首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antigenic variant of simian adenovirus 7 (SA7) DNA was cleaved by restriction endonucleases EcoRI, XbaI, BamHI, SalI. The resulted digests of viral DNA were tested for transforming activity using the "calcium" technique. It was shown that BamHI. XbaI and SalI digests transformed primary baby rat kidney cells as well as native viral DNA. The transforming activity of separated BamHI and SalI fragments was tested also. The viral DNA fragments with transforming activity (BamHI-B and SalI-B) were localised on the left of the physical map of the viral genome. It was also shown that fragment-transformed cell lines were able to form colonies in 0.33% agarose medium.  相似文献   

2.
Molecular cloning and physical mapping of murine cytomegalovirus DNA.   总被引:32,自引:27,他引:5       下载免费PDF全文
Murine cytomegalovirus (MCMV) Smith strain DNA is cleaved by restriction endonuclease HindIII into 16 fragments, ranging in size from 0.64 to 22.25 megadaltons. Of the 16 HindIII fragments, 15 were cloned in plasmid pACYC177 in Escherichia coli HB101 (recA). The recombinant plasmid clones were characterized by cleavage with the enzymes XbaI and EcoRI. In addition, fragments generated by double digestion of cloned fragments with HindIII and XbaI were inserted into the plasmid vector pACYC184. The results obtained after hybridization of 32P-labeled cloned fragments to Southern blots of MCMV DNA cleaved with HindIII, XbaI, EcoRI, BamHI, ApaI, ClaI, EcoRV, or KpnI allowed us to construct complete physical maps of the viral DNA for the restriction endonucleases HindIII, XbaI, and EcoRI. On the basis of the cloning and mapping experiments, it was calculated that the MCMV genome spans about 235 kilobase pairs, corresponding to a molecular weight of 155,000,000. All fragments were found to be present in equimolar concentrations, and no cross-hybridization between any of the fragments was seen. We conclude that the MCMV DNA molecule consists of a long unique sequence without large terminal or internal repeat regions. Thus, the structural organization of the MCMV genome is fundamentally different from that of the human cytomegalovirus or herpes simplex virus genome.  相似文献   

3.
Multiple transforming regions of human cytomegalovirus DNA.   总被引:7,自引:4,他引:3       下载免费PDF全文
The transforming (focus forming) activity of defined cloned DNA fragments from human cytomegalovirus Towne and AD169 was carried out in immortalized rodent cells. The frequency of focus formation in NIH 3T3 cells by Towne XbaI fragment E was 80- to 100-fold higher than that observed with Towne XbaI fragments AO, O, C, or carrier DNA alone but was similar to that observed with pCM4127, a transforming fragment from HCMV AD169 (J. A. Nelson, B. Fleckenstein, D. A. Galloway, and J. K. McDougall, J. Virol. 43:83-91, 1982; J. A. Nelson, B. Fleckenstein, G. Jahn, D. A. Galloway, and J. K. McDougall, J. Virol. 49:109-115, 1984). Foci were first detected in Towne XbaI fragment E-transfected NIH 3T3 cells at 5 to 6 weeks posttransfection, whereas foci were detected at 2 to 3 weeks after transfection with AD169 pCM4127. Digestion of Towne XbaI fragment E with BamHI did not significantly reduce its focus-forming activity. When BamHI subclones of Towne XbaI fragment E were assayed individually for focus formation in NIH 3T3 and Rat-2 cells, transforming activity was localized within each terminal fragment (EJ and EM). Foci induced by EJ or EM DNA alone were smaller compared with those induced by Towne XbaI fragment E. Isolated focal lines exhibited growth in soft agar and were tumorigenic in immunocompetent syngeneic animals. High-molecular-weight DNAs from transformed and tumor-derived lines were analyzed by Southern blot hybridization with intact EM and a 1.5-kilobase subfragment lacking cell-related sequences. Virus-specific EM sequences were detected at less than one copy per cell in Towne XbaI fragment E-transformed NIH 3T3 cells and at multiple copies in rat tumor-derived cell lines. In contrast, virus-specific EJ sequences were barely detected in EJ-transformed and tumor-derived lines with intact EJ as probe.  相似文献   

4.
The effect of specific restriction endonuclease on the simian adenovirus SV20 DNA was studied. It was shown that endonucleases SalI, XbaI, EcoRI, BamHI, HindIII cleaved the viral DNA into 3, 4, 5, 5, 8 specific fragments respectively. The sequence of fragments (physical map) was determined and found to be B-C-A for enzyme SalI, C-D-B-A--for enzyme Xbal, E-A-C-D-B--for enzyme EcoRI, B-E-C-A-D--for enzyme BamHI and B-E-A-C-(GH)-D-F--for enzyme HindIII. The G-C content of specific fragments was studied. The "right"-"left" orientation of the physical map of the simian adenovirus 20 DNA based on the G-C content was made in respect with the nomenclature of human adenoviruses.  相似文献   

5.
Primary cultures of baby rat kidney (BRK) cells were transformed by intact DNA and DNA fragments of weakly oncogenic human adenovirus types 3 and 7. The smallest fragment found to contain transforming activity was the left-terminal 4% endo R.HindIII fragment (for both adenovirus type 3 and 7 DNAs). The efficiency of transformation of this fragment was low, and no permanent cell line could be established. Left-terminal fragments ranging from 84 to 4,5% of the viral genome could all transform BRK cells with the same efficiency as intact viral DNA. A number of adenovirus type 7 DNA fragment-transformed lines were established and were found to contain persistent viral DNA sequences and adenovirus subgroup B-specific T antigen. Consequently, the transforming functions of adenovirus types 3 and 7 are located at the extreme left-hand end of the genome, and the minimum size for a DNA fragment with transforming activity is 1.0 X 10(6) daltons. These results do not rule out the possibility that viral genes located outside the transforming region may also influence transformation.  相似文献   

6.
We studied Bacillus thuringiensis var galleriae, strain 612 plasmids. B. thuringiensis cells contain double-stranded plasmid DNA molecules (ranging of about 12% from total DNA content) with buoyant density 1.59 g/cm3. Plasmid DNA content was constant during the exponential and stationary phases of bacterial growth. The plasmid fractions consist of DNA molecules with molecular weights of 5.9 x 10(6), 10.0 x 10(6), and 110.9 x 10(6) daltons (pVD1, pVD2 pVD3, respectively). Endonuclease EcoRI cuts the plasmids pVD2 and pVD3 into two and four fragments, respectivelyy, but pVDI seemed to be resistent to EcoRI treatment. We found that pVD2 and pVD3 plasmids contain a common DNA fragment with the molecular weight of 6.7 x 10(6) dalton as it was shown by restriction analysis. In contrast, the same plasmids contain the common fragment with molecular weight of 7.5 x 10(6) dalton as shown by heteroduplex analysis. Plasmid pVD3 has a transposon-like structure.  相似文献   

7.
Cleavage of varicella-zoster virus DNA with the restriction endonucleases PstI, XbaI, and BglII resulted in 18, 22, and 20 fragments, respectively. Based on the molecular weights and molarities of these fragments, a molecular weight of 84 x 10(6) could be calculated for the varicella-zoster virus genome. In both the XbaI and the BglII patterns, four 0.5 M fragments were identified. The arrangement of the fragments was determined by molecular hybridization techniques, and the terminal fragments were identified by lambda exonuclease digestion. The 0.5 M fragments, of which two were located at the same terminus of the genome, contained repeated sequences: one terminally and one inverted internally. These results were in agreement with the existence of two equimolar subpopulations of the varicella-zoster virus genome, differing in the relative orientation of a short region of unique sequences. This region was bounded by the repeated sequences. From the molecular weights of the submolar fragments, a maximal molecular weight of 5 x 10(6) for the repeated region and a minimal molecular weight of 3.5 x 10(6) for the short unique sequence could be calculated.  相似文献   

8.
The genome of Choristoneura fumiferana nuclear polyhedrosis virus (CfMNPV) contained reiterated sequences interdispersed in four locations. These regions, termed RS, were found in EcoRI fragments A, F, E and B. The sequences were identified by hybridization of the fragment EcoRI-A to a Southern blot of EcoRI-digested viral DNA. Further confirmation and more precise localization of the RS sequences was obtained by hybridization of nick-translated 32P-labeled EcoRI-E fragment to Southern blots of viral DNA digested with EcoRI, BamHI, XbaI and Bg/II. Hybridization of 32P-labeled EcoRI-E to HindIII blots of viral DNA revealed the presence of a 'ladder' consisting of eight fragments. The three fragments of the ladder with the lowest sizes represented the HindIII fragments, O, PQ and R. The other five fragments were submolar in amount, in that they could not be seen in ethidium bromide-stained gels and probably represented minor virus variants that arose after passage of virus in larvae. Each variant was distinguished from the others by an additional insertion of 210 bp into the EcoRI-B fragment of the genome.  相似文献   

9.
Eight independent recombinant Epstein-Barr virus genomes, each of which was a transforming strain, were made by superinfecting cell lines containing Epstein-Barr virus DNA (Raji or B95-8 strain) with a nontransforming virus (P3HR1 strain). A knowledge of the constitution of each transforming recombinant allowed the localization of the defect in the genome of the nontransforming parent to a 12-megadalton sequence within the EcoRI A fragment. Within this region, the nontransforming virus has a deletion of the BamHI Y fragment and about half of the sequences in the adjacent BamHI H fragment. The present data suggest that this deletion is responsible for the nontransforming phenotype. Furthermore, mapping a deletion in one of the recombinant genomes allowed the conclusion that a sequence (comprising about 20% of the Epstein-Barr virus genome) from the center of BamHI-D to BamHI-I' is not necessary for the maintenance of transformation by Epstein-Barr virus.  相似文献   

10.
11.
A J Van der Eb  A Houweling 《Gene》1977,2(3-4):133-146
Five clones of rat kidney cells transformed by a small restriction endonuclease fragment of adenovirus 5 (Ad5) DNA (fragment HsuI G, which represents the left terminal 7% of the adenovirus genome) were analyzed with respect to the viral DNA sequences present in the cellular DNAs. In these analyses, the kinetics of renaturation of 32P-labeled specific fragments of Ad5 DNA was measured in the presence of a large amount of DNA extracted either from each of the transformed cell lines or from untransformed cells. The fragments were produced by digestion of 32P-labeled adenovirus 5 DNA with endo R.HsuI, or by digestion of 32P-labeled fragment HsuI G of adeno 5 DNA with endo R.HpaI. All five transformed lines were found to contain DNA sequences homologous to 75--80% of Ad5 fragment HsuI G only. Clones II and V contained approximately 48 copies per quantity of diploid cell DNA, clone VI about 35 copies, clone IV 22 copies and clone III 5--10 copies. These results indicate that a viral DNA segment as small as 5.5% of the Ad5 genome, contains sufficient information for the maintenance of transformation.  相似文献   

12.
The DNA of herpesvirus pan, a primate B-lymphotropic herpesvirus, shares about 40% well-conserved sequence relatedness with Epstein-Barr virus (EBV) and herpesvirus papio DNAs. Labeled cloned fragments from the EBV recombinant DNA library were cross hybridized to blots of EcoRI, XbaI, and BamHI restriction endonuclease fragments of herpesvirus pan DNA to identify and map homologous sequences in the herpesvirus pan genome. Regions of colinear homology were demonstrated between 6 x 10(6) daltons and 108 x 10(6) daltons in the DNAs. The structural organization of herpesvirus pan DNA was similar to the format of Epstein-Barr virus and herpesvirus papio DNAs. The DNA consists of two domains of largely unique sequence complexity, a segment US of 9 x 10(6) daltons and a segment UL of 88 x 10(6) daltons. US and UL are separated by a variable number of tandem repetitions of a sequence IR (2 x 10(6) daltons). There was homology between DNA which mapped at 26 to 28 x 10(6) daltons and 93 to 95 x 10(6) daltons in UL. The terminal reiteration component, TR, of herpesvirus pan DNA and sequences which mapped to the left of 6 x 10(6) daltons and to the right of 108 x 10(6) daltons had no detectable homology with the corresponding regions of Epstein-Barr virus DNA.  相似文献   

13.
The HpaI E fragment (0-4.5 map units) of adenovirus type 2 (Ad2) DNA was cloned in the plasmid vector pBR322. Excision of the viral insert with PstI and XbaI generated a fragment which comigrated with Ad2 XbaI-E (0-3.8 map units), and this fragment was ligated to the 3.8-100 fragment generated by XbaI cleavage of the DNA of the Ad5 mutant, dl309 (N. Jones and T. Shenk, Cell 17:683-689, 1979). Transfection with the ligation products resulted in the production of progeny virus which was able to replicate on both HeLa and line 293 cells, demonstrating the biological activity of the sequences rescued from the plasmid. Small deletions were introduced around the SmaI site (map position 2.8) within the cloned viral insert, and the altered DNA sequences were reintroduced into progeny virus as described above. The mutant viruses grew well on line 293 cells but plaqued with greatly reduced efficiency on HeLa cells, exhibiting a host range phenotype similar to previously described mutants with lesions located within this region of the genome. When plasmid-derived left-end fragments containing pBR322 DNA sequences to the left of map position 0 were ligated to the 3.8-100 fragment of dl309 DNA, the infectivity of the ligation products was not reduced. However, all progeny viruses examined yielded normal-size restriction enzyme fragments from their left-hand ends, indicating that the bulk of the pBR322 DNA sequences are removed either prior to or as a consequence of the replication of the transfecting DNA molecules.  相似文献   

14.
By the calcium technique, intact DNA of bovine adenovirus type 3 (BAV3) was found to transform A31 cells, a clone of BALB/3T3. Transforming activity was resistant to RNase and Pronase but sensitive to DNase. The efficiency of transformation was approximately 5 to 10 foci per μg of DNA. Attempts were also made to test for transforming activity of BAV3 DNA fragments prepared with restriction endonucleases EcoRI and HindIII. The activity was found to associate exclusively with the EcoRI D fragment mapped in the region of 3.6 and 19.7 units (molecular weight, 3.9 × 106). No transformation could be obtained with three HindIII fragments, J, E, and B, located at the left-hand end of the BAV3 genome. However, the enzymatic joining of J and E fragments (0 to 11.9 map units) with a ligase restored the transforming activity. These results suggest that all the genetic information of BAV3 required for transformation is located in the region between 3.6 and 11.9 units on the viral genome. Some properties of A31 cells transformed by BAV3 DNA EcoRI D fragment (TrD) and the ligated DNA of HindIII J and E fragments (TrJE), as well as those transformed by whole BAV3 DNA (Tr), were examined. As compared to untransformed A31 cells, all the transformed cell lines tested showed rapid growth, high saturation densities, and anchorage-independent growth. Moreover, they contained BAV3-specific T antigen and induced tumors in adult nude and BALB/c mice. These properties of Tr, TrD, and TrJE lines were similar to those of BAV3-transformed cells.  相似文献   

15.
Rat cell lines tranformed by viral DNA fragments, EcoRI-C and HindIII-G, of adenovirus type 12 DNA were analyzed for the viral transforming DNA sequences present in cell DNAs. Cell lines transformed by the EcoRI-C fragment of adenovirus type 12 DNA (leftmost 16.5% of the viral genome) contain most of the HindIII-G sequences of the HindIII-G fragment, but at a different frequency depending on the portions of the fragment. The sequence of the AccI-H fragment of adenovirus type 12 DNA (the left part of the HindIII-G; leftmost 4.5% of the viral genome) was detected dominantly in cells transformed by the HindIII-G fragment Southern blot analysis showed that viral DNA sequences are present at multiple integration sites in high-molecular-weight cell DNA from cells transformed by the EcoRI-C or HindIII-G fragment of adenovirus type 12 DNA. These results suggest that most of the HindIII-G sequences in cells transformed by the HindIII-G fragment are present as fragmented forms.  相似文献   

16.
S L Rhode  III 《Journal of virology》1977,21(2):694-712
The linear duplex replicative form (RF) DNA of the parvovirus H-1 has been characterized with respect to cleavage by the bacterial restriction endonuclease of Escherichia coli, EcoRI. RF DNA has a single cleavage site 0.22 genome length from the left end of the molecule. The molecular weight of H-1 RF DNA determined by gel electrophoresis is 3.26 X 10(6). H-1 RF DNA has been found to dimerize by hydrogen-bounded linkage at the molecular left end, and in some molecules the viral strand is covalently linked to the complementary strand. Some 10% of monomeric RF DNA also has a covalent linkage between the viral and complementary strands at the left end. The EcoRI-B fragment, containing the left end of the RF molecule, appears to be a replication terminus by its labeling characteristics for both RF and progeny DNA synthesis. These findings suggest that the left end of H-1 RF DNA has some type of "turn-around" structure and that this end is not an origin for DNA synthesis.  相似文献   

17.
Isolation and organization of calf ribosomal DNA.   总被引:8,自引:3,他引:5       下载免费PDF全文
Ribosomal DNA (rDNA) from calf was isolated by three density gradient centrifugations. The first centrifugation in Cs2S04/BAMD was used to obtain partially resolved dG+dC-rich fractions from total DNA. The second and third centrifugations, in Cs2S04/Ag+, led to the isolation of an rDNA fraction characterized by a symmetrical band in CsCl, p = 1.724 g/cm3. This new procedure appears to be generally suitable for the isolation of rDNA and other dG+dC-rich repeated genes. The organization of isolated calf rDNA has been studied by restriction enzyme digestion and by hybridization with cloned rDNA from Xenopus laevis. The repeat unit of calf rDNA has a molecular weight of 21x10(6) and is split by EcoR1 into two fragments, 16x10(6) and 5.0x10(6), and by BamHI into seven fragments. EcoRI and BamHI sites have been mapped. Most of the 18S and 28S RNA genes and the transcribed spacer are contained in the small EcoRI fragment, while the non-transcribed spacer is localized in the large EcoRI fragment. This spacer showed length heterogeneity within a single individual; such heterogeneity is limited to two regions of the spacer.  相似文献   

18.
19.
Physical maps of the genome of Moloney murine leukemia virus (M-MLV) DNA were constructed by using bacterial restriction endonucleases. The in vitro-synthesized M-MLV double-stranded DNA was used as the source of the viral DNA. Restriction endonucleases Sal I and Hind III cleave viral DNA at only one site and, thus, generate two DNA fragments. The two DNA fragments generated by Sal I are Sal IA (molecular weight, 3.5 x 10(6)) and Sal IB (molecular weight, 2.4 x 10(6)) and by Hind III are Hind IIIA (molecular weight, 3.6 x 10(6) and Hind IIIB (molecular weight, 2.3 x 10(6)). Restriction endonuclease Bam I generates four fragments of molecular weights of 2.1 x 10(6) (Bam IA), 2 X 10(6) (Bam IB), 1.25 X 10(6) (Bam IC), and 0.24 x 10(6) (Bam ID), whereas restriction endonuclease Hpa I cleaves the M-MLV double-stranded DNA twice to give three fragments of molecular weights of 4.4 x 10(6) (Hpa IA), 0.84 X 10(6) (Hpa IB), and 0.74 x 10(6) (Hpa IC). Digestion of M-MLV double-stranded DNA with restriction endonuclease Sma I produces four fragments of molecular weights of 3.9 x 10(6) (Sma IA), 1.3 X 10(6) (Sma IB), 0.28 X 10(6) (Sma IC), and 0.21 x 10(6) (Sma ID). A mixture of restriction endonucleases Bgl I and Bgl II (Bgl I + II) cleaves the viral DNA at four sites generating five fragments of approximate molecular weights of 2 x 10(6) (Bgl + IIA), 1.75 X 10(6) (Bgl I + IIB), 1.25 X 10(6) (Bgl I + IIC), 0.40 X 10(6) (Bgl I + IID), and 0.31 x 10(6) (Bgl I + IIE). The order of the fragments in relation to the 5' end and 3' end of the genome was determined either by using fractional-length M-MLV double-stranded DNA for digestion by restriction endonucleases or by redigestion of Sal IA, Sal IB, Hind IIIA, and Hind IIIB fragments with other restriction endonucleases. In addition, a number of other restriction endonucleases that cleave in vitro-synthesized M-MLV double-stranded DNA have also been listed.  相似文献   

20.
Fragments of guinea pig cytomegalovirus (GPCMV) DNA produced by HindIII or EcoRI restriction endonuclease digestion were cloned into vectors pBR322 and pACYC184, and recombinant fragments representing ca. 97% of the genome were constructed. Hybridization of 32P-labeled cloned and gel-purified HindIII, EcoRI, and XbaI fragments to Southern blots of HindIII-, EcoRI-, and XbaI-cleaved GPCMV DNA verified the viral origin of cloned fragments and allowed construction of HindIII, EcoRI, and XbaI restriction maps. On the basis of the cloning and mapping experiments, the size of GPCMV DNA was calculated to include 239 kilobase pairs, corresponding to a molecular weight of 158 X 10(6). No cross-hybridization between any internal fragments was seen. We conclude that the GPCMV genome consists of a long unique sequence with terminal repeat sequences but without internal repeat regions. In addition, GPCMV DNA molecules exist in two forms. In the predominant form, the molecules demonstrate sequence homology between the terminal fragments; in the minor population, one terminal fragment is smaller by 0.7 X 10(6) daltons and is not homologous with the fragment at the other end of the physical map. The structural organization of GPCMV DNA is unique for a herpesvirus DNA, similar in its simplicity to the structure reported for murine cytomegalovirus DNA and quite dissimilar from that of human cytomegalovirus DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号