首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For species with metapopulation structures, variation in abundance among patches can arise from variation in the input rate of colonists. For reef fishes, variability in larval supply frequently is invoked as a major determinant of spatial patterns. We examined the extent to which spatial variation in the amount of suitable habitat predicted variation in the abundance of the damselfish Dascyllus aruanus, an abundant planktivore that occupies live, branched coral throughout the Indo-Pacific. Reef surveys established that size, branching structure and location (proximity to sand) of the coral colonies together determined the ”suitability” of microhabitats for different ontogenetic stages of D. aruanus. Once these criteria were known, patterns of habitat use were quantified within lagoons of five Pacific islands. Availability of suitable habitat generally was an excellent predictor of density, and patterns were qualitatively consistent at several spatial scales, including among different lagoons on the same island, among different islands and between the central (French Polynesia and Rarotonga) and western (Great Barrier Reef, Australia) South Pacific. A field experiment that varied the amount of suitable coral among local plots indicated that habitat for settlers accounted for almost all of the spatial variation in the number of D. aruanus that settled at that location, suggesting that spatial patterns of abundance can be established at settlement without spatial variation in larval supply. Surveys of four other species of reef-associated fish revealed that a substantial fraction of their spatial variation in density also was explained by availability of suitable reef habitat, suggesting that habitat may be a prevalent determinant of spatial patterns. The results underscore the critical need to identify accurately the resource requirements of different species and life stages when evaluating causes of spatial variation in abundance of reef fishes. Received: 18 May 1999 / Accepted: 9 January 1999  相似文献   

2.
3.
Synopsis Development of the fish community on a submerged 16 m barge and variation in fish abundance on nearby transects were surveyed twice monthly for twenty months. A steady increase in abundance was observed for certain fishes on the barge, whereas a few species exhibited distinct seasonal variation on both the barge and transects. Most of the seasonal species settled between March and May.Some seasonal species appeared to be site selective in their settlement and consequently settled juveniles were clumped in their distribution. An abundance of preferred topographical features may be why settlement was relatively high at the study site and indirectly why predators became significantly (r3 = 7.67***, N = 37) more abundant at the study area during the months of maximum prey settlement. Concurrent settlement of several species during the same few months may be important because juveniles become an abundant food source to predators during those few months only. Periodic swamping of predators by abundant juvenile prey may improve the chances for individuals of rarer prey species to be overlooked and therefore be succesfully recruited.  相似文献   

4.
Densities of a deposit-feeding gastropod, Ilyanassa obsoleta(Say) and a suspension-feeding bivalve, Mercenaria mercenaria (L.), were manipulated to test the importance of interactions between adults and settling larvae in affecting abundance patterns of infaunal invertebrates. Abundance of postlarvae and juveniles was significantly lower in the presence of Ilyanassa obsoleta than in snail-free controls. I. obsoleta caused a reduction in abundance of as much as 45%. Surface-dwelling tubiculous polychaetes, gastropods, harpacticoid copepods, and mobile subsurface-dwelling infauna all declined in abundance with increasing I. obsoleta density. Mercenaria mercenaria had little or no effect upon larval settlement. The effect of Ilyanassa obsoleta and Mercenaria mercenaria combined was equivalent to the sum of the effects of each species separately. Disturbance and ingestion of newly settled larvae by Ilyanassa obsoleta, larval settlement selectivity, and disturbance-induced emigration are probable mechanisms causing differences in abundance between I. obsoleta treatments.  相似文献   

5.
The behavior of marine larvae during and after settlement can help shape the distribution and abundance of benthic juveniles and therefore the intensity of ecological interactions on reefs. Several laboratory choice-chamber experiments were conducted to explore sensory capabilities and behavioral responses to ecological stimuli to better understand habitat selection by “pre-metamorphic” (larval) and “post-metamorphic” (juvenile) stages of a coral reef fish (Thalassoma hardwicke). T. hardwicke larvae were attracted to benthic macroalgae (Turbinaria ornata and Sargassum mangarevasae), while slightly older post-metamorphosed juveniles chose to occupy live coral colonies (Pocillopora damicornis). Habitat choices of larvae were primarily based upon visual cues and were not influenced by the presence of older conspecifics. In contrast, juveniles selected live coral colonies and preferred those occupied by older conspecifics; choices made by juveniles were based upon both visual and olfactory cues from conspecifics. Overall, the laboratory experiments suggest that early life-history stages of T. hardwicke use a range of sensory modalities that vary through ontogeny, to effectively detect and possibly discriminate among different microhabitats for settlement and later occupation. Habitat selection, based upon cues provided by environmental features and/or by conspecifics, might have important consequences for subsequent competitive interactions.  相似文献   

6.
Removing predatory fishes has effects that cascade through ecosystems via interactions between species and functional groups. In Kenyan reef lagoons, fishing-induced trophic cascades produce sea urchin-dominated grazing communities that greatly reduce the overall cover of crustose coralline algae (CCA). Certain species of CCA enhance coral recruitment by chemically inducing coral settlement. If sea urchin grazing reduces cover of settlement-inducing CCA, coral recruitment and hence juvenile coral abundance may also decline on fished reefs. To determine whether fishing-induced changes in CCA influence coral recruitment and abundance, we compared (1) CCA taxonomic compositions and (2) taxon-specific associations between CCA and juvenile corals under three fisheries management systems: closed, gear-restricted, and open-access. On fished reefs (gear-restricted and open-access), abundances of two species of settlement-inducing CCA, Hydrolithon reinboldii and H. onkodes, were half those on closed reefs. On both closed and fished reefs, juveniles of four common coral families (Poritidae, Pocilloporidae, Agariciidae, and Faviidae) were more abundant on Hydrolithon than on any other settlement substrate. Coral densities were positively correlated with Hydrolithon spp. cover and were significantly lower on fished than on closed reefs, suggesting that fishing indirectly reduces coral recruitment or juvenile success over large spatial scales via reduction in settlement-inducing CCA. Therefore, managing reefs for higher cover of settlement-inducing CCA may enhance coral recruitment or juvenile survival and help to maintain the ecological and structural stability of reefs.  相似文献   

7.
Scleractinian coral recruitment patterns were studied at depths of 9, 18, 27 and 37 m on the east and west walls of Salt River submarine canyon, St. Croix, U.S. Virgin Islands, by censusing coral juveniles which settled on experimental settling plates placed on the reef for 3–26 months as well as coral juveniles within quadrats on the reef. The most common species in the juvenile population within quadrats were Agaricia agaricites, Porites astreoides, Madracis decactis, Stephanocoenia michelinii, and A. lamarcki. The only species settling on settling plates were Agaricia spp., Madracis decactis, Porites spp., Stephanocoenia michelinii and Favia fragum. A total of 271 corals settled on 342 plates, with 51% of the juveniles on the east wall and 49% on the west wall. Of these 34% settled on horizontal surfaces and 66% on vertical surfaces. Based on results from quadrats, Agaricia agaricites and Porites astreoides had high recruitment rates relative to their abundance on the reef. In contrast, Agaricia lamarcki, Montastraea annularis, M. cavernosa and Siderastrea siderea had high amounts of cover compared to their abundance as juveniles within quadrats. The mean number of juveniles per m2 within quadrats ranged from 3 to 42. In general, there was a decrease in the mean number of juveniles and the number of species with depth. Total number of juveniles on settling plates was highest at 18 m on both walls. The largest number within quadrats was at 18 m on the east wall, followed by 9 m and 18 m on the west wall. High rates of coral recruitment tended to be associated with low algal biomass and relatively high grazing pressure by urchins and fishes.  相似文献   

8.
The settlement and recruitment patterns of Chromis viridis were followed during three consecutive seasons along the reefs of Eilat, Red Sea. The findings, based on intensive field surveys and a translocation experiment, indicated a strong and repeatable preference for some, but not other, colonies of the branching coral Acropora eurystoma; with significantly more larvae settling onto preferred colonies that house conspecific adults and juveniles. Furthermore, these findings showed that, given high recruitment rates, settlement‐site selection could drive migration by adults and older juveniles. As only some C. viridis schools received direct settlement, it was suggested that settlement‐driven migration is responsible for the replenishment of those schools that do not receive settlement and to the colonization of previously unoccupied coral colonies.  相似文献   

9.
Abstract The potential of colonization to contribute to the spatial patterns of six common invertebrates in coralline algal turf was investigated on a rocky shore near Sydney, Australia. The species, which included two amphipods (Elasmopus warra, Hyale spp.), a small bivalve (Lasaea australis), a fly larva (Limonia marina), and two microgastropods (Amphithalamus incidata and Eatoniella atropurpurea), had a range of dispersal modes (larval dispersal, crawling, swimming, rafting, and passive transport). Field sampling between May 1997 and November 1999 demonstrated that the amphipods were more abundant in low‐shore areas, the fly larvae and bivalves were more abundant in mid‐shore areas, and the abundances of gastropods did not vary with tidal height. Furthermore, abundances of all species varied among patches separated by tens of metres at one time or another. To test whether rates of colonization could contribute to established patterns of abundance, habitat mimics were deployed for 2‐week periods. The supply of new individuals matched long‐term patterns of abundance at different tidal heights for E. warra and L. marina. Colonization rates also differed among patches separated by tens of metres for three of the six species. Overall, there was little evidence to suggest that common species in coralline turf are limited by colonization on local scales, regardless of their major mode of dispersal. However, the potential for colonization to determine patterns of abundance varied from species to species.  相似文献   

10.
Young juveniles of many motile benthic species are concentrated in structurally complex habitats, but the proximate causes of this distribution are usually not clear. In the present study, I assessed three potentially important processes affecting distribution and abundance of early benthic stages in the shore crab (Carcinus maenas): (1) selection of habitat by megalopae (postlarvae); (2) habitat-specific predation; and (3) post-settlement movements by juveniles. These processes were assessed concurrently over 3-9 days at two spatial scales: at the scale of square meters using cage techniques within nursery areas, and at the scale of hectares using isolated populations of juvenile shore crabs in small nursery areas as mesocosms. The results were compared to habitat-specific distribution in the field.Shore crab megalopae and first instar juveniles (settlers) were distributed non-randomly among micro-habitats in the assessed nursery areas, with great densities in both mussel beds, eelgrass and filamentous algal patches (on average 114-232 settlers m−2), and significantly smaller densities on open sand habitats at all times (on average 4 settlers m−2). The same habitat-specific settlement pattern was found in cages where predators were excluded, suggesting that active habitat selection at settlement was responsible for the initial distribution. Older juveniles (second to ninth instar crabs) were also sparse on sand, but in contrast to settlers, were concentrated in mussel beds, which showed significantly greater densities than eelgrass and algal habitats. The cage experiment demonstrated a dynamic distribution of juvenile crabs. Young juveniles constantly migrated over open sand habitats (20 m or further) and colonized the experimental plots in a habitat-specific pattern that reflected the distribution in the field. This pattern was also found for very small crabs colonizing predator-exclusion cages, suggesting that selection of habitat by migrating juveniles caused the ontogenetic change in habitat use. Although post-settlement movements were great within nursery areas, juvenile dispersal at a regional scale appeared to be small, and the recruitment of juvenile shore crabs to the shallow bays occurred mainly through pelagic megalopae.Conservative estimates at the scale of whole nursery areas, based on migration trap data and field samples, indicated great mortality of settlers and early benthic stages of shore crabs. Results from the cage experiment suggest that predation by crabs and shrimp were responsible for the high settlement mortality. Both enclosed cannibalistic juvenile crabs and local predators on uncaged habitat plots caused significant losses of settlers in all habitats (on average 22% and 64% 3 day−1, respectively). The effect of predators was highly variable between trials, but differed little between habitat types, and predation had no detectable proximate effect on juvenile distribution, despite the great losses. Small settlement densities on sand habitats in combination with a refuge at low prey numbers, and an aggregation of cannibalistic juvenile crabs in nursery habitats appear to decrease the effect of habitat-specific predation rates on the distribution of juvenile shore crabs. This study demonstrates that active habitat selection at settlement followed by a dynamic redistribution of young juveniles can be the proximate processes responsible for habitat-specific distribution of epibenthic juveniles, and indicate that predation represents a major evolutionary process reinforcing this behavior.  相似文献   

11.
Identifying the factors influencing the settlement of European eel (Anguilla anguilla) juveniles in continental habitats is crucial to designing effective management and conservation measures for this endangered species. A long-term data series (1993–2008) of European eel and European catfish (Silurus glanis) abundance in a freshwater canal of the Camargue water system (southern France), along with parallel data on water salinity and glass eel abundance in the adjacent Vaccarès lagoon, was analysed to identify the possible causes of decline in eel abundance observed in the canal during the last two decades. A model including glass eel recruitment and catfish abundance as covariates explained 78% of the observed variation in eel settlement success. Results suggest that (1) salinity does not play a significant role in determining the fraction of eels moving from the brackish lagoon to the canal; (2) density dependence affects settlement success, possibly through a reduction of juvenile survival in the adjacent lagoon; and (3) catfish abundance is negatively correlated with eel settlement. We discuss this latter point in terms of possible predation of catfish upon eels and/or inter-specific competition between the two species.  相似文献   

12.
The evolution of body size, the paired phenomena of giantism and dwarfism, has long been studied by biologists and paleontologists. However, detailed investigations devoted to the study of the evolution of ontogenetic patterns shaping giant species are scarce. The damselfishes of the genus Dascyllus appear as an excellent model for such a study. Their well understood phylogeny reveals that large‐bodied species have evolved in two different clades. Geometric morphometric methods were used to compare the ontogenetic trajectories of the neurocranium and the mandible in both small‐bodied (Dascyllus aruanus and Dascyllus carneus; maximum size: 50–65 mm standard length) and giant (Dascyllus trimaculatus and Dascyllus flavicaudus; maximum size: 90–110 mm standard length) Dascyllus species. At their respective maximum body size, the neurocranium of the giant species is significantly shorter and have a higher supraoccipital crest relative to the small‐bodied species, whereas mandible shape variation is more limited and is not related to the ‘giant’ trait. The hypothesis of ontogenetic scaling whereby the giant species evolved by extending the allometric trajectory of the small‐bodied ones (i.e. hypermorphosis) is rejected. Instead, the allometric trajectories vary among species by lateral transpositions. The rate of shape changes and the type of lateral transposition also differ according to the skeletal unit among Dascyllus species. Differences seen between the two giant species in the present study demonstrate that giant species may appear by varied alterations of the ancestor allometric pattern. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 99–117.  相似文献   

13.
Diaphus theta is one of the most common myctophid fish species in the subarctic and transitional waters of the North Pacific. The growth of larval and juvenile D. theta was investigated using sagittal otolith increment analysis of specimens caught in transitional waters of the western North Pacific. Samples taken over a 24-h period demonstrated that otoliths exhibited daily growth cycles, allowing accurate determination of age. Calcification of the incremental zone of otoliths took place only at night, suggesting that the formation cycle of the increment of juvenile D. theta was different from that of shallow-water fishes and would be related to their diel vertical migration. The relationships between standard length (SL) and daily growth increment (D) were expressed as linear equations: SL = 2.65 + 0.141D (r 2 = 0.942) for larvae of 5.1–9.6 mm SL and SL = 3.54 + 0.129D (r 2 = 0.933) for juveniles of 13.7–27.6 mm SL. The growth rates were 0.14 mm d−1 in larvae and 0.13 mm d−1 in juveniles; this is slow compared with tropical or subtropical mycto-phid species, in which growth occurs at about twice these rates. The larval period, including the metamorphic stage, was long compared with species at lower latitudes and was estimated to be 71 days. The slow growth rate and long period of larval stage of D. theta would be the life history pattern of high-latitudinal species adapted to a low-temperature habitat. Received: March 23, 2001 / Revised: July 5, 2001 / Accepted: July 19, 2001  相似文献   

14.
The influence of fucalean canopy species and dominant understory macroalgae on algal colonization was investigated to evaluate whether layering contributes to patterns in algal diversity. Patterns in recruitment were compared among total-clearing, understory-removal, canopy-removal, and undisturbed plots (plot area = 0.25 m2), using a randomized block design in depths <10 m and 10–20 m at Woody Island, Western Australia. To evaluate if propagules were available in the water column above the canopy layer, settlement plates (plate area = 0.04 m2) were deployed in depths <10 m, 10–20 m, and >20 m. A total of 198 macroalgal species was recorded. Biomass of the understory species Osmundaria prolifera Lamouroux and Botryocladia sonderi Silva was similar between canopy-removal and undisturbed plots. Diversity of macroalgae was similar in the presence and absence of a canopy layer. Taxa found in the canopy showed different patterns in recruitment. Cystoseiraceae recruited predominantly in total-clearings in both depth strata. Sargassaceae recruited most abundantly in depths <10 m. Density of canopy taxa on settlement plates was similar with depth (20–30 juveniles per plate), and juveniles were mainly Cystoseiraceae. In contrast to kelp beds or forests, patterns in algal colonization appeared to be maintained by environmental factors or processes other than the direct effects of layering in the subtidal fucoid-dominated assemblages at Woody Island. Handling editor: K. Martens  相似文献   

15.
Field experiments were conducted to demonstrate species recognition in Dascyllus aruanus. Aggression was used as a criterion for recognition. Free-living fish were presented with live stimuli in a choice situation where visual cues could be isolated from other cues. The stimuli were conspecific and heterospecific fish. Practically all the responses were aggressive. Aggression towards D. aruanus and Dascyllus marginatus was similar in its intensity, and higher than towards Dascyllus trimaculatus. Aggression towards Amphiprion bicinctus was negligible. Elimination of all but visual cues resulted in a decline in attack rate without changing attack preference. The high level of interspecific aggression limits the use of aggression as an indicator of species recognition under the presented experimental situation.  相似文献   

16.
The cleaner fish Labroides dimidiatus affects the abundance of many fishes, including their juveniles, yet how they affect the post-settlement processes of conspecifics remains poorly known. Using a long-term experiment, where L. dimidiatus were regularly removed from seven patch reefs (removals) for 10 years or left undisturbed (controls) on nine, the effect of conspecifics’ presence on recently settled L. dimidiatus juveniles and the relationship between juvenile and adult abundance on control reefs were examined. Repeated sampling 4–40 months after manipulating L. dimidiatus revealed that the abundance of juveniles on removals, compared with controls reefs, was 72 % (95 % CI = 65–79 %) lower; this effect did not vary over time. Thus, decreased colonization was associated with resident conspecific absence and this effect was present after 4 months. Since other studies found 4 months of cleaner absence was too short to affect client abundance—a factor also known to enhance L. dimidiatus colonization—it was likely not involved here. Over 10 years, individual control reefs were almost always occupied by at least one adult (89–100 % of times sampled); but in summer, when L. dimidiatus colonization was highest, juvenile abundance was negatively related with adult abundance at one of two sites, with the expected number of juveniles decreasing by 67 % (95 % CI = 51–83 %) with each additional adult. This suggests a deleterious effect of adults on juveniles at one site, such as competition. Enhanced colonization of juveniles associated with adult presence may partly explain the relative permanence of fish cleaning stations.  相似文献   

17.
Summary Spatial variation in the recruitment of sessile marine invertebrates with planktonic larvae may be derived from a number of sources: events within the plankton, choices made by larvae at the time of settlement, and mortality of juvenile organisms after settlement, but before a census by an observer. These sources usually are not distinguished.A study of the recruitment of four species of sessile invertebrates living on rock walls beneath a kelp canopy showed that both selection of microhabitats by settling larvae and predation by fish may be important. Two microhabitats were of interest; open, flat rock surfaces, and small pits and crevices that act as refuges from fish predators.The polychaete Spirorbis eximus and the cyclostome bryozoan Tubulipora spp. showed no preference for refuges, but settled apparently at random on the available substrata. Tubulipora was preyed upon heavily by fish, while Spirorbis was relatively unaffected. The bryozoans Celleporaria brunnea and Scrupocellaria bertholetti both recruited preferentially into refuges. Scrupocellaria were preyed upon, while Celleporaria juveniles seemed unaffected. Predation by fish modified the spatial distribution (Tubulipora), abundance (Tubulipora), or size distribution (Scrupocellaria) of the juvenile population, or had relatively little effect (Celleporaria, Spirorbis).All of the above events occur within three weeks of settlement. Since inferences about the effect of larval events on the population dynamics of adult organisms are often based on observations of the patterns of recruitment after one or two months, they are therefore likely to be misleading.  相似文献   

18.
The relationship between pelagic larval duration (PLD) and population connectivity in marine fishes has been controversial, but most studies to date have focused on tropical taxa. Here, we examine PLD in 11 species of triplefin fishes from a temperate environment in the Hauraki Gulf, New Zealand, to describe daily increment patterns and settlement marks in the otoliths. The formation of daily increments was validated using larvae of known age and tetracycline marking of settled juveniles. Settlement mark identity was verified by comparing total increment counts from otoliths of recently settled fishes with PLD counts from post-settlement fishes. A similar pattern of three groups of increments across the otolith was found in all specimens examined. The settlement mark was similar in all species and occurred as a sharp drop in increment width within the area of transition in optical density. PLD was lengthy, compared to species of triplefins from elsewhere, and ranged between 54.4 ± 1.7 SE days in Bellapiscis lesleyae to 86.4 ± 2.6 SE days in Forsterygion malcolmi. Variation in PLD within species was high but did not mask interspecific differences. PLD was not phylogenetically constrained, as sister species differed significantly in PLD. PLD was compared with genetic population connectivity for eight of the study species using mitochondrial gene flow data from Hickey, Lavery, Hannan, Baker, Clements. Mol Ecol 18:680–696 (2009). The observed lack of correlation between PLD and gene flow suggests that dispersal is limited by other factors, such as larval behaviour and the availability of settlement habitat.  相似文献   

19.
 For marine species with open populations, patterns of larval settlement can have important consequences for performance and abundance at later life-stages. In this study, I tested whether larvae of a reef-dwelling goby (Coryphopterus glaucofraenum) settled differentially to reefs occupied by varying numbers of adults. I monitored settlement daily to reefs on which the density of adult gobies varied naturally, or was manipulated experimentally. Rates of settlement were constant across a broad range of adult densities, suggesting that larvae do not choose settlement sites based on the number of adults in their immediate vicinity. Accepted: 30 October 1998  相似文献   

20.
Influence of habitat degradation on fish replenishment   总被引:1,自引:0,他引:1  
Temperature-induced coral bleaching is a major threat to the biodiversity of coral reef ecosystems. While reductions in species diversity and abundance of fish communities have been documented following coral bleaching, the mechanisms that underlie these changes are poorly understood. The present study examined the impacts of coral bleaching on the early life-history processes of coral reef fishes. Daily monitoring of fish settlement patterns found that ten times as many fish settled to healthy coral than sub-lethally bleached coral. Species diversity of settling fishes was least on bleached coral and greatest on dead coral, with healthy coral having intermediate levels of diversity. Laboratory experiments using light-trap caught juveniles showed that different damselfish species chose among healthy, bleached and dead coral habitats using different combinations of visual and olfactory cues. The live coral specialist, Pomacentrus moluccensis, preferred live coral and avoided bleached and dead coral, using mostly visual cues to inform their habitat choice. The habitat generalist, Pomacentrus amboinensis, also preferred live coral and avoided bleached and dead coral but selected these habitats using both visual and olfactory cues. Trials with another habitat generalist, Dischistodus sp., suggested that vision played a significant role. A 20 days field experiment that manipulated densities of P. moluccensis on healthy and bleached coral heads found an influence of fish density on juvenile weight and growth, but no significant influence of habitat quality. These results suggests that coral bleaching will affect settlement patterns and species distributions by influencing the visual and olfactory cues that reef fish larvae use to make settlement choices. Furthermore, increased fish density within the remaining healthy coral habitats could play an important role in influencing population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号