evidence of cell enlargement, greater spreading of VI+-IFs within the cytoplasma and more pronounced VI+ cytoplasmic protrusions into the brain parenchyma.VI+-FAs were found near the ependymal and meningead borders as well as in the white matter tracts of adult brain (VI-5B3/VI-01>VI-05>VI-02). In immature animals, VI+-FAs were less frequently encountered in the forebrain regions, except in and near the subependymal layer (in the adjacent parenchyma) as well as in submeningeal layers. Weaker staining was usually clicited by Mabs VI-02 and VI-05. In the cerebellum, Bergmann cell fibres were stained in both age groups. In adults, the most intense fluorescence usually occurred in segments close to the pia (VI-5B3/VI-01>VI-05>VI-02). In immature animals, the Bergmann cell fibres were less straight, less smooth and thicker, and were stained along their whole length by all Mabs except VI-02. In adults, VI+-FAs were observed in the internal granular layer (VI-5B3 and VI-01) and, relatively more often, in the white matter (VI-05). In immature animals, a quasi-continuous mesh-work of VI+ cells was detected at some sites of the cerebellum, especially when VI-01 and VI-5B3 were used. With maturation, reduced staining was produced by all VI Mabs in the choroid plexus. We have thus demonstrated that VI is a common molecular denominator of cerebrospinal-fluid and/or blood-washed cells as well as of glial fibers contacting these cells. The differences in the staining of VI+ cells by various Mabs probably reflect an immunological heterogeneity of VI+-IFs based on the varying accessibility of the individual VI epitopes. This might be due to alterations in the tertiary structure of VI caused, for instance, by phosphorylation or other posttranslational processes. The actual structural state of VI may explain the variations in the immunostainability of astrocytes and also in the staining obtained using classical impregnation methods within the brain and/or its regions.Dedicated to Professor Dr. T.H. Schiebler on the occasion of his 65th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号