首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analytical and numerical models were developed to describe fluorescence resonance energy transfer (RET) in crowded biological membranes. It was assumed that fluorescent donors were linked to membrane proteins and that acceptors were linked to membrane lipids. No restrictions were placed on the location of the donor within the protein or the partitioning of acceptors between the two leaflets of the bilayer; however, acceptors were excluded from the area occupied by proteins. Analytical equations were derived that give the average quantum yield of a donor at low protein concentrations. Monte Carlo simulations were used to generate protein and lipid distributions that were linked numerically with RET equations to determine the average quantum yield and the distribution of donor fluorescence lifetimes at high protein concentrations, up to 50% area fraction. The Monte Carlo results show such crowding always reduces the quantum yield, probably because crowding increases acceptor concentrations near donor-bearing proteins; the magnitude of the reduction increases monotonically with protein concentration. The Monte Carlo results also show that the distribution of fluorescence lifetimes can differ markedly, even for systems possessing the same average lifetime. The dependence of energy transfer on acceptor concentration, protein radius, donor position within the protein, and the fraction of acceptors in each leaflet was also examined. The model and results are directly applicable to the analysis of RET data obtained from biological membranes; their application should result in a more complete and accurate determination of the structures of membrane components.  相似文献   

2.
The spatial location and orientation of the retinal chromophore in bacteriorhodopsin were estimated from a fluorescence energy transfer study. The energy donor used in this study was a fluorescent retinal derivative, which was obtained by partial reduction of the purple membrane with sodium borohydride, and the energy acceptor was the native chromophore remaining in the same membrane. Since bacteriorhodopsin forms a two-dimensional crystal with P3 symmetry in the purple membrane, and the membrane structure is maintained after the reduction, the rate of energy transfer from a donor to any acceptor existing in the same membrane can be calculated as a function of the location and orientation of the chromophores in the unit cell. Quantitative analyses of the fluorescence decay curve and the quantum yield, with various extents of reduction, enabled us to determine the most probable location and orientation. The result suggested that the chromophore was situated near the centre of the protein in such an orientation that the dipole-dipole interaction with neighbouring chromophores was close to minimum.  相似文献   

3.

Background

Förster resonance energy transfer (FRET) is a mechanism where energy is transferred from an excited donor fluorophore to adjacent chromophores via non-radiative dipole-dipole interactions. FRET theory primarily considers the interactions of a single donor-acceptor pair. Unfortunately, it is rarely known if only a single acceptor is present in a molecular complex. Thus, the use of FRET as a tool for measuring protein-protein interactions inside living cells requires an understanding of how FRET changes with multiple acceptors. When multiple FRET acceptors are present it is assumed that a quantum of energy is either released from the donor, or transferred in toto to only one of the acceptors present. The rate of energy transfer between the donor and a specific acceptor (kD→A) can be measured in the absence of other acceptors, and these individual FRET transfer rates can be used to predict the ensemble FRET efficiency using a simple kinetic model where the sum of all FRET transfer rates is divided by the sum of all radiative and non-radiative transfer rates.

Methodology/Principal Findings

The generality of this approach was tested by measuring the ensemble FRET efficiency in two constructs, each containing a single fluorescent-protein donor (Cerulean) and either two or three FRET acceptors (Venus). FRET transfer rates between individual donor-acceptor pairs within these constructs were calculated from FRET efficiencies measured after systematically introducing point mutations to eliminate all other acceptors. We find that the amount of energy transfer observed in constructs having multiple acceptors is significantly greater than the FRET efficiency predicted from the sum of the individual donor to acceptor transfer rates.

Conclusions/Significance

We conclude that either an additional energy transfer pathway exists when multiple acceptors are present, or that a theoretical assumption on which the kinetic model prediction is based is incorrect.  相似文献   

4.
Resonance energy transfer between lipid-bound fluorescent probe 3-methoxybenzanthrone as a donor and heme group of cytochrome c as an acceptor has been examined to ascertain the protein disposition relative to the surface of model membranes composed of phosphatidylcholine and cardiolipin (10, 50 and 80 mol%). The model of energy transfer in membrane systems has been extended to the case of donors distributed between the two-bilayer leaflets and acceptors located at the outer monolayer taking into account the donor and acceptor orientational behavior. Assuming specific protein orientation relative to the membrane surface and varying lateral distance of the donor-acceptor closest approach in the range from 0 to 3.5 nm the limits for possible heme distances from the bilayer midplane have been found to be 0.8-3 nm (10 mol% CL), 0-2.6 nm (50 mol% CL), and 1.4-3.3 nm (80 mol% CL).  相似文献   

5.
The singlet-singlet energy transfer from alloxazines to isoalloxazines has been investigated in dipalmitoyl phosphatidylcholine (DPPC) liposomes and dioctadecyltrimethylammonium chloride (2C18NC) vesicles to clarify the role of the artificial membranes in the energy transfer phenomenon. The structures of the artificial membranes were divided into two types: the single-walled (sonicated DPPC) and the multi-compartment vesicles (unsonicated DPPC and sonicated 2C18NC). In the DPPC single-walled liposomes, the energy of the donor lost by quenching is efficiently transferred to the acceptor via the Förster-type dipole-dipole interaction. In the case of multi-compartment liposomes of DPPC, the mean distance between donor and acceptor is so small because the external surface of a bilayer is in the vicinity of the internal surface of another bilayer. As a consequence, efficiencies both of energy transfer and of energy loss were greater than those in single-walled liposomes. The fluid property of the 2C18NC bilayer allowed the preferential collisional quenching. The marked reduction in the efficiencies of both energy transfer and energy loss were attributed to the elongation of donor-acceptor distances due to the increase of the size of liposome.  相似文献   

6.
We describe an approach to creating a new class of luminophores which display both long wavelength emissions exceeding 600 nm and long lifetimes. These luminophores are based on resonance energy transfer (RET) from a long lifetime donor to a short lifetime but long wavelength acceptor. We demonstrated the possibility of obtaining these desirable spectral properties using donors and acceptors noncovalently bound to DNA. The donor was a ruthenium (Ru) metal-ligand complex in which one of the diimine ligands intercalated into double-helix DNA. The acceptors were either nile blue, TOTO-3, or TO-PRO-3. Upon binding of the acceptor to donor-labeled DNA, we found that the acceptor quantum yield was remarkably enhanced so that the wavelength-integrated intensities of the donor and acceptor bound to DNA were many-fold greater than the intensity of the donor and acceptor alone when separately bound to DNA. The origin of this effect is efficient energy transfer from the donor. Under these conditions the effective overall quantum yield approaches that of the acceptor. Importantly, the increased quantum yield can be obtained while maintaining usefully long apparent acceptor lifetimes of 30 to 80 ns. The effect of an increased quantum yield from a low quantum yield donor may find use in assays to detect macromolecular binding interactions. These results suggest the synthesis of covalently linked donor-acceptor pairs with the desirable spectral properties of long wavelength emission, high quantum yield, and moderately long lifetimes for gated detection.  相似文献   

7.
The 105 000 × g supernatant fractions of various rat tissues catalyze the transfer of the N-acetyl group of certain carcinogenic aromatic acethydroxamic acids to the O atom of aromatic hydroxylamines. The resulting N-acetoxyhydroxylamines are strongly electrophilic and have been detected and analyzed through their reaction with N-acetylmethionine to yield methylmercaptoaminoarenes.Of the rat tissues studied the liver had the highest activity; kidney and small intestinal mucosa were about 15–20% as active. The transacetylase activities of these tissues were similar with respect to their ability to use either N-hydroxy-2-acetylaminofluorene (N-hydroxy-AAF or N-hydroxy-4-acetylaminobiphenyl (N-hydroxy-AABP) as acetyl donors, their stability on storage at 2–3°C, and their elution patterns from Sephadex G-100 columns. Low transacetylase activity was found in spleen and muscle.Mammary tissue from 16–21 day pregnant rats had 20% of the transacetylase activity of rat liver when N-hydroxy-AABP was used as acetyl donor and N-hydroxy-4-aminobiphenyl (N-hydroxy-ABP) was the acetyl acceptor. This enzyme system from mammary tissue did not utilize the fluorene derivatives as either acetyl donor or acetyl acceptor, was much more labile than the liver, kidney, or intestinal mucosa systems, and had a pH optimum at 7.5, as compared to pH 6.8 for liver. The mammary tissue system was similar to the hepatic system in being inhibited by sulfhydryl reagents; it required a source of reduced pyridine nucleotides for maximum activity.  相似文献   

8.
This study investigated the physiological impact of changing electron donor–acceptor ratios on electron transfer pathways in the metabolically flexible subsurface bacterium Shewanella oneidensis, using batch and chemostat cultures, with an azo dye (ramazol black B) as the model electron acceptor. Altering the growth rate did result in changes in biomass yield, but not in other key physiological parameters including the total cytochrome content of the cells, the production of extracellular flavin redox shuttles or the potential of the organism to reduce the azo dye. Dramatic increases in the ability to reduce the dye were noted when cells were grown under conditions of electron acceptor (fumarate) limitation, although the yields of extracellular redox mediators (flavins) were similar under conditions of electron donor (lactate) or acceptor limitation. FT-IR spectroscopy confirmed shifts in the metabolic fingerprints of cells grown under these contrasting conditions, while spectrophotometric analyses supported a critical role for c-type cytochromes, expressed at maximal concentrations under conditions of electron acceptor limitation. Finally, key intracellular metabolites were quantified in batch experiments at various electron donor and acceptor ratios and analysed using discriminant analysis and a Bayesian network to construct a central metabolic pathway model for cells grown under conditions of electron donor or acceptor limitation. These results have identified key mechanisms involved in controlling electron transfer in Shewanella species, and have highlighted strategies to maximise reductive activity for a range of bioprocesses.  相似文献   

9.
The method of fluorescence resonance energy transfer (FRET) has been employed to monitor cytochrome c interaction with bilayer phospholipid membranes. Liposomes composed of phosphatidylcholine and varying amounts of anionic lipid cardiolipin (CL) were used as model membranes. Trace amount of fluorescent lipid derivative, anthrylvinyl-phosphatidylcholine was incorporated into the membranes to serve energy donor for heme moiety of cytochrome c. Energy transfer efficiency was measured at different lipid and protein concentrations to obtain extensive set of data, which were further analyzed globally in terms of adequate models of protein adsorption and energy transfer on the membrane surface. It has been found that the cytochrome c association with membranes containing 10 mol% CL can be described in terms of equilibrium binding model (yielding dissociation constant Kd = 0.2-0.4 microM and stoichiometry n = 11-13 lipid molecules per protein binding site) combined with FRET model assuming uniform acceptor distribution with the distance of 3.5-3.6 nm between the bilayer midplane and heme moiety of cytochrome c. However, increasing the CL content to 20 or 40 mol% (at low ionic strength) resulted in a different behavior of FRET profiles, inconsistent with the concepts of equilibrium adsorption of cytochrome c at the membrane surface and/or uniform acceptor distribution. To explain this fact, several possibilities are analyzed, including cytochrome c-induced formation of non-bilayer structures and clusters of charged lipids, or changes in the depth of cytochrome c penetration into the bilayer depending on the protein surface density. Additional control experiments have shown that only the latter process can explain the peculiar concentration dependences of FRET at high CL content.  相似文献   

10.
Förster resonance energy transfer (FRET) efficiency distributions in single-molecule experiments contain both structural and dynamical information. Extraction of this information from these distributions requires a careful analysis of contributions from dye photophysics. To investigate how mechanisms other than FRET affect the distributions obtained by counting donor and acceptor photons, we have measured single-molecule fluorescence trajectories of a small α/β protein, i.e., protein GB1, undergoing two-state, folding/unfolding transitions. Alexa 488 donor and Alexa 594 acceptor dyes were attached to cysteines at positions 10 and 57 to yield two isomers—donor10/acceptor57 and donor57/acceptor10—which could not be separated in the purification. The protein was immobilized via binding of a histidine tag added to a linker sequence at the N-terminus to cupric ions embedded in a polyethylene-glycol-coated glass surface. The distribution of FRET efficiencies assembled from the trajectories is complex with widths for the individual peaks in large excess of that caused by shot noise. Most of this complexity can be explained by two interfering photophysical effects—a photoinduced red shift of the donor dye and differences in the quantum yield of the acceptor dye for the two isomers resulting from differences in quenching rate by the cupric ion. Measurements of steady-state polarization, calculation of the donor-acceptor cross-correlation function from photon trajectories, and comparison of the single molecule and ensemble kinetics all indicate that conformational distributions and dynamics do not contribute to the complexity.  相似文献   

11.
Gramicidin A, a linear peptide antibiotic, makes membranes permeable to alkali cations and hydrogen ions by forming transmembrane channels. We report here conductance and fluorescence energy transfer studies of channels containing two kinds of gramicidin. These studies of hybrid channels were designed to determine the number of molecules in a channel. The gramicidins studied were gramicidin A, dansyl gramicidin C, the p-phenylazobenzene sulfonyl derivative of gramicidin C (PABS4 gramicidin C), and the 4-(diethylamino)-phenylazobenzene-4-sulfonyl chloride derivative of gramicidin C (DPBS gramicidin C). The dansyl, PABS and DPBS groups were linked to the hydroxyl group of tyrosine 11 in gramicidin C. The single-channel conductance of PABS gramicidin C in planar bilayer membranes is 0.68 that of gramicidin A. Membranes containing both PABS gramicidin C and gramicidin A exhibit three kinds of channels: a pure gramicidin A, a pure PABS gramicidin C channel, and a hybrid channel with an intermediate conductance (0.82 that of gramicidin A). The dependence of the frequencies of these three kinds of channels on the mole fractions of gramicidin A and PABS gramicidin C in the membrane-forming solution fits a dimer model. Fluorescence energy transfer was used as a complementary means of ascertaining the frequency of hybrid channels. Dansyl gramicidin C was the fluorescent energy donor and DPBS gramicidin C was the energy acceptor. The efficiency of energy transfer between these chromophores in hybrid channels in liposomes was 75%. The relative quantum yield of the dansyl fluorescence was measured as a function of the mole fraction of DPBS gramicidin C. These fluorescence studies, like the single-channel conductance measurements, showed that there are two molecules of gramicidin in a channel. The study of hybrid species by conductance and fluorescence techniques should be generally useful in elucidating the subunit structure of oligomeric assemblies in membranes.  相似文献   

12.
The light response curves of the acceptor and donor side mechanisms of photoinhibition of Photosystem II were calculated, using Arabidopsis as a model organism. Acceptor-side photoinhibition was modelled as double reduction of QA, noting that non-photochemical quenching has the same effect on the quantum yield of QA double reduction in closed PSII centres as it has on the quantum yield of electron transport in open centres. The light response curve of acceptor-side photoinhibition in Arabidopsis shows very low efficiency under low intensity light and a relatively constant quantum yield above light saturation of photosynthesis. To calculate the light response curve of donor-side photoinhibition, we built a model describing the concentration of the oxidized primary donor P680+ during steady-state photosynthesis. The model is based on literature values of rate constants of electron transfer reactions of PSII, and it was fitted with fluorescence parameters measured in the steady state. The modelling analysis showed that the quantum yield of donor-side photoinhibition peaks under moderate light. The deviation of the acceptor and donor side mechanisms from the direct proportionality between photoinhibition and photon flux density suggests that these mechanisms cannot solely account for photoinhibition in vivo, but contribution of a reaction whose quantum yield is independent of light intensity is needed. Furthermore, a simple kinetic calculation suggests that the acceptor-side mechanism may not explain singlet oxygen production by photoinhibited leaves. The theoretical framework described here can be used to estimate the yields of different photoinhibition mechanisms under different wavelengths or light intensities.  相似文献   

13.
Microscopy-based fluorescence resonance energy transfer (FRET) experiments measure donor and acceptor intensities by isolating these signals with a series of optical elements. Because this filtering discards portions of the spectrum, the observed FRET efficiency is dependent on the set of filters in use. Similarly, observed FRET efficiency is also affected by differences in fluorophore quantum yield. Recovering the absolute FRET efficiency requires normalization for these effects to account for differences between the donor and acceptor fluorophores in their quantum yield and detection efficiency. Without this correction, FRET is consistent across multiple experiments only if the photophysical and instrument properties remain unchanged. Here we present what is, to our knowledge, the first systematic study of methods to recover the true FRET efficiency using DNA rulers with known fluorophore separations. We varied optical elements to purposefully alter observed FRET and examined protein samples to achieve quantum yields distinct from those in the DNA samples. Correction for calculated instrument transmission reduced FRET deviations, which can facilitate comparison of results from different instruments. Empirical normalization was more effective but required significant effort. Normalization based on single-molecule photobleaching was the most effective depending on how it is applied. Surprisingly, per-molecule γ-normalization reduced the peak width in the DNA FRET distribution because anomalous γ-values correspond to FRET outliers. Thus, molecule-to-molecule variation in gamma has an unrecognized effect on the FRET distribution that must be considered to extract information on sample dynamics from the distribution width.  相似文献   

14.
An approach is described using fluorescence resonance energy transfer (FRET) to detect inhomogeneity in lipid organization, on distance scales of the order of tens of nanometers or greater, in lipid bilayers. This approach compares the efficiency of energy transfer between two matched fluorescent lipid donors, differing in their affinities for ordered versus disordered regions of the bilayer, and an acceptor lipid that distributes preferentially into disordered regions. Inhomogeneities in bilayer organization, on spatial scales of tens of nanometers or greater, are detected as a marked difference in the efficiencies of quenching of fluorescence of the two donor species by the acceptor. Using a novel pair of 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-labeled tetraacyl lipids as donor species with a rhodaminyl-labeled acceptor, this strategy faithfully reports homo- versus inhomogeneous mixing in each of several lipid bilayer systems whose organization on the FRET distance scale can be predicted from previous findings. Interestingly, however, the present FRET method reports clear evidence of inhomogeneity in the organization of mixtures combining sphingomyelin or saturated phospholipids with unsaturated phospholipids and physiological proportions of cholesterol, even at physiological temperatures where these systems have been reported to appear homogeneous by fluorescence microscopy. These results indicate that under physiological conditions, lipid mixtures mimicking the lipid composition of the outer leaflet of the plasma membrane can form domains on a spatial scale comparable to that inferred for the dimensions of lipid rafts in biological membranes.  相似文献   

15.
An α-l-rhamnosyl ceramide (1, α-l-RhaCer) has been prepared that was recognized by anti-l-rhamnose (anti-Rha) antibodies. During these studies we explored the use of an α-l-rhamnosyl thioglycoside and a trichloroacetimidate as a glycosyl donors. Subsequently, the acceptors desired for glycosylation, 3-O-benzoylazidosphingosine or 3-O-alloxycarbonylsphingosine, were prepared from d-xylose. The thioglycoside donor, 2,3,4-tri-O-acetyl-1-(4-tolyl)thio-α-l-rhamnopyranoside, and the trichloroacetimidate donor, 2,3,4-tri-O-acetyl-1-(2,2,2-trichloroethanimidate)-α-l-rhamnopyranoside, were synthesized in 50% and 78% yield overall, respectively. The synthesis of the glycosylation acceptor employed an addition–fragmentation olefination that was successfully carried out in 53% yield. With the successful synthesis of key intermediates, α-l-RhaCer (1) was prepared without any insurmountable obstacles. Anti-Rha antibodies were prepared in BALB/c mice by immunizing them with rhamnose-ovalbumin (Rha-Ova) with Sigma Adjuvant System (SAS) and the anti-l-Rha antibodies were isolated from the blood sera. Liposomes and EL4 tumor cells were used as model systems to demonstrate the ability of 1 to insert into a lipid bilayer. The interaction of the liposomes or the EL4 cells with α-l-RhaCer (1) and anti-Rha antibodies were investigated by fluorescence microscopy and flow cytometry, respectively, to confirm the ability of glycolipid 1 to be displayed on the tumor cell surface as well as the ability to be recognized by anti-Rha antibodies.  相似文献   

16.
R S Lipman  M S Jorns 《Biochemistry》1992,31(3):786-791
The active form of native Escherichia coli DNA photolyase contains 1,5-dihydro-FAD (FADH2) plus 5,10-methenyltetrahydropteroylpolyglutamate [5,10-CH(+)-H4Pte(Glu)n]. Enzyme containing FADH2 and/or 5,10-methyltetrahydrofolate (5,10-CH(+)-H4folate) can be prepared in reconstitution experiments. Fluorescence quantum yield measurements at various wavelengths with native or reconstituted enzyme provide a simple method for detecting singlet-singlet energy transfer from pterin to FADH2, a key step in the proposed catalytic mechanism. The data satisfy the following criteria: (1) Wavelength-independent quantum yield values are observed for 5,10-CH(+)-H4folate in the absence (0.434) or presence (3.57 X 10(-2)) of FADH2, for 5,10-CH(+)-H4Pte(Glu)n in the presence of FADH2 (5.58 X 10(-2)) and for FADH2 in the absence of pterin (5.34 X 10(-3)); (2) The observed decrease in pterin fluorescence quantum yield in the presence of FADH2 can be used to estimate the efficiency of pterin fluorescence quenching (EQ = 0.918 or 0.871 with 5,10-CH(+)-H4folate or 5,10-CH(+)-H4Pte(Glu)n, respectively); (3) The fluorescence quantum yield of FADH2 is increased in the presence of pterin and varies depending on the excitation wavelength, in agreement with the predicted effect of energy transfer on acceptor fluorescence quantum yield [phi acceptor (+ donor)/phi acceptor (alone) = 1 + EET(epsilon donor/epsilon acceptor), where EET is the efficiency of the energy transfer process]. With 5,10-CH(+)-H4Pte(Glu)n in native enzyme the value obtained for EET (0.92) is similar to EQ, whereas with 5,10-CH(+)-H4folate in reconstituted enzyme the value obtained for EET (0.46) is 2-fold smaller than EQ.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The molecular aggregate size of the closed state of the colicin E1 channel was determined by fluorescence resonance energy transfer experiments involving a fluorescence donor (three tryptophans, wild-type protein) and a fluorescence acceptor (5-(((acetyl)amino)ethyl)aminonaphthalene-1-sulfonic acid (AEDANS), Trp-deficient protein). There was no evidence of energy transfer between the donor and acceptor species when bound to membrane large unilamellar vesicles. These experiments led to the conclusion that the colicin E1 channel is monomeric in the membrane-bound closed channel state. Experiments were also conducted to study the membrane topology of the closed colicin channel in membrane large unilamellar vesicles using acrylamide as the membrane-impermeant, nonionic quencher of tryptophan fluorescence in a battery of single tryptophan mutant proteins. Furthermore, additional fluorescence parameters, including fluorescence emission maximum, fluorescence quantum yield, and fluorescence decay times, were used to assist in mapping the topology of the closed channel. Results suggest that the closed channel comprises most of the polypeptide of the channel domain and that the hydrophobic anchor domain does not transverse the membrane bilayer but nonetheless is deeply embedded within the hydrocarbon core of the membrane. Finally, a model is proposed which features at least two states that are in rapid equilibrium with each other and in which one state is more heavily populated than the other.  相似文献   

18.
Dissipation in bioenergetic electron transfer chains   总被引:2,自引:2,他引:0  
This paper examines the processes by which wasteful dissipation of free energy may occur in bioenergetic electron transfer chains. Frictionless transfer requires high rate constants in order to achieve a quasi-equilibrium steady-state. Previous results concerning the maximum power available from a photochemical source are recalled. The energetic performance of the bacterial reaction center is discussed, characterizing the processes that decrease either the quantum yield (recombination and obstruction) or the chemical potential (friction and non-equilibrated mechanisms). Considering the whole chain, diffusive carriers are potentially weaker links, due to kinetic limitation and short-circuiting reactions. It is suggested that the evolutionary trend has been to limit their number by lumping them into tightly bound protein complexes or, in a more flexible way, into labile supercomplexes.Abbreviations Cyt cytochrome - F Faraday - H primary acceptor in the bacterial reaction center (bacteriopheophytin) - k B Boltzmann's constant - P primary photochemical donor (special bacteriochlorophyll pair) - RC reaction center - QA, QB primary, secondary quinone acceptor  相似文献   

19.
《Process Biochemistry》2014,49(2):265-270
Casein glycomacropeptide (cGMP) and lactose, which are purified (or semi-purified) components obtained from side streams from dairy industry operations, were used as substrates for enzyme catalyzed production of 3′-sialyllactose, a model case compound for human milk oligosaccharides (HMOs). The enzyme employed was a mutated sialidase, Tr6, derived from Trypanosoma rangeli, and expressed in Pichia pastoris after codon-optimization. The Tr6 contained 6 point mutations and exhibited trans-sialidase activity. The Tr6 trans-sialidase reaction conditions were tuned for maximizing Tr6 catalyzed 3′-sialyllactose production by optimizing pH, temperature, acceptor, and donor concentrations using response surface designs. At the optimum reaction conditions, the Tr6 catalyzed the transfer of sialic acid from cGMP to lactose at high efficiency without substantial hydrolysis of the 3′-sialyllactose product. The robustness of the Tr6 catalyzed reaction was verified at 5 L-scale providing a yield of 3.6 g 3′-sialyllactose at an estimated molar trans-sialylation yield of 50% on the 3′-sialyl in cGMP. Lacto-N-tetraose and lacto-N-fucopentaoses also functioned as acceptor molecules demonstrating the versatility of the Tr6 trans-sialidase for catalyzing sialyl-transfer for generating different HMOs. The data signify the applicability of enzymatic trans-sialylation on dairy side-stream components for production of human milk oligosaccharides.  相似文献   

20.
A fluorescent phospholipid derivative, the fluoresceinthiocarbamyl adduct of a natural phosphatidylethanolamine, has been synthesized and incorporated into sonicated single-bilayer vesicles of egg lecithin and dipalmitoyllecithin. The surface location of this probe has been confirmed by using extrinsic fluorescence quenching studies together with steady-state emission anisotropy measurements. Electronic excitation energy transfer between 1,6-diphenyl-1,3,5-hexatriene incorporated within the hydrophobic core of the bilayer and the novel derivative has been investigated to estimate the depth within the bilayer at which the former is located. Efficiencies have been measured for two different phospholipids, egg lecithin and dipalmitoyllecithin, in the latter case both above and below the phospholipid phase transition, with and without added cholesterol. The observed dependence of the transfer efficiency on the acceptor concentration was compared with that calculated according to F?rster theory applied to random two-dimensional distributions of donor and acceptor molecules in parallel planes for various interplanar separations, taking into account orientational effects. The F?rster R0 of about 45 A for this donor-acceptor pair is particularly well suited to such studies since it is of the order of the width of the bilayer. The experiments showed that energy-transfer spectroscopy can provide useful quantitative information as to the transverse location of diphenylhexatriene in homogeneous phospholipid bilayers and may also reflect lateral partitioning of donor or of both donor and acceptor into different phases in systems exhibiting phase separations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号