首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reductive dechlorination of Aroclor 1260 was investigated in anaerobic slurries of estuarine sediments from Baltimore Harbor (Baltimore, Md.). The sediment slurries were amended with 800 ppm Aroclor 1260 with and without the addition of 350 μM 2,3,4,5-tetrachlorobiphenyl (2,3,4,5-CB) or 2,3,5,6-tetrachlorobiphenyl (2,3,5,6-CB) and incubated in triplicate at 30°C under methanogenic conditions in an artificial estuarine medium. After 6 months, extensive meta dechlorination and moderate ortho dechlorination of Aroclor 1260 occurred in all incubated cultures except for sterilized controls. Overall, total chlorines per biphenyl decreased by up to 34%. meta chlorines per biphenyl decreased by 65, 55, and 45% and ortho chlorines declined by 18, 12, and 9%, respectively, when 2,3,4,5-CB, 2,3,5,6-CB, or no additional congener was supplied. This is the first confirmed report of microbial ortho dechlorination of a commercial polychlorinated biphenyl mixture. In addition, compared with incubated cultures supplied with Aroclor 1260 alone, the dechlorination of Aroclor 1260 plus 2,3,4,5-CB or 2,3,5,6-CB occurred with shorter lag times (31 to 60 days versus 90 days) and was more extensive, indicating that the addition of a single congener stimulated the dechlorination of Aroclor 1260.  相似文献   

2.
The anaerobic biodegradation of picloram (3,5,6-trichloro-4-amino-2-pyridinecarboxylic acid) in freshwater sediment was favored under methanogenic conditions but not when sulfate or nitrate was available as a terminal electron acceptor. Under the former conditions, more than 85% of the parent substrate (340 μM) was removed from nonsterile incubations in 30 days, following a 50-day acclimation period. Concomitant with substrate decay, an intermediate transiently accumulated in the sediment slurries. By liquid chromatography-mass spectrometry, the intermediate was identified as an isomer of dichloro-4-amino-2-pyridinecarboxylic acid. Proton nuclear magnetic resonance evidence suggested that a chlorine was reductively removed from the parent substrate at the position meta to the nitrogen heteroatom. Upon continued incubation, the dechlorinated product was transformed into an unidentified compound which accumulated and resisted further decay. The addition of sulfate or bromoethanesulfonic acid to sediment slurries inhibited picloram dehalogenation, but molybdate reversed the inhibitory effect of sulfate on pesticide metabolism. These findings help clarify the fate of a halogenated nitrogen heterocyclic herbicide in anaerobic environments.  相似文献   

3.
The metabolic fate of 2-hydroxybiphenyl under different anaerobic conditions was tested with sediment slurries and enrichment cultures obtained from a shallow anoxic aquifer. 2-Hydroxybiphenyl was depleted in aquifer slurries over the course of incubation, but substrate loss in methanogenic slurries was not significantly different from either filter-sterilized or autoclaved controls. In contrast, the rate of substrate removal was significantly higher in non-sterile, sulfate-reducing aquifer slurries relative to abiotic control incubations. A 2-hydroxybiphenyl-degrading enrichment was established that was inhibited by molybdate but not by bromoethane-sulfonic acid. For every mole of substrate consumed by the bacterial consortium, 6.1±0.2 moles of sulfate were depleted from the enrichment medium. This represents about 87% of the theoretical amount of sulfate consumed and suggests that the 2-hydroxybiphenyl was largely mineralized. Oxygen, nitrate, or carbon dioxide could not replace sulfate as a terminal electron acceptor for the enrichment. Other hydroxybiphenyl isomers were not metabolized by these cultures. This study shows that aromatic substrates with multiple ring systems can undergo biotransformation by anaerobic microorganisms under some ecological conditions.  相似文献   

4.
Desulfitobacterium frappieri PCP-1 was induced for ortho- and para-dechlorinating activities by different chlorophenols. Dehalogenation rates ranging from 25 to 1,158 nmol/min/mg of cell protein were observed according to the chlorophenol tested and the position of the chlorine removed. D. frappieri shows a broad substrate specificity; in addition to tetrachloroethylene and pentachloropyridine, strain PCP-1 can dehalogenate at ortho, meta, and para positions a large variety of aromatic molecules with substituted hydroxyl or amino groups. Reactions of O demethylation and reduction of nitro to amino substituents on aromatic molecules were also observed.  相似文献   

5.
Alcaligenes xylosoxidans subspecies denitrificans JH1 was enriched with 2-chlorophenol from a mixed culture degrading different chloro- and methylphenols. The strain used all monochloro- and monomethylphenols apart from 2-methylphenol as sole source of energy and carbon with stoichiometric release of chloride. 4-Chlorophenol was mineralized up to a concentration of 1.3 mM. Degradation of mixtures of monochloro- and monomethylphenols occurred at least partially except for the mixture of 2-chlorophenol and 3-methylphenol. Depending upon the growth substrates used, enzymes of the ortho and/or meta cleavage pathway catalysed the degradation of the phenols. The transformation of chlorophenols was concluded to occur exclusively via the ortho cleavage pathway because no chlorocatechol 2,3-dioxygenase activity was found in chlorophenol-grown cells. Degradation of 4-methylphenol in strain JH1 occurred both by the ortho and meta cleavage pathway as indicated by the finding that the ortho- and meta-cleaving dioxygenases were expressed in 4-methylphenol-grown cells. Transformation of methylphenols by the ortho cleavage pathway led to the accumulation of methyllactones as dead-end products. Mixtures of methyl- and chlorophenols were metabolized mainly by the ortho cleavage pathway because chlorocatechols formed inactivated the constitutive catechol 2,3-dioxygenase which caused channelling of methylphenols into the ortho cleavage pathway.  相似文献   

6.
Krumholz LR  Suflita JM 《Anaerobe》1997,3(6):399-403
We evaluated the susceptibility of 2,4-dinitrophenol (2,4-DNP) and 2,4-diaminophenol to anaerobic biodegradation in aquifer slurries. Aquifer microorganisms depleted 2,4-DNP at rates of 25, 9 and 0.4 microM/day under methanogenic, sulfate-reducing and nitrate-reducing conditions, respectively. Rates of abiotic, 2,4-DNP loss in autoclaved control incubations were 7.2, 6.2 and 0.95 microM/day respectively. Abiotic, 2,4-DNP reduction was especially important as the first step in its transformation. 2-Amino-4-nitrophenol was produced by this process, but this compound was further metabolized in methanogenic and sulfate-reducing aquifer slurries. This partially reduced compound persisted in autoclaved controls and in the nitrate-reducing aquifer slurries. Aquifer slurries incubated with either 2,4-DNP or 2,4-diaminophenol produced methane when incubated with no other electron acceptor suggesting that mineralization had occurred under these conditions. In parallel experiments, aquifer slurries amended with 2,6-dinitrophenol or picric acid did not produce methane at levels above the substrate unamended controls.  相似文献   

7.
Nonadapted freshwater sediment slurries and sediment slurries adapted to dechlorinate 2,3-dichloropyridine (2,3-Cl2Pyd), 2,3-dichloroaniline (2,3-Cl2Anl), 2,3-dichlorophenol (2,3-Cl2PhOH), 3,5-dichloropyridine (3,5-Cl2Pyd), 3,5-dichloroaniline (3,5-Cl2Anl) and 3,5-dichlorophenol (3,5-Cl2PhOH) were studied to determine the rate, range and extent of biotransformation of structurally related compounds under anaerobic conditions. 2,3-dichloroanisole (2,3-Cl2Ans) and 3,5-dichloroanisole (3,5-Cl2Ans) were initially demethylated, producing 2,3-Cl2PhOH and 3,5-Cl2PhOH as intermediate transformation products. All other dichloroaromatic compounds examined were initially dechlorinated. The rates of dechlorination of 2,3-Cl2PhOH, 2,3-Cl2Anl, and 2,3-Cl2Pyd were significantly lower (5–15 times) in nonadapted sediment slurries compared to sediment slurries adapted to 2,3-Cl2Anl or 2,3-Cl2Pyd. In 2,3-Cl2PhOH adapted sediment, the rate of dechlorination of 2,3-Cl2PhOH was 15 times greater than in nonadapted sediment; however, the rates of dechlorination of 2,3-Cl2Anl and 2,3-Cl2Pyd were similar for 2,3-Cl2PhOH-adapted and nonadapted sediment slurries. In adapted and nonadapted sediment slurries, 2,3-Cl2PhOH, 2,3-Cl2Anl, and 2,3-Cl2Pyd were preferentially dechlorinated at the ortho, meta, and meta positions, respectively. Additionally, 2,3-Cl2Pyd adapted sediment slurries dechlorinated 2,3-Cl2PhOH and 2,3-Cl2Pyd at both ortho and meta positions.Rates of dechlorination of 3,5-Cl2PhOH, 3,5-Cl2Anl, and 3,5-Cl2Pyd were lower (2–4 times) in nonadapted sediment slurries compared to sediment slurries adapted to 3,5-Cl2Anl or 3,5-Cl2Pyd. In 3,5-Cl2PhOH adapted sediment, the rate of dechlorination of 3,5-Cl2PhOH was approximately 10 times greater than in nonadapted sediment. In contrast, rates of dechlorination of 3,5-Cl2Anl and 3,5-Cl2Pyd were similar in 3,5-Cl2PhOH-adapted and nonadapted sediment slurries. A single meta chlorine was removed for all 3,5-dichloroaromatic compounds tested except 3,5-Cl2Ans, which was initially demethylated. These results illustrate differences in the specificity and cross-reactivity of microbial populations adapted to structurally related dichloroaromatic compounds.  相似文献   

8.
Electronic properties were correlated with observed reductive dechlorination pathways by unacclimated consortia for chlorinated phenols, dihydroxybenzenes, benzoic acids, and anilines. Molecular structures and properties were calculated using the semi-empirical Modified Neglect of Differential Overlap method at the Cornell Supercomputing Facility. Observed preferential positions for reductive dechlorination by unacclimated consortia correlate well with the largest negative value for the carbon-chlorine bond charge. Of 16 dechlorination pathways observed for unacclimated bacteria, the most negative carbon-chlorine bond charge correlated with 15 pathways.This correlation between the observed dechlorination position and the parent compound's electronic properties is consistent with the observed reductive dechlorination of chlorophenols and chlorinated dihydroxybenzenes at the ortho position, and the meta dechlorination of chlorobenzoic acids. Net carbonchlorine bond charges also correlate with the preferred dechlorination position for two of three known chloroaniline pathways, suggesting preferential removal of chlorines from the ortho position of chloroanilines.Abbreviations CA chloroaniline - CBz chlorobenzoic acid - CC chlorocatechol - CP chlorophenol - DCA dichloroaniline - DCBz dichlorobenzoic acid - DCC dichlorocatechol - DCH dichlorohydroquinone - DCP dichlorophenol - DCR dichlororesorcinol - PCP pentachlorophenol - TCA trichloroaniline - TCBz trichlorobenzoic acid - TCC trichlorocatechol - TCH trichlorohydroquinone - TCP trichlorophenol - TCR trichlororesorcinol - TeCA tetrachloroaniline - TeCBz tetrachlorobenzoic acid - TeCC tetrachlorocatechol - TeCH tetrachlorohydroquinone - TeCP tetrachlorophenol - TeCR tetrachlororesorcinol  相似文献   

9.
The herbicide 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) was dehalogenated in samples from a methanogenic aquifer to form 2,4- and 2,5-dichlorophenoxyacetic acids as the first detected intermediates. Further incubation of the aquifer slurries resulted in the formation of several intermediates including monochlorophenoxyacetic acids, di- and monochlorophenols, as well as phenol. No transformation of the parent substrate or production of intermediates was detected in autoclaved controls. The pattern of intermediate formation suggested that the anaerobic degradation of 2,4,5-T proceeded by a series of sequential dehalogenation steps with side-chain cleavage reactions occurring at some point before ring cleavage. The addition of short-chain organic acids or alcohols stimulated the onset and rate of 2,4,5-T dehalogenation and decreased the amount of parent substrate still detectable as halogenated intermediates at the end of the experiment. Sulfate addition had the opposite effect on dehalogenation regardless of whether supplemental carbon was added to the aquifer slurries. The inhibitory effect of sulfate on dehalogenation could sometimes be relieved with molybdate, although this effect seemed to be related to the supplemental carbon compound that was used.  相似文献   

10.
A Delftia tsuruhatensis strain capable of consuming aniline as the sole source of carbon, nitrogen, and energy at concentrations of up to 3200 mg/l was isolated from activated sludge of the sewage disposal plants of OAO Volzhskii Orgsintez. The strain grew on catechol and p-hydroxybenzoic acid but did not consume phenol, 2-aminophenol, 3-chloroaniline, 4-chloroaniline, 2,3-dichloroaniline, 2,4-dichloroaniline, 3,4-dichloroaniline, 2-nitroaniline, 2-chlorophenol, or aminobenzoate. Aniline is degraded by cleavage of the catechol aromatic ring at the ortho position. Cells were immobilized on polycaproamide fiber. It was shown that the strain degraded aniline at 1000 mg/l in a continuous process over a long period of time.  相似文献   

11.
The specific dechlorination pathways for Aroclor 1260 were determined in Baltimore Harbor sediment microcosms developed with the 11 most predominant congeners from this commercial mixture and their resulting dechlorination intermediates. Most of the polychlorinated biphenyl (PCB) congeners were dechlorinated in the meta position, and the major products were tetrachlorobiphenyls with unflanked chlorines. Using PCR primers specific for the 16S rRNA genes of known PCB-dehalogenating bacteria, we detected three phylotypes within the microbial community that had the capability to dechlorinate PCB congeners present in Aroclor 1260 and identified their selective activities. Phylotype DEH10, which has a high level of sequence identity to Dehalococcoides spp., removed the double-flanked chlorine in 234-substituted congeners and exhibited a preference for para-flanked meta-chlorines when no double-flanked chlorines were available. Phylotype SF1 had similarity to the o-17/DF-1 group of PCB-dechlorinating bacteria. Phylotype SF1 dechlorinated all of the 2345-substituted congeners, mostly in the double-flanked meta position and 2356-, 236-, and 235-substituted congeners in the ortho-flanked meta position, with a few exceptions. A phylotype with 100% sequence identity to PCB-dechlorinating bacterium o-17 was responsible for an ortho and a double-flanked meta dechlorination reaction. Most of the dechlorination pathways supported the growth of all three phylotypes based on competitive PCR enumeration assays, which indicates that PCB-impacted environments have the potential to sustain populations of these PCB-dechlorinating microorganisms. The results demonstrate that the variation in dechlorination patterns of congener mixtures typically observed at different PCB impacted sites can potentially be mediated by the synergistic activities of relatively few dechlorinating species.  相似文献   

12.
A new series of 2,4-diphenyl-6-aryl pyridines containing hydroxyl group(s) at the ortho, meta, or para position of the phenyl ring were synthesized, and evaluated for topoisomerase I and II inhibitory activity and cytotoxicity against several human cancer cell lines for the development of novel anticancer agents. Structure–activity relationship study revealed that the substitution of hydroxyl group(s) increased topoisomerase I and II inhibitory activity in the order of meta > para > ortho position. Substitution of hydroxyl group on the para position showed better cytotoxicity.  相似文献   

13.
Syntheses and biological evaluation of novel SRT1720 derivatives are described in search for new candidates of SIRT1 activator. Several parts of the SRT1720 structure, including piperazine moiety, quinoxaline ring on the amide group, and position of the amide function, were modified, and the assay results indicated that transfer of the ortho amide-substituent regarding to the imidazo[1,2-b]thiazole core onto the meta position resulted in improvement of SIRT1 activation ability. Modeling analyses of SRT1720 and the most potent derivative bound to model complex of SIRT1 with peptide substrate were also performed.  相似文献   

14.
Tetra-cationic Zn(II) meso-tetrakis(N-alkylpyridinium-2 (or -3 or -4)-yl)porphyrins (ZnPs) with progressively increased lipophilicity were synthesized to investigate how the tri-dimensional shape and lipophilicity of the photosensitizer (PS) affect cellular uptake, subcellular distribution, and photodynamic efficacy. The effect of the tri-dimensional shape of the molecule was studied by shifting the N-alkyl substituent attached to the pyridyl nitrogen from ortho to meta and para positions. Progressive increase of lipophilicity from shorter hydrophilic (methyl) to longer amphiphilic (hexyl) alkyl chains increased the phototoxicity of the ZnP PSs. PS efficacy was also increased for all derivatives when the alkyl substituents were shifted from ortho to meta, and from meta to para positions. Both cellular uptake and subcellular distribution of the PSs were affected by the lipophilicity and the position of the alkyl chains on the periphery of the porphyrin ring. Whereas the hydrophilic ZnPs demonstrated mostly lysosomal distribution, the amphiphilic hexyl derivatives were associated with mitochondria, endoplasmic reticulum, and plasma membrane. A comparison of hexyl isomers revealed that cellular uptake and partition into membranes followed the order para > meta > ortho. Varying the position and length of the alkyl substituents affects (i) the exposure of cationic charges for electrostatic interactions with anionic biomolecules and (ii) the lipophilicity of the molecule. The charge, lipophilicity, and the tri-dimensional shape of the PS are the major factors that determine cellular uptake, subcellular distribution, and as a consequence, the phototoxicity of the PSs.  相似文献   

15.
o-Cresol and 3-methylcatechol were identified as successive transitory intermediates of toluene catabolism by the trichloroethylene-degrading bacterium G4. The absence of a toluene dihydrodiol intermediate or toluene dioxygenase and toluene dihydrodiol dehydrogenase activities suggested that G4 catabolizes toluene by a unique pathway. Formation of a hybrid species of 18O- and 16O-labeled 3-methylcatechol from toluene in an atmosphere of 18O2 and 16O2 established that G4 catabolizes toluene by successive monooxygenations at the ortho and meta positions. Detection of trace amounts of 4-methylcatechol from toluene catabolism suggested that the initial hydroxylation of toluene was not exclusively at the ortho position. Further catabolism of 3-methylcatechol was found to proceed via catechol-2,3-dioxygenase and hydroxymuconic semialdehyde hydrolase activities.  相似文献   

16.
Estuarine sediment from Charleston Harbor, South Carolina, was used as inoculum for the development of an anaerobic enrichment culture that specifically dechlorinates doubly flanked chlorines (i.e., chlorines bound to carbon that are flanked on both sides by other chlorine-carbon bonds) of polychlorinated biphenyls (PCBs). Dechlorination was restricted to the para chlorine in cultures enriched with 10 mM fumarate, 50 ppm (173 μM) 2,3,4,5-tetrachlorobiphenyl, and no sediment. Initially the rate of dechlorination decreased upon the removal of sediment from the medium. However, the dechlorinating activity was sustainable, and following sequential transfer in a defined, sediment-free estuarine medium, the activity increased to levels near that observed with sediment. The culture was nonmethanogenic, and molybdate, ampicillin, chloramphenicol, neomycin, and streptomycin inhibited dechlorination activity; bromoethanesulfonate and vancomycin did not. Addition of 17 PCB congeners indicated that the culture specifically removes double flanked chlorines, preferably in the para position, and does not attack ortho chlorines. This is the first microbial consortium shown to para or meta dechlorinate a PCB congener in a defined sediment-free medium. It is the second PCB-dechlorinating enrichment culture to be sustained in the absence of sediment, but its dechlorinating capabilities are entirely different from those of the other sediment-free PCB-dechlorinating culture, an ortho-dechlorinating consortium, and do not match any previously published Aroclor-dechlorinating patterns.  相似文献   

17.
The aerobic metabolism of fluorobenzene by Rhizobiales sp. strain F11 was investigated. Liquid chromatography-mass spectrometry analysis showed that 4-fluorocatechol and catechol were formed as intermediates during fluorobenzene degradation by cell suspensions. Both these compounds, unlike 3-fluorocatechol, supported growth and oxygen uptake. Cells grown on fluorobenzene contained enzymes for the ortho pathway but not for meta ring cleavage of catechols. The results suggest that fluorobenzene is predominantly degraded via 4-fluorocatechol with subsequent ortho cleavage and also partially via catechol.  相似文献   

18.
Two series of benzenesulfonamides bearing methyl groups at ortho/ortho or meta/ortho positions and a pyrrolidinone moiety at para position were synthesized and tested as inhibitors of the twelve catalytically active human carbonic anhydrase (CA) isoforms. Observed binding affinities were determined by fluorescent thermal shift assay and intrinsic binding affinities representing the binding of benzenesulfonamide anion to the Zn(II)-bound water form of CA were calculated. Introduction of dimethyl groups into benzenesulfonamide ring decreased the binding affinity to almost all CA isoforms, but gained in selectivity towards one CA isoform. A chloro group at the meta position of 2,6-dimethylbenzenesulfonamide derivatives did not influence the binding to CA I, but it increased the affinity to all other CAs, especially, CA VII and CA XIII (up to 500 fold). The compounds may be used for further development of CA inhibitors with higher selectivity to particular CA isoforms.  相似文献   

19.
The p-nitrophenyl ester of p-amidinophenylmethanesulfonic acid had been found to inactivate thrombin by affinity labeling but did not have this action on other proteases of similar specificity such as trypsin, plasmin, or plasma kallikrein [Wong, S.-C., and Shaw, E., Arch. Biochem. Biophys. 161, 536 (1974)]. The ortho- and meta-nitrophenyl esters of this sulfonic acid have now been synthesized and shown to be less selective. In addition to thrombin, trypsin and plasma kallikrein are also inactivated. The ortho isomer is more effective than the meta. Plasmin is unaffected by all three esters. The results are interpreted to reflect geometrical differences in the first departing group subsite of these homologous active centers and to provide an additional structural basis for achieving selectivity of affinity labeling.  相似文献   

20.
Benzyl methyl sulfides substituted with methyl, chloro, cyano, bromo, methoxy, nitro and amino groups in the ortho or meta positions of the aromatic ring have been converted to (S) sulfoxides by biotransformation using the fungal biocatalyst Helminthosporium species NRRL 4671. The enantiomeric excesses for meta-substituted examples were high in those cases where the substituent was of a polar nature, and comparable to those observed for the corresponding para-substituted substrates. With one exception (o-amino), the ortho-substituted examples gave sulfoxides of lower enantiomeric purity. The role of a suitably located polar substituent on an aryl ring of the substrate in ensuring a high enantiomeric excess in sulfoxidation by Helminthosporium species has been confirmed by the biotransformations of 4-(methylthiomethyl)benzyl alcohol and 2-(4-nitrophenyl) ethyl methyl sulfide, which give sulfoxides of much higher optical purity than those obtained from the corresponding unsubstituted substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号