首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure of the sea urchin U1 RNA repeat.   总被引:16,自引:6,他引:10       下载免费PDF全文
The genes coding for U1 RNA in the sea urchin L. variegatus are present in a 1400 base pair tandem repeat. One member of the repeat has been cloned and its sequence determined. The repeat unit contains a single copy of the gene for L. variegatus U1 RNA. This gene encodes an RNA which is 75% homologous to mammalian U1 RNA. The L. variegatus U1 RNA could assume a secondary structure similar to that proposed for other U1 RNAs. In addition the L. variegatus U1 RNA is precipitated by anti-SM and anti-RNP antisera. Analysis of the L. variegatus genomic DNA using the cloned U1 gene as a probe reveals a major and a minor type of repeat unit. The two repeated units are the same length but differ in a number of restriction enzyme sites clustered 200-500 bases down-stream from the gene. The monomer we have cloned and sequenced is a representative of the minor repeat. A sequence (GATAA) which is -41 to -37 bases 5' to the gene has homology to the putative RNA polymerase II promoter. Fifteen bases 3' of the gene is a sequence (CAAAGAAAGAAAA) which is very similar to the sequence found 3' of the sea urchin histone genes. The two Hha I, Hpa II and Ava I sites in the repeat are all unmethylated in sperm DNA.  相似文献   

2.
3.
Structure of an unusual sea urchin U1 RNA gene cluster   总被引:3,自引:0,他引:3  
M A Nash  W F Marzluff 《Gene》1988,64(1):53-63
Genomic clones containing multiple copies of the Lytechinus variegatus U1 gene have been isolated from a gene library in the phage lambda EMBL3. These clones contain both types of U1 RNA gene repeats interspersed in the same 15-kb fragment. In addition, about 1/3 of the repeat units contain a 260-bp insert 460 bp prior to the first nucleotide of the U1 RNA sequence. The inserted sequence is abundant in the sea urchin genome as judged by Southern blots of genomic DNA. There are no repeated sequences flanking the insert. The insert occurs at the same position in the highly conserved 5'-flanking region at which a deletion has previously been reported.  相似文献   

4.
The genes coding for the two major small nuclear RNAs in the sea urchin are organized in independent tandem repeating units. The small nuclear RNAs, N1 and N2 were purified from gastrula embryos of Lytechinus variegatus. These RNAs are analogous to the U series of RNA in mammalian cells as judged by their identical 5' termini and the sequence homology of the N1 urchin RNA and U1 mouse RNA. These RNAs were polyadenylated with E. Coli adenylate transferase. A 32PO4 labeled copy of each RNA was made with RNA-dependent DNA polymerase. This copy was used to probe the gene organization of these RNAs by hybridizing to restriction enzyme digests of sperm DNA. Each of these RNAs is coded in a tandemly repeated cluster (at least 30 kb) with a repeat length of 1100-1400 bases. The N1 and N2 clusters are distinct. The N1 repeat has been cloned and the repeating organization confirmed with the cloned gene.  相似文献   

5.
6.
7.
In primates, the tandemly repeated genes encoding U2 small nuclear RNA evolve concertedly, i.e. the sequence of the U2 repeat unit is essentially homogeneous within each species but differs somewhat between species. Using chromosome painting and the NGFR gene as an outside marker, we show that the U2 tandem array (RNU2) has remained at the same chromosomal locus (equivalent to human 17q21) through multiple speciation events over > 35 million years leading to the Old World monkey and hominoid lineages. The data suggest that the U2 tandem repeat, once established in the primate lineage, contained sequence elements favoring perpetuation and concerted evolution of the array in situ, despite a pericentric inversion in chimpanzee, a reciprocal translocation in gorilla and a paracentric inversion in orang utan. Comparison of the 11 kb U2 repeat unit found in baboon and other Old World monkeys with the 6 kb U2 repeat unit in humans and other hominids revealed that an ancestral U2 repeat unit was expanded by insertion of a 5 kb retrovirus bearing 1 kb long terminal repeats (LTRs). Subsequent excision of the provirus by homologous recombination between the LTRs generated a 6 kb U2 repeat unit containing a solo LTR. Remarkably, both junctions between the human U2 tandem array and flanking chromosomal DNA at 17q21 fall within the solo LTR sequence, suggesting a role for the LTR in the origin or maintenance of the primate U2 array.  相似文献   

8.
9.
10.
11.
12.
13.
The organization of sea urchin histone genes   总被引:1,自引:0,他引:1  
Sucrose gradient analysis of total sea urchin DNA cleaved with theEcoRI andHind III restriction endonucleases and identification of histone coding gene sequences by hybridization with histone mRNA have elucidated the basic organization of the histone gene repeat unit. These data, plus results obtained by electrophoretic analysis of purified endonuclease-cleaved sea urchin histone DNA and hybridization with cRNA transcribed from the eucaryotic segment of constructed plasmid chimeras cloned in E. coli, show that the several DNA sequences coding for individual histone proteins are intermingled in a 7 kilobase (kb) repeat unit. Cleavage of total sea urchin DNA withEcoRI produces 2.2 and 4.8 kb fragments which are homologous with the two cloned fragments, and which are contained in a 7 kbHind III fragment. Cleavage with both enzymes reveals that the 2.2 kbEcoRI fragment contains aHind III site 0.15–0.2 kb from an end. RNA · DNA hybridization between chimeric plasmid DNA and purified individual mRNAs isolated from sea urchin embryo polyribosomes has been used to assign coding sequences to either the 2.2 or 4.8 kb region of the histone DNA repeat unit. A map of the histone genes is proposed.  相似文献   

14.
15.
We have analyzed the histone genes from the sea urchin Lytechinus pictus. Examination of native DNA from individuals reveals four major Eco RI restriction endonuclease histone gene DNA fragments which have been labeled A (6.0 kb), B (4.1 kb), C (3.1 kb) and D (1.2 kb). The fragments A, B and C have been cloned into E. coli plasmids (pLpA, pLpB and pLpC). These histone gene fragments display length and sequence heterogeneity in different individuals. The plasmid pLpA contains the coding regions for H1, H4, H2B and H3 histones, and we determined that the DNA fragment D is tandem to A in native DNA and that it contains the H2A gene. The plasmids pLpB and pLpC contain the histone genes H2A-H1-H4 and H2B-H3, respectively, and together contain the sequences for the five major histones. Restriction analysis of native L. pictus DNA reveals that B and C are tandem to each other but not intermingled with the A-D-type repeat units, and are thus in separate clusters with a repeat length of 7.2 kb. Since the two cluster types do not segregate, they are not alleles. Hybridization of histone mRNA to exonuclease III-digested linear DNA demonstrated an identical polarity of the histone genes in the A-D- and B-C-type repeat units. This result revealed that the L. pictus histone genes have a polarity which is the same as other sea urchin histone genes examined to date—that is, 3′ H1-H4-H2B-H3-H2A 5′. Restriction endonuclease cleavage patterns of the cloned segments indicate that considerable sequence heterogeneity exists between the two types of histone gene repeat units.  相似文献   

16.
17.
The DNA immediately flanking the 164-base-pair U1 RNA coding region is highly conserved among the approximately 30 human U1 genes. The U1 multigene family also contains many U1 pseudogenes (designated class I) with striking although imperfect flanking homology to the true U1 genes. Using cosmid vectors, we now have cloned, characterized, and partially sequenced three 35-kilobase (kb) regions of the human genome spanning U1 homologies. Two clones contain one true U1 gene each, and the third bears two class I pseudogenes 9 kb apart in the opposite orientation. We show by genomic blotting and by direct DNA sequence determination that the conserved sequences surrounding U1 genes are much more extensive than previously estimated: nearly perfect sequence homology between many true U1 genes extends for at least 24 kb upstream and at least 20 kb downstream from the U1 coding region. In addition, the sequences of the two new pseudogenes provide evidence that class I U1 pseudogenes are more closely related to each other than to true genes. Finally, it is demonstrated elsewhere (Lindgren et al., Mol. Cell. Biol. 5:2190-2196, 1985) that both true U1 genes and class I U1 pseudogenes map to chromosome 1, but in separate clusters located far apart on opposite sides of the centromere. Taken together, these results suggest a model for the evolution of the U1 multigene family. We speculate that the contemporary family of true U1 genes was derived from a more ancient family of U1 genes (now class I U1 pseudogenes) by gene amplification and transposition. Gene amplification provides the simplest explanation for the clustering of both U1 genes and class I pseudogenes and for the conservation of at least 44 kb of DNA flanking the U1 coding region in a large fraction of the 30 true U1 genes.  相似文献   

18.
19.
A phage containing two sequences homologous to U1 snRNA was isolated from a Drosophila melanogaster genomic library, and identified with a previously cloned D. melanogaster U1 snRNA gene. DNA sequence analysis showed that complete and truncated U1 snRNA genes are present, both of which have base substitutions relative to U1 snRNA. These genes show conservation of 5' and 3' flanking regions relative to other U1 and U2 snRNA genes of Drosophila. Intramolecular renaturation experiments and electron microscope mapping demonstrates that the two U1 snRNA sequences are present as inverted repeats about 2.7kb apart, separated by a smaller pair of inverted repeats of an unrelated sequence. These U1 snRNA sequences were located by in situ hybridization at 82E, and related sequences were found at 21D and 95C on the polytene chromosome map. The results are discussed with reference to the origin and function of snRNAs.  相似文献   

20.
The expression of mouse embryonic U1 snRNA (mU1b) genes is subject to stage- and tissue-specific control, being restricted to early embryos and adult tissues that contain a high proportion of stem cells capable of further differentiation. To determine the mechanism of this control we have sought to distinguish between differential RNA stability and regulation of U1 gene promoter activity in several cell types. We demonstrate here that mU1b RNA can accumulate to high levels in permanently transfected mouse 3T3 and C127 fibroblast cells which normally do not express the endogenous U1b genes, and apparently can do so without significantly interfering with cell growth. Expression of transfected chimeric U1 genes in such cells is much more efficient when their promoters are derived from a constitutively expressed mU1a gene rather than from an mU1b gene. In transgenic mice, introduced U1 transgenes with an mU1b 5' flanking region are subject to normal tissue-specific control, indicating that U1b promoter activity is restricted to tissues that normally express U1b genes. Inactivation of the embryonic genes during normal differentiation is not associated with methylation of upstream CpG-rich sequences; however, in NIH 3T3 fibroblasts, the 5' flanking regions of endogenous mU1b genes are completely methylated, indicating that DNA methylation serves to imprint the inactive state of the mU1b genes in cultured cells. Based on these results, we propose that the developmental control of U1b gene expression is due to differential activity of mU1a and mU1b promoters rather than to differential stability of U1a and U1b RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号