首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gao M  Fritz DT  Ford LP  Wilusz J 《Molecular cell》2000,5(3):479-488
We have used an in vitro system that reproduces in vivo aspects of mRNA turnover to elucidate mechanisms of deadenylation. DAN, the major enzyme responsible for poly(A) tail shortening in vitro, specifically interacts with the 5' cap structure of RNA substrates, and this interaction is greatly stimulated by a poly(A) tail. Several observations suggest that cap-DAN interactions are functionally important for the networking between regulated mRNA stability and translation. First, uncapped RNA substrates are inefficiently deadenylated. Second, a stem-loop structure in the 5' UTR dramatically reduces deadenylation by interfering with cap-DAN interactions. Third, the addition of cap binding protein eIF4E inhibits deadenylation in vitro. These data provide insights into the early steps of substrate recognition that target an mRNA for degradation.  相似文献   

2.
3.
The mRNA deadenylation process, catalyzed by the CCR4 deadenylase, is known to be the major factor controlling mRNA decay rates in Saccharomyces cerevisiae. We have identified the proline-rich region and RRM1 domains of poly(A) binding protein (PAB1) as necessary for CCR4 deadenylation. Deletion of either of these regions but not other regions of PAB1 significantly reduced PAB1-PAB1 protein interactions, suggesting that PAB1 oligomerization is a required step for deadenylation. Moreover, defects in these two regions inhibited the formation of a novel, circular monomeric PAB1 species that forms in the absence of poly(A). Removal of the PAB1 RRM3 domain, which promoted PAB1 oligomerization and circularization, correspondingly accelerated CCR4 deadenylation. Circular PAB1 was unable to bind poly(A), and PAB1 multimers were severely deficient or unable to bind poly(A), implicating the PAB1 RNA binding surface as critical in making contacts that allow PAB1 self-association. These results support the model that the control of CCR4 deadenylation in vivo occurs in part through the removal of PAB1 from the poly(A) tail following its self-association into multimers and/or a circular species. Known alterations in the P domains of different PAB proteins and factors and conditions that affect PAB1 self-association would, therefore, be expected to be critical to controlling mRNA turnover in the cell.  相似文献   

4.
The major pathways of mRNA turnover in eukaryotic cells are initiated by shortening of the poly(A) tail. Recent work has identified Ccr4p and Pop2p as components of the major cytoplasmic deadenylase in yeast. We now demonstrate that CCR4 encodes the catalytic subunit of the deadenylase and that Pop2p is dispensable for catalysis. In addition, we demonstrate that at least some of the Ccr4p/Pop2p-associated Not proteins are cytoplasmic, and lesions in some of the NOT genes can lead to defects in mRNA deadenylation rates. The Ccr4p deadenylase is inhibited in vitro by addition of the poly(A) binding protein (Pab1p), suggesting that dissociation of Pab1p from the poly(A) tail may be rate limiting for deadenylation in vivo. In addition, the rapid deadenylation of the COX17 mRNA, which is controlled by a member of the Pumilio family of deadenylation activators Puf3p, requires an active Ccr4p/Pop2p/Not deadenylase. These results define the Ccr4p/Pop2p/Not complex as the cytoplasmic deadenylase in yeast and identify positive and negative regulators of this enzyme complex.  相似文献   

5.
Tristetraprolin (TTP) is the prototype for a family of RNA binding proteins that bind the tumor necrosis factor (TNF) messenger RNA AU-rich element (ARE), causing deadenylation of the TNF poly(A) tail, RNA decay, and silencing of TNF protein production. Using mass spectrometry sequencing we identified poly(A) binding proteins-1 and -4 (PABP1 and PABP4) in high abundance and good protein coverage from TTP immunoprecipitates. PABP1 significantly enhanced TNF ARE binding by RNA EMSA and prevented TTP-initiated deadenylation in an in vitro macrophage assay of TNF poly(A) stability. Neomycin inhibited TTP-promoted deadenylation at concentrations shown to inhibit the deadenylases poly(A) ribonuclease and CCR4. Stably transfected RAW264.7 macrophages overexpressing PABP1 do not oversecrete TNF; instead they upregulate TTP protein without increasing TNF protein production. The PABP1 inhibition of deadenylation initiated by TTP does not require the poly(A) binding regions in RRM1 and RRM2, suggesting a more complicated interaction than simple masking of the poly(A) tail from a 3'-exonuclease. Like TTP, PABP1 is a substrate for p38 MAP kinase. Finally, PABP1 stabilizes cotransfected TTP in 293T cells and prevents the decrease in TTP levels seen with p38 MAP kinase inhibition. These findings suggest several levels of functional antagonism between TTP and PABP1 that have implications for regulation of unstable mRNAs like TNF.  相似文献   

6.
Oculopharyngeal muscular dystrophy (OPMD), a late-onset disorder characterized by progressive degeneration of specific muscles, results from the extension of a polyalanine tract in poly(A) binding protein nuclear 1 (PABPN1). While the roles of PABPN1 in nuclear polyadenylation and regulation of alternative poly(A) site choice are established, the molecular mechanisms behind OPMD remain undetermined. Here, we show, using Drosophila and mouse models, that OPMD pathogenesis depends on affected poly(A) tail lengths of specific mRNAs. We identify a set of mRNAs encoding mitochondrial proteins that are down-regulated starting at the earliest stages of OPMD progression. The down-regulation of these mRNAs correlates with their shortened poly(A) tails and partial rescue of their levels when deadenylation is genetically reduced improves muscle function. Genetic analysis of candidate genes encoding RNA binding proteins using the Drosophila OPMD model uncovers a potential role of a number of them. We focus on the deadenylation regulator Smaug and show that it is expressed in adult muscles and specifically binds to the down-regulated mRNAs. In addition, the first step of the cleavage and polyadenylation reaction, mRNA cleavage, is affected in muscles expressing alanine-expanded PABPN1. We propose that impaired cleavage during nuclear cleavage/polyadenylation is an early defect in OPMD. This defect followed by active deadenylation of specific mRNAs, involving Smaug and the CCR4-NOT deadenylation complex, leads to their destabilization and mitochondrial dysfunction. These results broaden our understanding of the role of mRNA regulation in pathologies and might help to understand the molecular mechanisms underlying neurodegenerative disorders that involve mitochondrial dysfunction.  相似文献   

7.
C G Burd  G Dreyfuss 《The EMBO journal》1994,13(5):1197-1204
Pre-mRNA is processed as a large complex of pre-mRNA, snRNPs and pre-mRNA binding proteins (hnRNP proteins). The significance of hnRNP proteins in mRNA biogenesis is likely to be reflected in their RNA binding properties. We have determined the RNA binding specificity of hnRNP A1 and of each of its two RNA binding domains (RBDs), by selection/amplification from pools of random sequence RNA. Unique RNA molecules were selected by hnRNP A1 and each individual RBD, suggesting that the RNA binding specificity of hnRNP A1 is the result of both RBDs acting as a single RNA binding composite. Interestingly, the consensus high-affinity hnRNP A1 binding site, UAGGGA/U, resembles the consensus sequences of vertebrate 5' and 3' splice sites. The highest affinity 'winner' sequence for hnRNP A1 contained a duplication of this sequence separated by two nucleotides, and was bound by hnRNP A1 with an apparent dissociation constant of 1 x 10(-9) M. hnRNP A1 also bound other RNA sequences, including pre-mRNA splice sites and an intron-derived sequence, but with reduced affinities, demonstrating that hnRNP A1 binds different RNA sequences with a > 100-fold range of affinities. These experiments demonstrate that hnRNP A1 is a sequence-specific RNA binding protein. UV light-induced protein-RNA crosslinking in nuclear extracts demonstrated that an oligoribonucleotide containing the A1 winner sequence can be used as a specific affinity reagent for hnRNP A1 and an unidentified 50 kDa protein. We also show that this oligoribonucleotide, as well as two others containing 5' and 3' pre-mRNA splice sites, are potent inhibitors of in vitro pre-mRNA splicing.  相似文献   

8.
PUF proteins are a conserved family of eukaryotic RNA-binding proteins that regulate specific mRNAs: they control many processes including stem cell proliferation, fertility, and memory formation. PUFs repress protein expression from their target mRNAs but the mechanism by which they do so remains unclear, especially for humans. Humans possess two PUF proteins, PUM1 and PUM2, which exhibit similar RNA binding specificities. Here we report new insights into their regulatory activities and mechanisms of action. We developed functional assays to measure sequence-specific repression by PUM1 and PUM2. Both robustly inhibit translation and promote mRNA degradation. Purified PUM complexes were found to contain subunits of the CCR4-NOT (CNOT) complex, which contains multiple enzymes that catalyze mRNA deadenylation. PUMs interact with the CNOT deadenylase subunits in vitro. We used three approaches to determine the importance of deadenylases for PUM repression. First, dominant-negative mutants of CNOT7 and CNOT8 reduced PUM repression. Second, RNA interference depletion of the deadenylases alleviated PUM repression. Third, the poly(A) tail was necessary for maximal PUM repression. These findings demonstrate a conserved mechanism of PUF-mediated repression via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation. A second, deadenylation independent mechanism was revealed by the finding that PUMs repress an mRNA that lacks a poly(A) tail. Thus, human PUMs are repressors capable of deadenylation-dependent and -independent modes of repression.  相似文献   

9.
The pathway of mRNA degradation has been extensively studied in the yeast, Saccharomyces cerevisiae, and it is now clear that many mRNAs decay by a deadenylation-dependent mechanism. Although several of the factors required for mRNA decay have been identified, the regulation and precise roles of many of the proteins involved remains unclear. We have developed an in vitro system that recapitulates both the deadenylation and the decapping steps of mRNA decay. Furthermore, both deadenylation and decapping are inhibited by poly(A) binding proteins in our assay. Our system has allowed us to separate the decay process from translation and we have shown that the poly(A) tail is capable of inhibiting decapping in an eIF4E-independent manner. Our in vitro system should prove invaluable in dissecting the mechanisms of mRNA turnover.  相似文献   

10.
11.
The stable globin mRNAs provide an ideal system for studying the mechanism governing mammalian mRNA turnover. alpha-Globin mRNA stability is dictated by sequences in the 3' untranslated region (3'UTR) which form a specific ribonucleoprotein complex (alpha-complex) whose presence correlates with mRNA stability. One of the major protein components within this complex is a family of two polycytidylate-binding proteins, alphaCP1 and alphaCP2. Using an in vitro-transcribed and polyadenylated alpha-globin 3'UTR, we have devised an in vitro mRNA decay assay which reproduces the alpha-complex-dependent mRNA stability observed in cells. Incubation of the RNA with erythroleukemia K562 cytosolic extract results in deadenylation with distinct intermediates containing a periodicity of approximately 30 nucleotides, which is consistent with the binding of poly(A)-binding protein (PABP) monomers. Disruption of the alpha-complex by sequestration of alphaCP1 and alphaCP2 enhances deadenylation and decay of the mRNA, while reconstitution of the alpha-complex stabilizes the mRNA. Similarly, PABP is also essential for the stability of mRNA in vitro, since rapid deadenylation resulted upon its depletion. An RNA-dependent interaction between alphaCP1 and alphaCP2 with PABP suggests that the alpha-complex can directly interact with PABP. Therefore, the alpha-complex is an mRNA stability complex in vitro which could function at least in part by interacting with PABP.  相似文献   

12.
Shortening of the poly(A) tail (deadenylation) is the first and often rate-limiting step in the degradation pathway of most eukaryotic mRNAs and is also used as a means of translational repression, in particular in early embryonic development. The nanos mRNA is translationally repressed by the protein Smaug in Drosophila embryos. The RNA has a short poly(A) tail at steady state and decays gradually during the first 2-3 h of development. Smaug has recently also been implicated in mRNA deadenylation. To study the mechanism of sequence-dependent deadenylation, we have developed a cell-free system from Drosophila embryos that displays rapid deadenylation of nanos mRNA. The Smaug response elements contained in the nanos 3'-untranslated region are necessary and sufficient to induce deadenylation; thus, Smaug is likely to be involved. Unexpectedly, deadenylation requires the presence of an ATP regenerating system. The activity can be pelleted by ultracentrifugation, and both the Smaug protein and the CCR4.NOT complex, a known deadenylase, are enriched in the active fraction. The same extracts show pronounced translational repression mediated by the Smaug response elements. RNAs lacking a poly(A) tail are poorly translated in the extract; therefore, SRE-dependent deadenylation contributes to translational repression. However, repression is strong even with RNAs either bearing a poly(A) tract that cannot be removed or lacking poly(A) altogether; thus, an additional aspect of translational repression functions independently of deadenylation.  相似文献   

13.
We previously identified a sequence-specific erythroid cell-enriched endoribonuclease (ErEN) activity involved in the turnover of the stable alpha-globin mRNA. We now demonstrate that ErEN activity is regulated by the poly(A) tail. The unadenylated alpha-globin 3' untranslated region (3'UTR) was an efficient substrate for ErEN cleavage, while the polyadenylated 3'UTR was inefficiently cleaved in an in vitro decay assay. The influence of the poly(A) tail was mediated through the poly(A)-binding protein (PABP) bound to the poly(A) tail, which can inhibit ErEN activity. ErEN cleavage of an adenylated alpha-globin 3'UTR was accentuated upon depletion of PABP from the cytosolic extract, while addition of recombinant PABP reestablished the inhibition of endoribonuclease cleavage. PABP inhibited ErEN activity indirectly through an interaction with the alphaCP mRNA stability protein. Sequestration of alphaCP resulted in an increase of ErEN cleavage activity, regardless of the polyadenylation state of the RNA. Using electrophoretic mobility shift assays, PABP was shown to enhance the binding efficiency of alphaCP to the alpha-globin 3'UTR, which in turn protected the ErEN target sequence. Conversely, the binding of PABP to the poly(A) tail was also augmented by alphaCP, implying that a stable higher-order structural network is involved in stabilization of the alpha-globin mRNA. Upon deadenylation, the interaction of PABP with alphaCP would be disrupted, rendering the alpha-globin 3'UTR more susceptible to endoribonuclease cleavage. The data demonstrated a specific role for PABP in protecting the body of an mRNA in addition to demonstrating PABP's well-characterized effect of stabilizing the poly(A) tail.  相似文献   

14.
PUF proteins, a family of RNA-binding proteins, interact with the 3' untranslated regions (UTRs) of specific mRNAs to control their translation and stability. PUF protein action is commonly correlated with removal of the poly(A) tail of target mRNAs. Here, we focus on how PUF proteins enhance deadenylation and mRNA decay. We show that a yeast PUF protein physically binds Pop2p, which is a component of the Ccr4p-Pop2p-Not deadenylase complex, and that Pop2p is required for PUF repression activity. By binding Pop2p, the PUF protein simultaneously recruits the Ccr4p deadenylase and two other enzymes involved in mRNA regulation, Dcp1p and Dhh1p. We reconstitute regulated deadenylation in vitro and demonstrate that the PUF-Pop2p interaction is conserved in yeast, worms and humans. We suggest that the PUF-Pop2p interaction underlies regulated deadenylation, mRNA decay and repression by PUF proteins.  相似文献   

15.
16.
BACKGROUND INFORMATION: mRNA deadenylation [shortening of the poly(A) tail] is often triggered by specific sequence elements present within mRNA 3' untranslated regions and generally causes rapid degradation of the mRNA. In vertebrates, many of these deadenylation elements are called AREs (AU-rich elements). The EDEN (embryo deadenylation element) sequence is a Xenopus class III ARE. EDEN acts by binding a specific factor, EDEN-BP (EDEN-binding protein), which in turn stimulates deadenylation. RESULTS: We show here that EDEN-BP is able to oligomerize. A 27-amino-acid region of EDEN-BP was identified as a key domain for oligomerization. A mutant of EDEN-BP lacking this region was unable to oligomerize, and a peptide corresponding to this region competitively inhibited the oligomerization of full-length EDEN-BP. Impairing oligomerization by either of these two methods specifically abolished EDEN-dependent deadenylation. Furthermore, impairing oligomerization inhibited the binding of EDEN-BP to its target RNA, demonstrating a strong coupling between EDEN-BP oligomerization and RNA binding. CONCLUSIONS: These data, showing that the oligomerization of EDEN-BP is required for binding of the protein on its target RNA and for EDEN-dependent deadenylation in Xenopus embryos, will be important for the identification of cofactors required for the deadenylation process.  相似文献   

17.
The poly(A) tail shortening in mRNA, called deadenylation, is the first rate-limiting step in eukaryotic mRNA turnover, and the polyadenylate-binding protein (PABP) appears to be involved in the regulation of this step. However, the precise role of PABP remains largely unknown in higher eukaryotes. Here we identified and characterized a human PABP-dependent poly(A) nuclease (hPAN) complex consisting of catalytic hPan2 and regulatory hPan3 subunits. hPan2 has intrinsically a 3' to 5' exoribonuclease activity and requires Mg2+ for the enzyme activity. On the other hand, hPan3 interacts with PABP to simulate hPan2 nuclease activity. Interestingly, the hPAN nuclease complex has a higher substrate specificity to poly(A) RNA upon its association with PABP. Consistent with the roles of hPan2 and hPan3 in mRNA decay, the two subunits exhibit cytoplasmic co-localization. Thus, the human PAN complex is a poly(A)-specific exoribonuclease that is stimulated by PABP in the cytoplasm.  相似文献   

18.
Cytoplasmic deadenylation: regulation of mRNA fate   总被引:1,自引:0,他引:1  
  相似文献   

19.
GW182 family proteins interact with Argonaute proteins and are required for the translational repression, deadenylation and decay of miRNA targets. To elicit these effects, GW182 proteins interact with poly(A)‐binding protein (PABP) and the CCR4–NOT deadenylase complex. Although the mechanism of miRNA target deadenylation is relatively well understood, how GW182 proteins repress translation is not known. Here, we demonstrate that GW182 proteins decrease the association of eIF4E, eIF4G and PABP with miRNA targets. eIF4E association is restored in cells in which miRNA targets are deadenylated, but decapping is inhibited. In these cells, eIF4G binding is not restored, indicating that eIF4G dissociates as a consequence of deadenylation. In contrast, PABP dissociates from silenced targets in the absence of deadenylation. PABP dissociation requires the interaction of GW182 proteins with the CCR4–NOT complex. Accordingly, NOT1 and POP2 cause dissociation of PABP from bound mRNAs in the absence of deadenylation. Our findings indicate that the recruitment of the CCR4–NOT complex by GW182 proteins releases PABP from the mRNA poly(A) tail, thereby disrupting mRNA circularization and facilitating translational repression and deadenylation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号