首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SOS-function-inducing activity of chemical mutagens in Escherichia coli   总被引:4,自引:0,他引:4  
The SOS-function-inducing activities of 42 chemical mutagens were investigated in Escherichia coli K12. The induction of the SOS function was assayed by monitoring the beta-galactosidase activity in the sulA::lacZ fusion strain PQ37 . To correct for the inhibitory effects of test chemicals on mRNA or protein synthesis, the level of the constitutive alkaline phosphatase was assayed in parallel. Most of the mutagens reported to be mutagenic to the Ames' Salmonella tester strains showed the SOS-function-inducing activity. The inducible SOS repair may be responsible for not only base-change mutations but also frameshift mutations. However, 9-aminoacridine, ethidium bromide and 4-nitro-o-phenylenediamine did not induce the SOS function, suggesting that the mutagenesis induced by these mutagens may occur independently of SOS repair. Present results support the SOS mutagenesis model that error-prone SOS repair plays an important role in mutagenesis induced by most chemical mutagens.  相似文献   

2.
A new forward mutation assay was developed with Escherichia coli using alkaline phosphatase (APase) constitutive mutations as a genetic marker. Mutation in any one of the three regulator genes (phoR, T and S) is known to make the cell constitutive for APase synthesis and enable the mutants to form larger colonies on beta-glycerophosphate plate under the condition of excess inorganic phosphate. This property was used for qualitative and quantitative assay of chemical mutagens. Attempts were made to construct suitable strains for this assay by introduction of various genetic traits that might increase the sensitivity of mutation. Three known chemical mutagens (N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), methyl methanesulfonate (MMS), and 4-nitroquinoline-1-oxide (NQNO)) were employed as reference compounds in the quantitative assay. Among the strains constructed, a tester strain with genetic markers tif-1, uvrA and pKM101 was the most sensitive to these compounds, judging from tests on concentration-dependent mutagenic activity. The merits and limitations of the present system are discussed.  相似文献   

3.
The mutagenic activity of several arylamines, alkyl- and arylcarbamates and their corresponding N-hydroxylated derivatives towards Escherichia coli WP2uvrA was investigated using the fluctuation test without a metabolic activation system. None of the parent amines or carbamates were mutagenic while several arylhydroxylamines and N-hydroxycarbamates were direct-acting base-pair substitution mutagens. With the exception of n-hexyl-N-hydroxycarbamate, the mutagenic activity of the N-hydroxycarbamates increased with increase in the length of alkyl substituent. Some arylamines and arylhydroxylamines were further examined, again without a metabolic activation system, using a plate test in conjunction with bacterial strains which detect either base-pair or frameshift mutagens. The arylhydroxylamines were found to cause both base-pair and frameshift mutations but were more active as frameshift mutagens. Possible reasons for the observed mutagenic activity are considered.  相似文献   

4.
Two genetic end-points are used for testing mutagens in Schizosaccharomyces pombe: forward mutations of the loci which encode steps early in the adenine synthetic pathway and reversion of certain selected mutants. 54 chemicals have been tested for at least one of the genetic end-points. The relevant literature has been reviewed through 1979.  相似文献   

5.
The investigation of mutagenic mechanisms in Haemophilus influenzae has been confined until now to mutagens that normally produce mainly base pair substitutions. This paper describes the development of a system suitable for detecting frameshift mutations induced by ICR-191. The system involves reversions from thymidine dependence to thymidine independence. Evidence is presented from a comparison of the responses to ICR-191 and to N-methyl-N′-nitro-N-nitrosoguanidine that the system is specific for frameshift mutations. The genetic recombination involved in transformation leads to a marked increase in “spontaneous” reversion of the frameshift mutations but not of the base substitution mutations. Presumably, this is a consequence of mispairing, with consequent change in the number of bases, during the recombination.  相似文献   

6.
Summary Aminoacridines induce frameshift mutations and are photodynamically active, depending on whether visible light is absent or present. Therefore, a test system which allows to compare quantitatively the genetic effects of aminoacridines irradiated or unirradiated by visible light ought to be susceptible to the different DNA alterations which can be induced by these substances. For this reason in most experiments mitotic gene conversion and only in some selected experiments reverse mutation was chosen as the indicator of genetic activity. In contrast to mutation systems mitotic gene conversion has never shown a response specific to only some types of mutagens. The three aminoacridine derivatives used-acridine orange (AO), proflavine (PF), and acridine yellow (AY)—were successful in the induction of convertants at two different loci. No locus-specificity could be observed. The time-dependent induction of convertants proceeds quickly but soon reaches—especially after treatment without light—a saturation point. The dose/effect-curve after treatment in the dark has a slope increasing with increasing concentration. Irradiation with visible light results in a dose/effect-curve consisting of three parts. At first the increase of convertants is nearly linear extending one (AY) to three (AO) orders of magnitude. After that a saturation effect begins at the point at which an effectiveness of the acridines in the dark is apparent. At high concentrations an induction of convertants can again be observed which is nearly the same as that after treatment in the dark. To determine whether the dose/effect-curves obtained for gene conversion refer to similar curves for gene mutations after treatment with AO at the same locus not only gene conversions but also reverse mutations were scored for. AO-treatment in the dark is ineffective in inducing reverse mutations. Irradiation with visible light results in a dose/effect-curve beeing parallel only in its first part to the dose/effect-curve obtained for gene conversion, while in its second part a mutation frequency decline can be observed. Comparing the dose/effect-curves of AO resulting from the induction of gene conversion and gene mutation, and taking into account that no mutants can be induced by AO-treatment in the dark, the increase in convertants at high acridine-concentrations can be explained as an addition of light-dependent and light-independent effects. That means, in mutation systems at low concentrations of aminoacridines irradiation with visible light should cause transitions, transversions and microlesions, at intermediate concentrations frameshift lesions should begin to appear, and at very high concentrations nearly exclusively frameshift lesions should occur. The dose/effect-curves of aminoacridines compared with those of other mutagens are very complex. The dose/effect-curves of the mutagens of other type of action tested are linear in a double logarithmic scale, and parallel for induced gene conversion and induced gene mutation. These results indicate that the gene conversion ability of a given compound depends on its mutagenic property. That means, many mutagens may exert specific genetic effects not directly but mainly in indirect ways by leading to DNA damage, a situation for repair synthesis resulting as well in mutations as recombinations.  相似文献   

7.
The genetic toxicology of acridines   总被引:5,自引:0,他引:5  
Acridine and its derivatives are planar polycyclic aromatic molecules which bind tightly but reversibly to DNA by intercalation, but do not usually covalently interact with it. Acridines have a broad spectrum of biological activities, and a number of derivatives are widely used as antibacterial, antiprotozoal and anticancer drugs. Simple acridines show activity as frameshift mutagens, especially in bacteriophage and bacterial assays, by virtue of their intercalative DNA-binding ability. Acridines bearing additional fused aromatic rings (benzacridines) show little activity as frameshift mutagens, but interact covalently with DNA following metabolic activation (forming predominantly base-pair substitution mutations). Compounds where the acridine acts as a carrier to target alkylating agents to DNA (e.g. the ICR compounds) cause predominantly frameshift as well as base-pair substitution mutations in both bacterial and mammalian cells. Nitroacridines may act as simple acridines or (following nitro group reduction) as alkylating agents, depending upon the position of the nitro group. Acridine-based topoisomerase II inhibitors, although frameshift mutagens in bacteria and bacteriophage systems, are primarily chromosomal mutagens in mammalian cells. These mutagenic activities are important, since the compounds have considerable potential as clinical antitumour drugs. Although evidence suggests that simple acridines are not animal or human carcinogens, a number of the derived compounds are highly active in this capacity.  相似文献   

8.
N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG) induces cycloheximide-resistant mutations in Saccharomyces cerevisiae, but few, if any, resistant mutants are induced by the acridine mustard ICR-170. Cycloheximide sensitivity in yeast is associated with the ribosome, and treatment with the antibiotic at concentrations of 2 mug/ml results in complete inhibition of protein synthesis. Missense mutations induced by MNNG probably lead to the loss of cycloheximide binding sites on the ribosome, resulting in resistance to the antibiotic without altering the activity of the organelle in protein synthesis. ICR-170, however, induced primarily frameshift mutations that would alter ribosome structural integrity, resulting in cell death rather than resistance. ICR-170 and MNNG are both mutagenic in a system in which base-pair substitution and frameshift mutations can be detected. These results indicate that cycloheximide resistance in S. cerevisiae, like streptomycin and spectinomycin resistance in Escherichia coli, can be induced by base-pair substitution mutagens but not by frameshift mutagens such as ICR-170.  相似文献   

9.
Treatment of BHK cells with mutagenic carcinogens induced neoplastic transformation in a single step. This transformation displayed the characteristics expected for a recessive mutation. Increasing doses of carcinogens induced transformants with kinetics similar to the kinetics with which they induced 6-thioguanine-resistant or ouabain-resistant mutants in the same population of cells. Transformants with temperature-restricted phenotypes were easily induced by carcinogens which cause mutations by base changes, but when ICR frameshift mutagens were used, the proportion of temperature-limited transformants was inversely related to the frequency with which a particular mutagen induced frameshift mutations. In hybrids between pseudodiploid isogenic strains of normal and transformed BHK cells, transformation was expressed as a dominant trait when the transformed parent was induced by a papovavirus, but was suppressed as a recessive trait when the transformed parent arose spontaneously or was chemically induced. Segregation of transformation was observed upon growth of suppressed normal hybrids, and the transformed phenotype which was reexpressed was in most cases characteristics of the original transformed parent.  相似文献   

10.
Homonucleotide runs in coding sequences are hot spots for frameshift mutations and potential sources of genetic changes leading to cancer in humans having a mismatch repair defect. We examined frameshift mutations in homonucleotide runs of deoxyadenosines ranging from 4 to 14 bases at the same position in the LYS2 gene of the yeast Saccharomyces cerevisiae. In the msh2 mismatch repair mutant, runs of 9 to 14 deoxyadenosines are 1,700-fold to 51,000-fold, respectively, more mutable for single-nucleotide deletions than are runs of 4 deoxyadenosines. These frameshift mutations can account for up to 99% of all forward mutations inactivating the 4-kb LYS2 gene. Based on results with single and double mutations of the POL2 and MSH2 genes, both DNA polymerase epsilon proofreading and mismatch repair are efficient for short runs while only the mismatch repair system prevents frameshift mutations in runs of > or = 8 nucleotides. Therefore, coding sequences containing long homonucleotide runs are likely to be at risk for mutational inactivation in cells lacking mismatch repair capability.  相似文献   

11.
This work continues earlier studies concerning the use of histocompatibility mutations in mammalian germ cells as a mutagenicity test system (H test). The rate of spontaneous H mutations was re-examined using a new basis for the classification of H mutants. This procedure led to very high frequencies of suspected spontaneous H mutants: among C57Bl/6 mice, 6% and among C3H mice, 9%. F2 hybrids of a cross between these strains revealed 1% suspected H mutants. Using the same procedure, the sensitivity of the H test was examined with the mutagens ethylnitrosourea, benzo[a]pyrene, 2-acetylaminofluorene (2-AAF), with the solvent dimethyl sulfoxide (DMSO) and with the antibacterial nitrofurantoin. It was possible to demonstrate the mutagenic potential of all mutagens tested as well as their specific action on the different stages of male germ cell development. We succeeded in demonstrating the mutagenicity of 2-AAF for the first time in germ cells of a mammal. In contrast to the negative result with benzopyrene (BP) in the specific locus test, BP induced H mutants even at the very low dose of 2 mg/kg. DMSO was found to induce H mutations in spermatogonia. This extraordinary result is possibly due to the virus-inducing properties of this compound. Nitrofurantoin which is often used in treating bacterial infections of the urinary tract in humans showed a very stage-specific action on maturing spermatids. The value of the H test for mutagenicity testing is discussed with respect to its sensitivity and economy. The very high spontaneous frequency of suspected H mutants and the ease of inducing incraased mutant frequencies by mutagens and by DMSO suggest the possibility that the majority of the histoincompatibilities found in the H test are due to induced antigenic gene products of endogenous viruses. This, however, does not interfere with the applicability of the H test for mutagenicity testing, but rather seems to augment its sensitivity to alkylating mutagens as well as mutagens which probably cause frameshift mutations.Other tests for mutations and/or inherited tumor proneness using mouse germ cells can easily be combined with the H test, because the test animal does not have to be killed, thus reducing the cost of the test.  相似文献   

12.
A rapid method for the determination of mutagenic specificity has been developed which makes use of the ochre mutation (TAA) in the his-4 gene of Escherichiacoli. Reversion to His+ may occur by suppressor mutation (Type I) or by mutation within the his-4 gene (Type II). The Type I mutations may be further subdivided with respect to the type of suppressor mutation by their ability to suppress nonsense mutants of bacteriophage T4, thus allowing the identification of the responsible base substitution (Kato et al., 1980). The system has the ability to identify mutagens which produce A:T → G:C transitions since only Type II mutants can arise through this base substitution; and in fact, the system confirms the A:T → G:C specificity of the mutagen, N4-hydroxycytidine (Janion and Glickman, 1980) since only Type II mutants were induced by treatment with this base analogue.When this system was further tested with several additional mutagens, the results indicate that ethyl methanesulphonate, methyl nitrosourea and ethyl nitrosourea produce primarily Type I revertants which were primarily G:C → A:T transitions. UV-light, γ-rays, 4NQO and methyl methanesulphonate produced all types of base substitutions. The tester strain was further improved by introducing a series of sequenced trp? frameshift mutations, thus allowing the simultaneous monitoring of frameshift and base-substitution mutations.  相似文献   

13.
Comparative studies of plasmids col I and pKM101 effect on lethal and mutagenic response to UV-light and chemical agents (4NQ0, EMS, agent N012074) has been carried out in Salmonella strains used for screening of mutagens (potential carcinogens). It has been found that the plasmid pKM101 has more pronounced effect as compared with coll plasmid. Contrary to plasmid pKM101-mediated ability to form UV-induced frameshift mutation, colI factor lacks this ability and very slightly enhances the rate of frameshift mutagenesis induced by chemical agents under study. The colicinogenic factor is found to enhance only the rate of base-pair substitutions, whereas plasmid pKM101 enhances the rate of both base-pair substitutions and frameshift mutations. We were unable to demonstrate combined effect of these two plasmids on the rate of either spontaneous or induced mutations. Possible mechanisms of plasmid-mediated bacterial mutagenesis and repair are discussed.  相似文献   

14.
A novel forward mutation assay has been developed in Salmonella typhimurium based on resistance to 5-fluorouracil (FU). The mutational target in the FU assay was determined to be the uracil phosphoribosyl transferase (upp) gene. To validate the upp gene as a suitable target for monitoring a variety of induced mutations, the mutational specificity was determined for five mechanistically different mutagens. The mutagens included a polycyclic hydrocarbon (benzo[a]pyrene, B[a]P), SN1 and SN2 alkylating agents (N-nitroso-N-methylurea, MNU, and methyl methanesulfonate, MMS, respectively), a frameshift mutagen (ICR-191), and an oxidative-damaging agent (hydrogen peroxide, H2O2). Induced mutation frequencies were measured in the presence and absence of the plasmid pKM101 (strain FU100 and FU1535, respectively). pKM101 renders FU100 more susceptible to induced mutation by providing error-prone replicative bypass of DNA adducts. B[a]P, MMS, and H2O2 failed to induce the mutant frequency in FU1535, demonstrating the dependence of pKM101 on induced mutations with these agents. ICR-191 and MNU were not dependent on pKM101, and did significantly induce mutations in FU1535. In contrast to FU1535, all agents significantly induced mutations in FU100. Approximately 60 independent mutants were sequenced for each agent that significantly induced the mutant frequency above background. The resulting mutational spectra illustrated predictable molecular fingerprints based on known mutagenic mechanisms for each agent. The predominant mutations observed were G:C to T:A transversions for B[a]P, A:T to T:A and G:C to T:A transversions for MMS, G:C to T:A transversions and A:T frameshifts for H2O2, G:C frameshifts for ICR-191, and G:C to A:T transitions for MNU. It can be concluded that the upp gene in the FU assay is a sensitive and suitable target to monitor a variety of induced mutations in Salmonella.  相似文献   

15.
C. G. Cupples  M. Cabrera  C. Cruz    J. H. Miller 《Genetics》1990,125(2):275-280
We have used site-directed mutagenesis to alter bases in lacZ near the region encoding essential residues in the active site of beta-galactosidase. The altered sequences generate runs of six or seven identical base pairs which create a frameshift, resulting in a Lac- phenotype. Reversion to Lac+ in each strain can occur only by a specific frameshift at these sequences. Monotonous runs of A's (or of T's on the opposite strand) and G's (or C's) have been constructed, as has an alternating -C-G- sequence. These specific frameshift indicator strains complement a set of six previously described strains which detect each of the base substitutions. We have examined a variety of mutagens and mutators for their ability to cause reversion to Lac+. Surprisingly, frameshifts are well stimulated at many of these runs by ethyl methanesulfonate, N-methyl-N'-nitro-N-nitrosoguanidine and 2-amino-purine, mutagens not widely known to induce frameshifts. A comparison of ethyl methanesulfonate, N-methyl-N'-nitro-N-nitrosoguanidine and 2-aminopurine frameshift specificity with that found with a mutH strain suggests that these mutagens partially or fully saturate or inactivate the methylation-directed mismatch repair system and allow replication errors leading to frameshifts to escape repair. This results in a form of indirect mutagenesis, which can be detected at certain sites.  相似文献   

16.
A new hair-dye coupler, 2-(2',4'-diaminophenoxy)ethanol was analyzed for its potential mutagenic activity in different genotoxic assays, namely gene reverse mutations in Salmonella typhimurium, forward mutations in the yeast Schizosaccharomyces pombe, and in the V79 Chinese hamster cell line grown in vitro (HGPRT forward mutation system). Two other genetic test systems, measuring the mitotic gene conversion in Saccharomyces cerevisiae (strain D4) and the unscheduled DNA-repair synthesis in a HeLa cell line grown in vitro, were also used. 2,4-Diaminoanisole, a mutagenic/carcinogenic structurally related hair-dye coupler, and a group of well-known mutagens, namely methyl methanesulfonate, ethyl methanesulfonate, cychlophosphamide, hycanthone and N-nitrosodimethylamine, were used as positive controls. The new aromatic amine, 2-(2',4'-diaminophenoxy)ethanol, was negative in all the assays performed, under the same treatment conditions as in the case of all the positive controls.  相似文献   

17.
Both the acridine half-mustard, ICR191, and the nonalkylating azaacridine derivative, ICR364-OH, induce three classes of frameshift mutations in the histidine operon of Salmonella typhimurium. (i) One class is completely stable in reversion tests and is presumed to represent deletion of one or a few critical nucleotide pairs or two nearby frameshifts. One extended deletion was found out of 11 stable mutations. (ii) Of two spontaneously reverting classes which also are considered to predominantly involve base deletions, one is unaffected in reversion with ICR191, nitrosoguanidine, and diethylsulfate, and the other is induced to revert with ICR191. (iii) A third class, considered to predominantly involve base additions, responds in reversion tests with ICR191 as well as with nitrosoguanidine and diethylsulfate. Other investigators have shown that one mutant of this class is a "plus" frameshift and that nitrosoguanidine acts in reversion to delete a guanine plus cytosine base pair. Although such plus frameshifts are found with high frequency among mutations selected from acridine-treated bacteria or when strong selection pressure is applied for their detection in reversion tests, data from this laboratory indicate that this class of plus frameshifts is rare among mutations derived spontaneously or after treatment with a variety of other mutagens. Finally, we demonstrate that the alkylating ICR191 and the nonalkylating ICR364-OH preferentially cause mutations in different chromosome regions and that their spectra of activity only partially overlap that found for spontaneous frameshift mutations.  相似文献   

18.
Frameshifts and Frameshift Suppressors in SACCHAROMYCES CEREVISIAE   总被引:10,自引:0,他引:10       下载免费PDF全文
Using ICR-170 as a mutagen, we have induced a set of mutations in yeast which exhibit behavior similar to that shown for bacterial frameshift mutations. Our genetic study shows that these mutations are polar; the polarity can be relieved by internal suppressors; they revert with acridine half-mustards and are not suppressed by known nonsense suppressors. However, they are suppressed by other dominant external suppressors, which fall into two mutually exclusive groups. Five genetically distinct suppressors were obtained for one of these groups, using co-reversion of two frameshift markers. Three of these are lethal in combination with each other and show a reduction in the GLY3 tRNA peak on a Sepharose 4B column. A fourth suppressor shows an altered chromatographic profile for GLY1 tRNA. We suggest that this group of suppressors represent mutations in the structural genes for the isoaccepting glycyl-tRNA's. Two other suppressors (one linked to the centromere of chromosome III) were found to suppress a second group of frameshifts. Genetic and biochemical studies show that the nonMendelian factor (PSI+) increases the efficiency of some frameshift suppressors.  相似文献   

19.
In a previous study, the forward mutation spectrum induced by the chemical carcinogen N-acetoxy-N-2-acetylaminofluorene was determined (Koffel-Schwartz et al. 1984). It was found that 90% of the induced mutations are frameshift mutations located within specific sequences (mutation hot spots). Two classes of mutation hot spots were found: (i) -1 frameshift mutations occurring within runs of guanines (i.e. GGGG----GGG; (ii) -2 frameshift mutations occurring within the NarI recognition sequence (GGCGCC----GGCC). In the present work, we further investigate the genetic requirements of these frameshift events by using specific reversion assays. Like UV-induced mutagenesis, frameshift mutations occurring within runs of G's (also referred to as the "slippage pathway") require the activated form of the RecA protein (RecA*). On the other hand, frameshift mutations occurring at the NarI site (the "NarI mutation pathway") require a LexA-controlled function(s) that is not UmuDC. The LexA-controlled gene(s) that is (are) involved in this pathway remain to be identified. Moreover, this pathway does not require RecA* for the proteolytic processing of a protein other than LexA (like the cleavage of UmuD in UV-induced mutagenesis). An "additional" role of RecA can be defined as follows: (i) The non-activated form of the RecA protein acts as an inhibitor in the NarI mutation pathway. (ii) This inhibition is relieved upon activation of RecA by UV irradiation of the bacteria. (iii) A recA deletion mutant is totally proficient in the NarI mutation pathway provided the SOS system is derepressed [lexA (Def) allele]. Therefore, RecA does not actively participate in the fixation of the mutation. A molecular model for this "additional" role of RecA is proposed.  相似文献   

20.
Two-thirds of cases of tuberous sclerosis complex (TSC) are sporadic and usually are attributed to new mutations, but unaffected parents sometimes have more than one affected child. We sought to determine how many of these cases represent germ-line mosaicism, as has been reported for other genetic diseases. In our sample of 120 families with TSC, 7 families had two affected children and clinically unaffected parents. These families were tested for mutations in the TSC1 and TSC2 genes, by Southern blotting and by single-strand conformational analysis. Unique variants were detected in six families. Each variant was present and identical in both affected children of a family but was absent in both parents and the unaffected siblings. Sequencing of the variants yielded two frameshift mutations, one missense mutation, and two nonsense mutations in TSC2 and one nonsense mutation in TSC1. To determine which parent contributed the affected gametes, the families were analyzed for linkage to TSC1 and TSC2, by construction of haplotypes with markers flanking the two genes. Linkage analysis and loss-of-heterozygosity studies indicated maternal origin in three families, paternal origin in one family, and either being possible in two families. To evaluate the possibility of low-level somatic mosaicism for TSC, DNA from lymphocytes of members of the six families were tested by allele-specific PCR. In all the families, the mutant allele was detected only in the known affected individuals. We conclude that germ-line mosaicism was present in five families with mutations in the TSC2 gene and in one family with the causative mutation in the TSC1 gene. The results have implications for genetic counseling of families with seemingly sporadic TSC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号