首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PRimedIn Situ labeling (PRINS) is a fast and sensitive alternative to fluorescencein situ hybridization (FISH) for identification of chromosome aberrations. In this article, we present the detailed protocols for detection of repeat sequences using oligonucleotides or fragments of cloned probes as primers for PRINS. We describe a multicolor PRINS procedure for simultaneous visualization of more probes in different colors on a metaphase preparation, and a PRINS-painting procedure, which combines PRINS and chromosome painting. Finally, a protocol for detection of single-copy genes is presented.  相似文献   

2.
CpG islands in vertebrate genomes   总被引:120,自引:0,他引:120  
  相似文献   

3.
4.
CpG islands in genes showing tissue-specific expression   总被引:2,自引:0,他引:2  
Patterns of DNA methylation at CpG dinucleotides and their relations with gene expression are complex. Methylation-free CpG clusters, so-called HTF islands, are most often associated with the promoter regions of housekeeping genes, whereas genes expressed in a single-cell type are usually deficient in these sequences. However, in the human carbonic anhydrase (CA) gene family, both the ubiquitously expressed CAII and the muscle specific CAIII appear to have such CpG islands although erythrocyte-specific CAI does not. The CAII island is quantitatively more CpG rich than that of CAIII, with a CpG:GpC ratio of 0.94 compared with 0.82 for CAIII. Estimation of CpG:GpC ratios in the proximal-promoter regions of 44 vertebrate genes suggest that 40% of genes with tissue-specific or limited tissue distribution may show methylation-free CpG clusters in their promoter regions. In many cases the CpG:GpC ratio is less than that found in housekeeping genes and this may reflect variation in the interaction of CpG clusters with regulatory factors that define different patterns of tissue expression.  相似文献   

5.
Two zebrafish AluI repeats were localized in metaphase chromosomes by means of the primed in situ (PRINS) labeling technique, using oligonucleotide primers based on published sequences. An AT-rich, tandemly repeated, long AluI restriction fragment (RFAL1) labeled the (peri)centromeric regions of all chromosomes. The GC-rich short fragment (RFAS) was found to be localized in the paracentromeric regions of 17 chromosome pairs, which were mostly subtelocentric. The RFAS labeling pattern generally fits the previously described chromomycin A3 (CMA3) staining pattern. The differential composition of heterochromatin in zebrafish chromosomes is discussed.  相似文献   

6.
We screened plant genome sequences, primarily from rice and Arabidopsis thaliana, for CpG islands, and identified DNA segments rich in CpG dinucleotides within these sequences. These CpG-rich clusters appeared in the analysed sequences as discrete peaks and occurred at the frequencies of one per 4.7 kb in rice and one per 4.0 kb in A. thaliana. In rice and A. thaliana, most of the CpG-rich clusters were associated with genes, which suggests that these clusters are useful landmarks in genome sequences for identifying genes in plants with small genomes. In contrast, in plants with larger genomes, only a few of the clusters were associated with genes. These plant CpG-rich clusters satisfied the criteria used for identifying human CpG islands, which suggests that these CpG clusters may be regarded as plant CpG islands. The position of each island relative to the 5'-end of its associated gene varied considerably. Genes in the analysed sequences were grouped into five classes according to the position of the CpG islands within their associated genes. A large proportion of the genes belonged to one of two classes, in which a CpG island occurred near the 5'-end of the gene or covered the whole gene region. The position of a plant CpG island within its associated gene appeared to be related to the extent of tissue-specific expression of the gene; the CpG islands of most of the widely expressed rice genes occurred near the 5'-end of the genes.  相似文献   

7.
CpG islands: Algorithms and applications in methylation studies   总被引:1,自引:0,他引:1  
Methylation occurs frequently at 5’-cytosine of the CpG dinucleotides in vertebrate genomes; however, this epigenetic feature is rarely observed in CpG islands (CGIs) or CpG clusters in the promoter regions of genes. Aberrant methylation of the promoter-associated CGIs might influence gene expression and cause carcinogenesis. Because of the functional importance, multiple algorithms have been available for identifying CGIs in a genome or a sequence. They can be categorized into the traditional algorithms (e.g., Gardiner-Garden and Frommer (1987), Takai and Jones (2002), and CpGPRoD (2002)) or statistical property based algorithms (CpGcluster (2006) and CG cluster (2007)). We reviewed the features of these algorithms and evaluated their performance on identifying functional CGIs using genome-wide methylation data. Moreover, identification of CGIs is an initial step in many recent studies for predicting methylation status as well as in the design of methylation detection platforms. We reviewed the benchmarks and features used in these studies.  相似文献   

8.
In this paper, we use a statistical estimator developed in astrophysics to study the distribution and organization of features of the human genome. Using the human reference sequence we quantify the global distribution of CpG islands (CGI) in each chromosome and demonstrate that the organization of the CGI across a chromosome is non-random, exhibits surprisingly long range correlations (10 Mb) and varies significantly among chromosomes. These correlations of CGI summarize functional properties of the genome that are not captured when considering variation in any particular separate (and local) feature. The demonstration of the proposed methods to quantify the organization of CGI in the human genome forms the basis of future studies. The most illuminating of these will assess the potential impact on phenotypic variation of inter-individual variation in the organization of the functional features of the genome within and among chromosomes, and among individuals for particular chromosomes.  相似文献   

9.
Tandem repeats in the CpG islands of imprinted genes   总被引:4,自引:0,他引:4  
Hutter B  Helms V  Paulsen M 《Genomics》2006,88(3):323-332
  相似文献   

10.

Background

Mammalian CpG islands (CGIs) normally escape DNA methylation in all adult tissues and developmental stages. However, in our previous study we unexpectedly identified many methylated CGIs in human peripheral blood leukocytes. Methylated CpG dinucleotides convert to TpG dinucleotides through deaminization of their cytosine bases more frequently than hypomethylated CpG dinucleotides. Therefore, we wondered how methylated CGIs in germline or non-germline cells maintain their CpG-rich sequences. It is known that events such as germline hypomethylation, CpG selection, biased gene conversion (BGC), and frequent CpG fixation can contribute to the maintenance of CpG-rich sequences in methylated CGIs in germline or non-germline cells. However, it has not been investigated which of the processes maintain CpG-rich sequences of methylated CGIs in each genomic position.

Results

In this study, we comprehensively examined the contribution of the processes described above to the maintenance of CpG-rich sequences in methylated CGIs in germline and non-germline cells which were classified by genomic positions. Approximately 60–80% of CGIs with high methylation in H1 cell line (H1-HM) in all the genomic positions showed a low average CpG → TpG/CpA substitution rate. In contrast, fewer than half the numbers of CGIs with H1-HM in all the genomic positions showed a low average CpG → TpG/CpA substitution rate and low levels of methylation in sperm cells (SPM-LM). Furthermore, a small fraction of CGIs with a low average CpG → TpG/CpA substitution rate and high levels of methylation in sperm cells (SPM-HM) showed CpG selection.On the other hand, independent of the positions in genes, most CGIs with SPM-HM showed a slightly higher average TpG/CpA → CpG substitution rate compared with those with SPM-LM.

Conclusions

Relatively high numbers (approximately 60–80%) of CGIs with H1-HM in all the genomic positions preserve their CpG-rich sequences by a low CpG → TpG/CpA substitution rate caused mainly by their SPM-LM, and for those with SPM-HM partly by CpG selection and TpG/CpA → CpG fixation. BGC has little contribution to the maintenance of CpG-rich sequences of CGIs with SPM-HM which were classified by genomic positions.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1286-x) contains supplementary material, which is available to authorized users.  相似文献   

11.
Aberrant CpG methylation changes occurring during tumour progression include the loss (hypomethylation) and gain (hypermethylation) of methyl groups. Techniques currently available for examining such changes either require selection of a region, then examination of methylation changes, or utilise methylation-sensitive restriction enzymes to identify an alteration. We describe here a novel method that identifies genomic regions as a consequence of altered methylation during tumourigenesis. A methyl-CpG binding domain column isolates methylated GC-rich sequences from both tumours and surrounding normal tissue. Subsequent subtractive hybridisation removes sequences common to both, leaving only methylated sequences unique to the tumour. Libraries of sequences generated using DNA derived from a breast tumour (histological grade; poorly differentiated) as ‘tester’ and from matched normal tissue as ‘driver’ were examined; 26% of clones had the sequence criteria of a CpG island (CGI). Analysis using the bisulfite technique revealed that a number of these sequences were methylated in tumour DNA relative to the normal control. We have therefore demonstrated the ability of this technique, the identification of CGI exhibiting altered methylation patterns (ICEAMP), to isolate tumour-specific methylated GC-rich sequences. This will allow a comprehensive identification of methylation changes during tumourigenesis and will lead to a better understanding of the processes involved.  相似文献   

12.
13.
Isolation of CpG islands from large genomic clones   总被引:4,自引:0,他引:4  
  相似文献   

14.
15.
Cohen NM  Kenigsberg E  Tanay A 《Cell》2011,145(5):773-786
Mammalian CpG islands are key epigenomic elements that were first characterized experimentally as genomic fractions with low levels of DNA methylation. Currently, CpG islands are defined based on their genomic sequences alone. Here, we develop evolutionary models to show that several distinct evolutionary processes generate and maintain CpG islands. One central evolutionary regime resulting in enriched CpG content is driven by low levels of DNA methylation and consequentially low rates of CpG deamination. Another major force forming CpG islands is biased gene conversion that stabilizes constitutively methylated CpG islands by balancing rapid deamination with CpG fixation. Importantly, evolutionary analysis and population genetics data suggest that selection for high CpG content is not?a significant factor contributing to conservation of CpGs in differentially methylated regions. The heterogeneous, but not selective, origins of CpG islands have direct implications for the understanding of DNA methylation patterns in healthy and diseased cells.  相似文献   

16.
CpG islands as gene markers in the human genome.   总被引:65,自引:0,他引:65  
F Larsen  G Gundersen  R Lopez  H Prydz 《Genomics》1992,13(4):1095-1107
  相似文献   

17.
An improved primed in situ labeling (PRINS) procedure that provides fast, highly sensitive, and nonradioactive cytogenetic localization of chromosome-specific tandem repeat sequences is presented. The PRINS technique is based on the sequence-specific annealing in situ of unlabeled DNA. This DNA then serves as primer for chain elongation in situ catalyzed by a DNA polymerase. If biotin-labeled nucleotides are used as substrate for the chain elongation, the hybridization site becomes labeled with biotin. The biotin is subsequently made visible through the binding of FITC-labeled avidin. Tandem repeat sequences may be detected in a few hours with synthetic oligonucleotides as primers, but specific labeling of single chromosomes is not easily obtained. This may be achieved, however, if denatured double-stranded DNA fragments from polymerase-chain-reaction products or cloned probes are used as primers. In the latter case, single chromosome pairs are stained with a speed and ease (1 h reaction and no probe labeling) that are superior to traditional in situ hybridization. Subsequent high-quality Q banding of the chromosomes is also possible. The developments described here extends the range of applications of the PRINS technique, so that it now can operate with any type of probe that is available for traditional in situ hybridization.  相似文献   

18.
Unmethylated CpG islands associated with genes in higher plant DNA   总被引:16,自引:0,他引:16       下载免费PDF全文
The genomes of many higher plant species are the most highly methylated among eukaryotes. We report here that in spite of their heavy methylation, genomic DNAs from four plant species contain a fraction that is very rich in non-methylated sites. The fraction was characterized in maize where it represents about 2.5% of the total nuclear genome. In order to establish the genomic origin of the fraction, three maize genes containing clustered CpG were tested for methylation and were found to be non-methylated in the CpG-rich regions. By contrast, tested CpGs were methylated in a gene whose sequence showed no clustering of CpG. These observations suggest that the CpG-rich fraction of plants is at least partially derived from non-methylated regions that are associated with genes. A similar phenomenon has been described in vertebrate genomes. We discuss the evolution of CpG islands in both groups of organisms, and their possible uses in mapping and gene isolation in plants.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号