首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trail laying behaviour during food recruitment in the antLasius niger (L.)   总被引:4,自引:0,他引:4  
Summary The trail-laying behaviour of foragers of the antLasius niger was observed in the laboratory on a 20 cm bridge between the nest and the food source. We measured both the frequency of trail laying, as defined by the proportion of trips during which trail laying occurred, and its intensity, as defined by the number of marks laid during one bridge crossing.Foragers do not exhibit trail-laying behaviour until a food source is discovered. Trail laying then occurs more or less equally both to and from the nest, and both its frequency and intensity decrease as the recruitment proceeds. Foragers from very small colonies less than a year old appear to have quantitatively the same trail laying behaviour as those from older and much larger colonies.Groups of recruiters and recruits were individually marked. Their trail laying intensity was similar, both for trips to and from the nest, and for an ant's first, second, third and fourth trip. The frequency diminished rapidly with the number of trips made by each individual, and was 2–3 times higher for recruiters than for recruits, for trips both to and from the nest. Even though foragers stop marking after a variable number of passages, they continue to move between the nest and the food source, and other ants start marking. Different foragers appear to have widely different levels of trail laying, although we cannot say whether these differences are stable between different recruitments.Trail laying is strongly affected by the foragers' position on the bridge, especially for ants returning to the nest which lay up to five times more on the segment closest to the source than that closest to the nest. Foragers on a weakly marked trail appear to mark more than those on a well-marked trail. However, this effect is weak and could partly be attributed to their lower speed.Finally, a model using the experimental data gathered on the individuals' trail-laying behaviour reproduced satisfactorily the colony's overall trail laying.  相似文献   

2.
Summary Workers of the giant tropical ant,Paraponera clavata, use trail pheromones for orientation and recruitment of nestmates. However, chemical markings may not always be sufficient for successful navigation in complex three-dimensional terrain, and additional orientation cues may be required. Behavioral field experiments were performed to investigate the significance of visual landmarks for homing foragers. Animals which were prevented from seeing the canopy were unable to navigate back to the nest, even though trail pheromones were still present. In contrast, foragers found their way back to the nest after their trail pheromones had been abolished but their visual scenes remained unchanged. This emphasizes the important role of visual landmarks during spatial orientation in homingP. clavata foragers. Individually foraging scouts were discovered in the understory of the forest floor up to 30 m away from their nest. They were rewarded, and displaced between 0.8 m and 13.6 m. Fifteen out of 16 animals had no difficulties in finding the nest entrance despite the altered appearance of local and distant landmarks at the release site. Apparently the scouts were able to recognize the visual scenes at the release site, and used them for reference to locate the nest entrance. In contrast, ants displaced from their nest to sites around 4 m away had more difficulties to re-find the nest.  相似文献   

3.
The allocation of foragers in red wood ants   总被引:1,自引:0,他引:1  
Abstract. 1. We studied how colonies of the red wood ant, Formica polyctena , adjust the numbers of foragers allocated to different foraging trails. In a series of field experiments, foragers were marked and transferred from one nest to another, related nest, where they joined the foraging force. Transferred workers acted as a reserve of uncommitted, available foragers.
2. Previous work shows that each individual forager habitually uses one trail. We found that for an uncommitted forager, the influence of recruitment initially is stronger than that of directional fidelity. Transferred workers were likely to use trails leading to new food sources. When transferred to a new nest, foragers were not likely to use a trail in the same direction as their original trail in the donor nest.
3. After a week, transferred foragers tended to develop route fidelity. Even after bait was no longer present, they continued to use the trail that had formerly led to a bait source.
4. We examined how colonies adjust numbers on a trail by experimentally depleting some trails. Colonies usually did not compensate for depletion: foragers were not recruited to depleted trails.
5. In general, the dynamics of foraging in this species facilitate a consistent foraging effort rather than rapid adjustments of forager allocation.  相似文献   

4.
How is an ant-equipped with a brain that barely exceeds the size of a pinhead-capable of achieving navigational marvels? Even though evidences suggest that navigation is a multimodal process, ants heavily depend on olfactory cues-of pheromonal and non-pheromonal nature-for foraging and orientation. Recent studies have directed their attention to the efficiency of pheromone trail networks. Advances in neurophysiological techniques make it possible to investigate trail pheromone processing in the ant's brain. In addition to relying on pheromone odours, ants also make use of volatiles emanating from the nest surroundings. Deposited in the vicinity of the nest, these home-range markings help the ants to home after a foraging run. Furthermore, olfactory landmarks associated with the nest enhance ants' homing abilities.  相似文献   

5.
Summary The long-cheeked wasp Dolichovespula saxonica typically constructs exposed nests which can be reached by flying. Usually foragers do not walk on substrates in the close vicinity of the nests as cavity breeding wasps do (Steinmetz et al., 2002). Unexpectedly, when forced to walk outside the nest instead of flying in an artificial tunnel system, D. saxonica foragers lay a terrestrial trail and use it for orientation in the nest area in our experiments. 41% of the foragers followed the trail in a direction they were not accustomed to. We suggest that the foragers have employed the same orientation cues normally used for orientation in the close vicinity of the nest when approaching a free-hanging nest by flying, for example nest odour. Nest odour substances may have been transferred to the substrate as a trail as a consequence of foragers walking through the tunnels.Received 23 August 2002; revised 27 January 2003; accepted 30 April 2003.  相似文献   

6.
Recruitment to food or nest sites is well known in ants; the recruiting ants lay a chemical trail that other ants follow to the target site, or they walk with other ants to the target site. Here we report that a different process determines foraging direction in the harvester ant Pogonomyrmex barbatus. Each day, the colony chooses from among up to eight distinct foraging trails; colonies use different trails on different days. Here we show that the patrollers regulate the direction taken by foragers each day by depositing Dufour's secretions onto a sector of the nest mound about 20 cm long and leading to the beginning of a foraging trail. The patrollers do not recruit foragers all the way to food sources, which may be up to 20 m away. Fewer foragers traveled along a trail if patrollers had no access to the sector of the nest mound leading to that trail. Adding Dufour's gland extract to patroller-free sectors of the nest mound rescued foraging in that direction, while poison gland extract did not. We also found that in the absence of patrollers, most foragers used the direction they had used on the previous day. Thus, the colony's 30-50 patrollers act as gatekeepers for thousands of foragers and choose a foraging direction, but they do not recruit and lead foragers all the way to a food source.  相似文献   

7.
We examined the occurrence, mechanism and costs and benefits of leaf caching in laboratory colonies of two species of leafcutting ants, Atta cephalotes and A. colombica. If foragers returning to the nest are unable to enter because of a temporary bottleneck caused by leaves building up they may deposit their leaf pieces outside the nest entrance, forming a leaf cache. Similar leaf caches occur in the field at foraging trail junctions, obstacles on the trail and within nest entrance tunnels. Foraging ants carrying leaves were presented with different-sized leaf caches and the number dropping their leaves on the cache was recorded. The probability of a forager dropping her leaf was positively correlated with the size of the cache that she encountered. Therefore, positive feedback played a role in the formation of nest entrance caches. Cached pieces were more likely to be retrieved than noncached pieces but the time taken to retrieve leaf pieces from a cache was greater than from scattered groups of leaves. We suggest that the strategy of flexible nest entrance caching is an adaptive response to fluctuating food availability and collection. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

8.
We study the influence of food distance on the individual foraging behaviour of Lasius niger scouts and we investigate which cue they use to assess their distance from the nest and accordingly tune their recruiting behaviour. Globally, the number of U-turns made by scouts increases with distance resulting in longer travel times and duration of the foraging cycle. However, over familiar areas, home-range marking reduces the frequency and thereby the impact of U-turns on foraging times leading to a quicker exploitation of food sources than over unmarked set-ups. Regarding information transfer, the intensity of the recruitment trail reaching the nest decreases with increasing food distance for all set-ups and is even more reduced in the absence of home-range marking. Hence, the probability of a scout continuing to lay a trail changes along the homeward journey but in a different way according to home-range marking. Over unexplored setups, at a given distance from the food source, the percentage of returning trail-laying ants remains unchanged for all tested nest-feeder distances. Hence, the tuning of the trail recruiting signal by scouts was not influenced by an odometric estimate of the distance already travelled by the ants during their outward journey to the food. By contrast, over previously explored set-ups, a distance-related factor – that is the intensity of home-range marking – strongly influences their recruiting behaviour. In fact, over a home-range marked bridge, the probability of returning ants maintaining their trail-laying behaviour increases with decreasing food distance while the gradient of home-range marks even induces ants which have stopped laying a trail to resume this behaviour in the nest vicinity. We suggest that home-range marking laid passively by walking ants is a relevant cue for scouts to indirectly assess distance from the nest but also local activity level or foraging risks in order to adaptively tune trail recruitment and colony foraging dynamics. Received 13 July 2004; revised 26 January and 20 May 2005; accepted 2 July 2005.  相似文献   

9.
Abstract. Many ants use pheromone trails to organize collective foraging. This study investigated the rate at which a well‐established Pharaoh's ant, Monomorium pharaonis (L.), trail breaks down on two substrates (polycarbonate plastic, newspaper). Workers were allowed to feed on sucrose solution from a feeder 30 cm from the nest. Between the nest and the feeder, the trail had a Y‐shaped bifurcation. Initially, while recruiting to and exploiting the feeder, workers could only deposit pheromone on the branch leading to the feeder. Once the trail was established (by approximately 60 ants per min for 20 min), the ants were not allowed to reinforce the trail and were given a choice between the marked and unmarked branches. The numbers of ants choosing each branch were counted for 30 min. Initially, most went to the side on which pheromone had been deposited (80% and 70% on the plastic and paper substrates, respectively). However, this decayed to 50% within 25 min for plastic and 8 min for paper. From these data, the half‐life times of the pheromone are estimated as approximately 9 min and 3 min on plastic and paper, respectively. The results show that, for M. pharaonis, trail decay is rapid and is affected strongly by trail substrate.  相似文献   

10.
The effect of larval cuticle extract (larval pheromone) and venom gland extract (trail pheromone) on transport of formulated baits by Atta sexdens rubropilosa (Forel) was studied in the field and under laboratory conditions. In the laboratory, we observed the transport to the nest of baits impregnated with 10???L of venom gland extract (0.01 gland/bait) or 10???L of larval cuticle extract (0.05 larva/bait). The most transported impregnated bait was then tested in the field placing rubber septa impregnated with 100?mL of extract or with 100?mL of solvent with the baits at 0.2, 1.0, 5.0, and 10.0?m away from the trail and from the nest entrance. Baits impregnated with venom gland extract were transported more often than baits formulated with larval cuticle extract. In field tests, the venom gland extract reduced the time required for ants to detect baits and increased the transport of baits displayed at 0.2?m from the foraging trail or nest entrance. The increase in the transport of impregnated baits and the lower time to be transported might help to reduce the loss of bait in the field and decrease the risk of active ingredient contacts with non-target species.  相似文献   

11.
The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4–8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony’s trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest.  相似文献   

12.
The Neotropical species Pachycondyla marginata conducts well-organized predatory raids on the termite species Neocapritermes opacus and frequently emigrates to new nest sites. During both activities the ants employ chemical trail communication. The trail pheromone orginates from the pygidial gland. Among the substances identified in the pygidial gland secretions, only citronellal was effective as a trail pheromone. Isopulegol elicited an increase in locomotory activity in the ants and may function as a synergist recruitment signal. The chemical signal is enhanced by a shaking display performed by the recruiting ant.  相似文献   

13.
More than 100 years of scientific research has provided evidence for sophisticated navigational mechanisms in social insects. One key role for navigation in ants is the orientation of workers between food sources and the nest. The focus of recent work has been restricted to navigation in individually foraging ant species, yet many species do not forage entirely independently, instead relying on collectively maintained information such as persistent trail networks and/or pheromones. Harvester ants use such networks, but additionally, foragers often search individually for food either side of trails. In the absence of a trail, these ‘off-trail’ foragers must navigate independently to relocate the trail and return to the nest. To investigate the strategies used by ants on and off the main trails, we conducted field experiments with a harvester ant species, Messor cephalotes, by transferring on-trail and off-trail foragers to an experimental arena. We employed custom-built software to track and analyse ant trajectories in the arena and to quantitatively compare behaviour. Our results indicate that foragers navigate using different cues depending on whether they are travelling on or off the main trails. We argue that navigation in collectively foraging ants deserves more attention due to the potential for behavioural flexibility arising from the relative complexity of journeys between food and the nest.  相似文献   

14.
Foragers of several species of stingless bees (Hymenoptera, Apidae and Meliponini) deposit pheromone marks in the vegetation to guide nestmates to new food sources. These pheromones are produced in the labial glands and are nest and species specific. Thus, an important question is how recruited foragers recognize their nestmates’ pheromone in the field. We tested whether naïve workers learn a specific trail pheromone composition while being recruited by nestmates inside the hive in the species Scaptotrigona pectoralis. We installed artificial scent trails branching off from trails deposited by recruiting foragers and registered whether newly recruited bees follow these trails. The artificial trails were baited with trail pheromones of workers collected from foreign S. pectoralis colonies. When the same foreign trail pheromone was presented inside the experimental hives while recruitment took place a significant higher number of bees followed the artificial trails than in experiments without intranidal presentation. Our results demonstrate that recruits of S. pectoralis can learn the composition of specific trail pheromone bouquets inside the nest and subsequently follow this pheromone in the field. We, therefore, suggest that trail pheromone recognition in S. pectoralis is based on a flexible learning process rather than being a genetically fixed behaviour.  相似文献   

15.
We tested the influence of illuminance and level of forager experience on nest orientation behavior of the social wasps Vespula vulgaris, Vespa crabro, and Dolichovespula saxonica in an artificial laboratory tunnel system. The number of wasps which oriented themselves chemically via a terrestrial trail or used visual orientation were determined at different illuminance levels for foragers which were naïve or experienced with the tunnel system. In V. vulgaris and D. saxonica, mainly the young and naïve foragers used the chemical trail for orientation in brightness. Experienced foragers used visual cues for nest orientation. In V. crabro, naïve and experienced foragers followed the chemical trail in a similar intensity. In darkness, when visual orientation was limited, the relative importance of the chemical trail increased dramatically in all species and all experience classes.  相似文献   

16.
F. Ito 《Insectes Sociaux》1993,40(2):163-167
Summary Group recruitment during foraging was observed in a primitive ponerine ant,Amblyopone sp. (reclinata group) under laboratory condition. Workers searched for prey singly; however, if a item of prey was stung by a worker, other ants joined the attack. After the prey became immobile, one of the workers laid a trail directly toward the nest. This scout worker recruited additional workers (between 3 and 33). They formed a single file procession to the point of prey capture, and cooperatively transported the prey. A scout worker could stimulate nest workers to leave the nest without direct contact, and the recruited workers could trace the trail without guidance by the scout worker. This is the first report of recruitment behavior during foraging in the primitive antAmblyopone.  相似文献   

17.
Although nests are central to colonial life in social insects, nests are sometimes damaged by predators or natural disasters. After nest destruction, individuals usually construct new nests. In this case, a sophisticated mechanism like the scent trail pheromone used in large insect colonies that recruit individuals to new nest sites would be important for the maintenance of eusociality. In independent-founding Polistes wasps, it is well known that queens enforce workers physiologically on the natal nests even if evidence of trail pheromone use has not been exhibited. We investigated the effect of the queen on an alternative strategy for the maintenance of eusociality by first females after nest destruction in the primitively eusocial wasp Polistes chinensis. We predicted that the first females in queen-absent colonies have various behavioral options after nest destruction. Even if the females construct new nests cooperatively with other individuals, the new nest construction should be conducted more smoothly in queen-present colonies because the queens regulate the behavior of wasps. We made wasps construct new nests by removing the entire brood from existing nests. The presence of the queen did not cause variation in the alternative strategy of the first females, as the first females (workers) usually constructed new nests cooperatively irrespective of the queen-presence. Thus, the workers in the queenpresent colonies affiliated to the new nest construction more smoothly and constructed new nests more efficiently than workers in the queen-absent colonies. Our results suggest that the presence of the queen is important for maintaining eusociality in primitively eusocial wasps after nest destruction. Received 8 February 2005; revised 5 October 2005; accepted 17 October 2005.  相似文献   

18.
The present study aimed to gather baseline information about chimpanzee nesting and density in Lagoas de Cufada Natural Park (LCNP), in Guinea-Bissau. Old and narrow trails were followed to estimate chimpanzee density through marked-nest counts and to test the effect of canopy closure (woodland savannah, forest with a sparse canopy, and forest with a dense canopy) on nest distribution. Chimpanzee abundance was estimated at 0.79 nest builders/km2, the lowest among the areas of Guinea-Bissau with currently studied chimpanzee populations. Our data suggest that sub-humid forest with a dense canopy accounts for significantly higher chimpanzee nest abundance (1.50 nests/km of trail) than sub-humid forest with a sparse canopy (0.49 nests/km of trail) or woodland savannah (0.30 nests/km of trail). Dense-canopy forests play an important role in chimpanzee nesting in the patchy and highly humanized landscape of LCNP. The tree species most frequently used for nesting are Dialium guineense (46 %) and Elaeis guineensis (28 %). E. guineensis contain nests built higher in the canopy, while D. guineense contain nests built at lower heights. Nests observed during baseline sampling and replications suggest seasonal variations in the tree species used for nest building.  相似文献   

19.
The stochasticity in food quality and availability, and physical trail characteristics experienced by leaf-cutter ants, may favour individual flexibility in load-mass selection so as to forage effectively. The present study aimed to confirm previous evidence, from Atta cephaoltes foragers, of variable load-mass selection in response to steep inclines and declines in the leaf-cutter ant Acromyrmex octospinosus. The foraging trail gradient of a captive colony of Ac. octospinosus was manipulated by altering the position of a foraging platform relative to the nest box. The results indicate an effect of steep gradients on walking speed and variation in load mass in relation to gradient as a result of individual plasticity, not recruitment of different-sized individuals. Ants selected heavier loads when returning to the nest vertically downwards than when returning horizontally or vertically upwards. These results are discussed with reference to foraging performance. Walking speed was considerably reduced on upward returns to the nest, but was also slower when travelling vertically downwards compared with horizontal trails, suggesting vertical trails per se impact on the time costs of foraging. Differences in load-mass selection were evident from the onset of foraging and did not change significantly over the course of 24 h, suggesting this behaviour was based on individual experience, rather than colony-level information feedback. The present study has demonstrated that Ac. octospinosus foragers are capable of individual flexibility in load-mass selection in response to a physical trail characteristic that is pertinent to their natural habitat and is a factor seldom considered in theoretical foraging models.  相似文献   

20.
Several factors may restrict the acquisition of food to below the levels predicted by the optimization theory. However, how the design of structures that animals build for foraging restricts the entry of food is less known. Using scaling relationships, we determined whether the design of the entrances of leaf‐cutting ant nests restricts resource input into the colony. We measured nests and foraging parameters in 25 nests of Atta cephalotes in a tropical rain forest. Ant flux was reduced to up to 60% at nest entrances. The width of all entrances per nest increased at similar rates as nest size, but the width of nest entrances increased with the width of its associated trail at rates below those expected by isometry. The fact that entrance widths grow slower than trail widths suggests that the enlargement of entrance holes does not reach the dimensions needed to avoid delays when foraging rates are high and loads are big. The enlargement of nest entrances appears to be restricted by the digging effort required to enlarge nest tunnels and by increments in the risk of inundation, predator/parasitoid attacks and microclimate imbalances inside the nest. The design of the extended phenotypes can also restrict the ingress of food into the organisms, offering additional evidence to better understand eventual controversies between empirical data and the foraging theory. Abstract in Spanish is available with online material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号