首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boron deficiency increases putrescine levels in tobacco plants   总被引:5,自引:0,他引:5  
Polyamine concentrations were determined in leaves and roots of tobacco plants (Nicotiana tabacum L.) subjected to a short-term boron deficiency. A decrease in the growth of shoots and, especially, roots was found under this mineral deficiency. Boron deficiency did not lead to a significant decrease in leaf or root ion concentrations when compared to control treatment; however, as expected, leaf boron concentration was lower in boron-deficient plants in comparison to the control. In leaves, the levels of free putrescine and spermidine were similar in both treatments. In roots, a short-term boron deficiency caused an increase in free putrescine. Moreover, boron-deficient plants had higher conjugated polyamine concentration than boron-sufficient plants, which was especially evident for conjugated putrescine in leaves. A possible link between boron and polyamine levels is proposed and discussed.  相似文献   

2.
3.
Shoot and root mass of tobacco plants treated with only 0.05 μM boron was decreased by 25 and 50 %, respectively, when compared to plants sufficiently supplied with B (2 and 5 μM). Leaf B content of 0.05 μM B-treated plants decreased (about 80–90 %) when compared to 2 μM B treated plants; this drop of B content were not as marked (about 25–45 %) in roots. Leaf and root nitrate contents in B-deficient plants were 45–60 % and 35–45 % lower, respectively, than those from 2 and 5 μM B treated plants. It is suggested that B deficiency might decrease nitrate uptake rather than nitrate reductase activity in tobacco plants.  相似文献   

4.
Stoimenova  M.  Hänsch  R.  Mendel  R.  Gimmler  H.  Kaiser  W.M. 《Plant and Soil》2003,253(1):145-153
Two tobacco lines with (Nicotiana tabacum cv. Gatersleben, WT) or without (transformant LNR-H) nitrate reductase in roots were chosen as model systems to re-evaluate the role of root nitrate reduction for survival of anoxia. In this first paper, the two hydroponically grown lines were compared with respect to their root morphology, root respiration and the root content of inorganic cations, anions, and metabolites. Leaf transpiration in relation to root morphology was also determined. In comparison to WT roots containing NR, the NR-free LNR-H transformants had slightly shorter and thicker roots with a lower root surface area per g leaf FW. Consistent with that, LNR-H leaves had lower transpiration rates than WT. LNR-H-roots also showed consistently higher respiration and higher contents of ATP, starch and hexose monophosphates than WT roots. Concentrations of free sugars were only slightly higher in LNR-H roots. Total soluble protein content was identical in both lines, whereas amino acids were higher in LNR-H. Contents of major inorganic cations and anions were also almost identical in both lines. We conclude that WT versus LNR-H plants are a suitable tool to re-evaluate the role of nitrate reduction in flooding tolerance.  相似文献   

5.
Cotton (Gossypium hirsutum L.) ovules grown in a defined nutrient medium undergo normal morphogenesis, including fiber production. In identical medium lacking boron, ovules callus and accumulate brown substances. Boron deficiency-like symptoms were induced by 6-azauracil and 6-azauridine in ovules growing in boron-sufficient media. Other nucleoside base analogs either reduced or had no effect on over-all growth, but did not cause typical boron-deficient callus growth of cotton ovules. Orotic acid and uracil countered the effects of 6-azauracil. Actinomycin D, fluorodeoxyuridine, and ethidium bromide reduced not only fiber production on ovules growing in boron-sufficient media but also callusing of ovules in boron-deficient media.  相似文献   

6.
The relationship between the requirement for boron and the form of N supplied in nutrient media to cyanobacterium Anabaena sp. PCC 7119 was investigated. When cells were grown in a medium which contained nitrate or ammonium-N, boron deficiency in the nutrient media did not inhibit growth or change cell composition. However, when cells were dependent on N2 fixation, the lack of boron inhibited growth (i.e. growth ceased after 96 hours under these conditions). Additionally, boron-deficient cells showed a significant decrease in their content of phycobiliproteins and chlorophyll and accumulated carbohydrates within 24 hours of removing boron from the nutrient media. Inhibition of photosynthetic O2 evolution accompanied the decrease in photosynthetic pigments. Boron deficiency symptoms were relieved when either boron or combined N was added to boron-deficient cultures. The degree of recovery depended upon the age of the cultures. Assays of nitrogenase activity showed that, after 2 hours of growth, nitrogenase activity of boron-deficient cells was inhibited by 40%. After 24 hours a total inactivation of nitrogenase activity was observed in boron-deficient cells. These results strongly suggest an involvement of boron in N2 fixation in cyanobacteria.  相似文献   

7.
Effect of boron on cell elongation and division in squash roots   总被引:7,自引:4,他引:3       下载免费PDF全文
Cohen MS 《Plant physiology》1977,59(5):884-887
This work establishes that cessation of root elongation of intact squash (Cucurbita pepo L.) plants is an early result of boron deficiency. Root elongation is slowed by 6 hours and is virtually stopped as early as 24 hours after boron is first withheld from the nutrient solution. As root elongation ceased, cell elongation progressed distally into the region normally occupied by the apical meristem and eventually the meristem became indistinguishable. Differentiation was determined by use of an elongation index in which cell length was compared to cell width. This index ranged from a low of 0.8 in boron-sufficient root meristems to a high of 3 in root meristems grown in a boron-deficient nutrient solution for 98 hours. It is concluded that a continuous supply of boron is not essential for cell elongation but is required for maintenance of meristematic activity. Boron may act as a regulator of cell division in this tissue.  相似文献   

8.
Metabolic Requirement of Cucurbita pepo for Boron   总被引:1,自引:0,他引:1       下载免费PDF全文
Lateral roots of intact summer squash seedlings (Cucurbita pepo L.) were used to quantify the effects of boron deficiency on DNA synthesis, protein synthesis, and respiration. The temporal relationship between changes in these metabolic activities and the cessation of root elongation caused by boron deprivation was determined. Transferring 5-day-old squash seedlings to a hydroponic culture medium without boron for 6 hours resulted in a 62% reduction in net root elongation and a 30% decrease in the incorporation of [3H]thymidine into DNA by root tips (apical 5-millimeter segments). At this time, root tips from both boron-deficient and boron-sufficient plants exhibited nearly identical rates of incorporation of [14C]leucine into protein and respiration as measured by O2 consumption. After an additional 6 hours of boron deprivation, root elongation had nearly ceased. Concomitantly, DNA synthesis in root apices was 66% less than in the boron-sufficient control plants and protein synthesis was reduced 43%. O2 consumption remained the same for both treatments. The decline and eventual cessation of root elongation correlated temporally with the decrease in DNA synthesis, but preceded changes in protein synthesis and respiration. These results suggest that boron is required for continued DNA synthesis and cell division in root meristems.  相似文献   

9.
Growth of young cucumber plants was strongly inhibited, whencalcium was removed from the culture solution. The activitiesof nitrate reductase, glutamate dehydrogenase and glutaminesynthetase were investigated after the removal of calcium. Thoughthe activities of glutamine synthetase and glutamate dehydrogenasewere not altered much, nitrate reductase activity, measuredby in vitro and in vivo assays, decreased dramatically. Theloss of nitrate reductase activity coincided with the levelof nitrate in the leaves. When nitrate was supplied to the cucumberswith a nitrate deficiency, the plants induced nitrate reductasetogether with a distinct accumulation of nitrate. However, cucumberstreated for both calcium and nitrate deficiency failed to inducenitrate reductase and to accumulate nitrate on the additionof large amounts of nitrate. Leaf sections that had been treatedfor both calcium and nitrate deficiency could induce nitratereductase when floated on nitrate solution under the light.This indicates that the drastic loss of nitrate reductase causedby the removal of calcium was due mainly to the deficiency ofnitrate as the inducer in leaves. (Received December 19, 1979; )  相似文献   

10.
Mutants and transformants of tobacco (Nicotiania tabacum L. cv Gatersleben 1) with decreased expression of nitrate reductase have been used to investigate whether nitrate accumulation in the shoot acts as a signal to alter allocation between shoot and root growth. (a) Transformants with very low (1–3% of wild-type levels) nitrate reductase activity had growth rates, and protein, amino acid and glutamine levels similar to or slightly lower than a nitrate-limited wild-type, but accumulated large amounts of nitrate. These plants should resemble a nitrate-limited wild-type, except in responses where nitrate acts as a signal. (b) Whereas the shoot:root ratio decreases from about 3.5 in a well-fertilized wild-type to about 2 in a nitrate-limited wild-type, the transformants had a very high shoot:root ratio (8–10) when they were grown on high nitrate. When they were grown on lower nitrate concentrations their shoot:root ratio declined progressively to a value similar to that in nitrate-limited wild-types. Mutants with a moderate (30–50%) decrease of nitrate reductase also had a small but highly significant increase of their shoot:root ratio, compared to the wild-type. The increased shoot:root ratio in the mutants and transformants was due to a stimulation of shoot growth and an inhibition of root growth. (c) There was a highly significant correlation between leaf nitrate content and the shoot:root ratio for eight genotypes growing at a wide range of nitrate supply. (d) A similar increase of the shoot:root ratio in nitrate reductase-deficient plants, and correlation between leaf nitrate content and the shoot:root ratio, was found in plants growing on ammonium nitrate. (f) Split-root experiments, in which the transformants were grown with part of their root system in high nitrate and the other part in low nitrate, showed that root growth is inhibited by the accumulation of nitrate in the shoot. High concentrations of nitrate in the rooting medium actually stimulate local root growth. (g) The inhibition of root growth in the transformants was relieved when the transformants were grown on limiting phosphate, even though the nitrate content of the root remained high. This shows that the nitrate-dependent changes in allocation can be overridden by other signals that increase allocation to root growth. (h) The reasons for the changed allocation were investigated in transformants growing normally, and in split-root culture. Accumulation of nitrate in the shoot did not lead to decreased levels of amino acids or protein in the roots. However, it did lead to a strong inhibition of starch synthesis and turnover in the leaves, and to decreased levels of sugars in the root. The rate of root growth was correlated with the root sugar content. It is concluded that these changes of carbon allocation could contribute to the changes in shoot and root growth.  相似文献   

11.
During the night, shoot nitrate concentration in spinach (Spinacia oleracea L. cv. Vroeg Reuzenblad) increased due to increased uptake of nitrate by the roots. When the plants were subjected to a one night “low light’period at 35 μmol m?2 s?1, the shoot nitrate concentration did not increase and was reduced by 25% compared to control plants in the dark. The major contribution to this decrease was located in the leaf blades, where the nitrate concentration was decreased by 60%, while the petiole nitrate concentration decreased by only 9%. Nitrate accumulated in the leaf blade vacuoles during a dark night, but this was not the case during the “low light’period. This decrease in vacuolar nitrate concentration, compared to control plants in the dark, was not caused by increased amounts of leaf blade nitrate reductase (NR; EC 1.6.6.1). During a “low light’night period, the cytoplasmic soluble carbohydrate concentration was increased compared to the control plants in the dark. Calculations showed in situ NR activity to be higher than in the control plants in the dark. This increase in NR activity, however, was not large enough to account for the total difference found in the shoot nitrate concentration. Net uptake of nitrate by the roots was increased during the initial hours of the dark night, while vacuolar nitrate concentration in the leaf blades increased at the same time. During the “low light’night period, however, net uptake of nitrate by the roots did not increase, and vacuolar nitrate concentration did not change. We conclude that nitrate uptake by the roots and vacuolar nitrate concentration in the leaf blades are tightly coupled. The decreased shoot nitrate concentration is mainly caused by a reduction in net uptake of nitrate by the roots. During the “low light’night period, carbohydrates and malic acid partly replaced vacuolar nitrate. A “low light’period one night prior to harvest provides a valuable tool to reduce shoot nitrate concentrations in spinach grown in greenhouses in the winter months.  相似文献   

12.
Both the in vivo (+ nitrate) nitrate reductase (NR) activity (leaf disks incubated in the presence of KNO3) and the in vivo (? nitrate) NR activity (leaf disks incubated without KNO3) in leaves of eggplant (Solanum melongena L. cv. Bonica) were affected by rapidly growing fruits. Plants with a fruit load showed more pronounced diurnal variation in (+ nitrate) NR activity and higher (? nitrate) NR activity than plants without fruit. The higher (? nitrate) NR activity was accompanied by higher nitrate and lower sucrose and starch contents of leaves. The more pronounced diurnal changes in (+ nitrate) NR activity were paralleled by more pronounced diurnal variation in carbohydrate content of leaves. Fruit removal led to a decrease in both (? nitrate) NR activity and nitrate concentration in leaves, while the carbohydrate content increased. Plants supplied with ammonium instead of nitrate showed only slightly lower (+ nitrate) but no (? nitrate) NR activity. As for plants treated with nitrate, diurnal changes in (+ nitrate) NR activity were most pronounced in leaves of plants with fruit and this again was paralleled by a more pronounced diurnal variation in the carbohydrate concentration in the leaves. Increasing the oxygen level of the atmosphere to 50% led to a dramatic decrease in the (+ nitrate) NR activity and to an increase in both (? nitrate) NR activity and nitrate concentration, which was accompanied by decreasing carbohydrate contents of the leaves. Low light intensities and extended dark periods caused similar changes in NR activity and nitrate and carbohydrate concentrations in leaves. Increasing the nitrate concentration in the nutrient solution led to a rise in (+ nitrate) and (? nitrate) NR activity, but only the (? nitrate) NR activity paralleled the nitrate concentration in the leaves. This increase in the nitrate concentration was accompanied by a decrease in the carbohydrate content of the leaves. It is concluded that the level of and the diurnal changes in both (+ nitrate) and (? nitrate) NR activity and the concentration of nitrate in the leaves are dependent upon their carbohydrate status.  相似文献   

13.
Boron Deficiency and Translocation Profiles in Sunflower   总被引:1,自引:0,他引:1  
The distribution of carbon-14 down the stems of comparable boron-deficient and boron-sufficient sunflower plants after photosynthesis of 14CO2 by a single exposed leaf was investigated. In boron-deficient plants the advancing front of radioactivity was always found less far down the stem than in boron-sufficient plants. The general shape of the profile is the same in the two sets of plants. We conclude that the velocity of translocation is reduced in the boron-deficient plants.  相似文献   

14.
Boron contamination in the agricultural lands is an important problem for Western Turkey, which has rich boron deposits. This study was carried out in Nazilli regions upon orange (Citrus sinensis L. Osbeck) plants irrigated with relatively high boron laden channel waters (LCI) and with well waters (LWI) which contain lower amounts of boron. The leaves of the plants irrigated with channel water were found to contain twice the amount of boron compared with those irrigated with well waters. Boron content of leaves in both groups were approximately ten times the boron content in the soil on which they are grown. In the leaves of the plants irrigated with channel waters there were approximately 50% chlorophyll loss and higher chlorophyll a/b and caretonoid/chlorophyll ratios. In the excessive boron containing leaves was found higher soluble protein and carbohydrate contents, but lower determined free proline value. In plants that irrigated with high boron laden channel water significantly lower -tocopherol content and two fold higher ascorbate concentration were determined. The lower activities of catalase and glutathione reductase enzymes and higher total superoxide dismutase activity were measured in high boron content leaves. The retardation of growth due to boron toxicity can be attributed to the chlorophyll loss and inhibition of the carbohydratemetabolism. Boron at toxic level may cause the cell membrane lipids to be damaged by the free radicals by decreasing the -tocopherol levels. The increase in the ascorbate concentration may have a vital role in the protection of the inner cell structures against the boron toxicity.  相似文献   

15.
采用温室土培试验,研究了不同氮磷钾复合型(NPK肥)施用水平下,油菜对B的吸收及其耐缺B机理以及缺B对某些生物学性状的影响,结果表明,缺B时,随NPK肥施用量的增加,油菜植株缺B症状加重,苗期叶面积及其生长速率减小,叶绿素含量增加,硝酸还原酶活性下降,成熟期单株有效分枝,有效角果数减少,籽粒产量降低,可以认为,油菜大苗期最新展开叶(YOL)与最新成熟叶(YML)的B浓度比值可作为不同基因型油菜植株体内B移动性大小的判氟指标,B移动性及B利用率的大小是不同基因型油菜耐缺B的重要营养机理之一。  相似文献   

16.
植物对硼元素的吸收转运机制   总被引:5,自引:0,他引:5  
硼是植物生长发育所必需的微量元素,但是在世界范围内,土壤中硼含量过高或者过低都会对植物生长产生影响,是农业生产上的主要问题.近来人们对硼的吸收转运机制的研究取得了突破性进展,鉴定了一些硼的转运通道和转运蛋白,例如:NIP5;1、NIP6;1、BOR1和BOR4,并对它们的转运机制有了一些了解.植物在硼缺少的情况下首先通过转运通道NIP5;1把硼吸收到共质体,然后通过转运蛋白BOR1运入中柱;在高硼毒害时,通过转运蛋白BOR4把过多的硼转出植物体,同时在植物中增加糖醇的含量,过表达BOR1或BOR4都能改变植物对硼含量变化的耐受性.因此,对植物中硼吸收转运机制的研究将有利于人们通过生物学手段提高作物对土壤中硼过高或过低的抗性.  相似文献   

17.
Previous work has provided evidence that plants may require boron to maintain adequate levels of pyrimidine nucleotides, suggesting that the state of boron deficiency may actually be one of pyrimidine starvation. Since the availability of pyrimidine nucleotides is influenced by their rates of synthesis, salvage, and catabolism, we compared these activities in the terminal 3 centimeters of roots excised from boron-deficient and -sufficient squash plants (Cucurbita pepo L.). Transferring 5-day-old squash plants to a boron-deficient nutrient solution resulted in cessation of root elongation within 18 hours. However, withholding boron for up to 30 hours did not result in either impaired de novo pyrimidine biosynthesis or a change in the sensitivity of the de novo pathway to regulation by end product inhibition. Boron deprivation had no significant effect on pyrimidine salvage or catabolism. These results provide evidence that boron-deficient plants are not starved for uridine nucleotides collectively. Whether a particular pyrimidine nucleotide or derivative is limiting during boron deprivation remains to be examined.  相似文献   

18.
The relation between nitrate reductase (NR; EC 1.6.6.1) activity, activation state and NR protein in leaves of barley (Hordeum vulgare L.) seedlings was investigated. Maximum NR activity (NRAmax) and NR protein content (Western blotting) were modified by growing plants hydroponically at low (0.3 mM) or high (10 mM) nitrate supply. In addition, plants were kept under short-day (8 h light/16 h dark) or long-day (16 h light/8 h dark) conditions in order to manipulate the concentration of nitrate stored in the leaves during the dark phase, and the concentrations of sugars and amino acids accumulated during the light phase, which are potential signalling compounds. Plants were also grown under phosphate deficiency in order to modify their glucose-6-phosphate content. In high-nitrate/long-day conditions, NRAmax and NR protein were almost constant during the whole light period. Low-nitrate/long-day plants had only about 30% of the NRAmax and NR protein of high-nitrate plants. In low-nitrate/long-day plants, NRAmax and NR protein decreased strongly during the second half of the light phase. The decrease was preceded by a strong decrease in the leaf nitrate content. Short daylength generally led to higher nitrate concentrations in leaves. Under short-day/low-nitrate conditions, NRAmax was slightly higher than under long-day conditions and remained almost constant during the day. This correlated with maintenance of higher nitrate concentrations during the short light period. The NR activation state in the light was very similar in high-nitrate and low-nitrate plants, but dark inactivation was twice as high in the high-nitrate plants. Thus, the low NRAmax in low-nitrate/long-day plants was slightly compensated by a higher activation state of NR. Such a partial compensation of a low NRmax by a higher dark activation state was not observed with phosphate-depleted plants. Total leaf concentrations of sugars, of glutamine and glutamate and of glucose-6-phosphate did not correlate with the NR activation state nor with NRAmax. Received: 24 March 1999 / Accepted: 31 May 1999  相似文献   

19.
Synthesis and degradation of barley nitrate reductase   总被引:21,自引:13,他引:8       下载免费PDF全文
Nitrate and light are known to modulate barley (Hordeum vulgare L.) nitrate reductase activity. The objective of this investigation was to determine whether barley nitrate reductase is regulated by enzyme synthesis and degradation or by an activation-inactivation mechanism. Barley seedling nitrate reductase protein (cross-reacting material) was determined by rocket immunoelectrophoresis and a qualitative immunochemical technique (western blot) during the induction and decay of nitrate reductase activity. Nitrate reductase cross-reacting material was not detected in root or shoot extracts from seedlings grown without nitrate. Low levels of nitrate reductase activity and cross-reacting material were observed in leaf extracts from plants grown on nitrate in the dark. Upon nitrate induction or transfer of nitrate-grown etiolated plants to the light, increases in nitrate reductase activity were positively correlated with increases in immunological cross-reactivity. Root and shoot nitrate reductase activity and cross-reacting material decreased when nitrate-induced seedlings were transferred to a nitrate-free nutrient solution or from light to darkness. These results indicate that barley nitrate reductase levels are regulated by de novo synthesis and protein degradation.  相似文献   

20.
A. Melzer  G. Gebauer  H. Rehder 《Oecologia》1984,63(3):380-385
Summary The aim of this work was to investigate the effect of nitrogen starvation and subsequent fentilization with nitrate or ammonium on nitrate content and nitrate reductase activity of Rumex obtusifolius L. under natural conditions.When plants were transplanted to nitrate-poor media, endogenous nitrate was reduced within a few days. In parallel, nitrage reductase activities dropped to about 25% of the initial values. As a consequence of nitrate fertilization (1; 10 or 100 mmol KNO3/l substrate), endogenous nitrate content of the plant abruptly increased within one day. In extreme cases, nitrate concentrations of up to 10% of plant dry weight could be observed without being lethal. High external nitrate concentrations caused an inhibition of nitrate reductase within the leaves, while low external concentrations provoked an increase in the enzyme activity of about 450% within one day. Ammonium fertilization (5 mmol (NH4)2SO4/l substrate) also caused an increase in nitrate reductase activity and nitrate content within leaf blades. This observation indicates a rapid nitrification of ammonium in the substrate. When plants were fertilized with ammonium plus nitrate (2.5 mmol (NH4)2SO4+ 5 mmol KNO3/l substrate), an extremely high and long term increase in nitrate reduction could be observed. Due to an intensive enzymatic nitrate turnover, the nitrate content of leaf blades then remained relatively low. Our observations do not point to an inhibition of nitrate reductase activity in leaves of Rumex obtusifolius by ammonium. Despite temporarily high endogenous nitrate concentrations, Rumex obtusifolius may not be termed as a nitrate storage plant, since the accumulation of nitrate is a short term process only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号