首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pre-mRNA splicing occurs in a large macromolecular RNA-protein complex called the spliceosome. The major components of the spliceosome include snRNP and SR proteins. We have previously identified an SR-like protein, pinin (pnn), which is localized not only in nuclear speckles but also at desmosomes. The nuclear localization of pnn is a dynamic process because pnn can be found not only with SR proteins in nuclear speckles but also in enlarged speckles following treatment of cells with RNA polymerase II inhibitors, DRB, and alpha-amanitin. Using adenovirus E1A and chimeric calcitonin/dhfr construct as a splicing reporter minigene in combination with cellular cotransfection, we found that pnn regulates alternative 5(') and 3(') splicing by decreasing the use of distal splice sites. Regulation of 5(') splice site choice was also observed for RNPS1, a general splicing activator that interacts with pnn in nuclear speckles. The regulatory ability of pnn in alternative 5(') splicing, however, was not dependent on RNPS1 and a pnn mutant, lacking the N-terminal 167 amino acids, behaved like a dominant negative species, inhibiting E1A splicing when applied in splicing assays. These results provide direct evidence that pnn functions as a splicing regulator which participates itself directly in splicing reaction or indirectly via other components of splicing machinery.  相似文献   

2.
Ser/Arg (SR)-rich proteins are important splicing factors in both general and alternative splicing. By binding to specific sequences on pre-mRNA and interacting with other splicing factors via their RS domain they mediate different intraspliceosomal contacts, thereby helping in splice site selection and spliceosome assembly. While characterizing new members of this protein family in Arabidopsis, we have identified two proteins, termed CypRS64 and CypRS92, consisting of an N-terminal peptidyl-prolyl cis/trans isomerase domain and a C-terminal domain with many SR/SP dipeptides. Cyclophilins possess a peptidyl-prolyl cis/trans isomerase activity and are implicated in protein folding, assembly, and transport. CypRS64 interacts in vivo and in vitro with a subset of Arabidopsis SR proteins, including SRp30 and SRp34/SR1, two homologs of mammalian SF2/ASF, known to be important for 5' splice site recognition. In addition, both cyclophilins interact with U1-70K and U11-35K, which in turn are binding partners of SRp34/SR1. CypRS64 is a nucleoplasmic protein, but in most cells expressing CypRS64-GFP fusion it was also found in one to six round nuclear bodies. However, co-expression of CypRS64 with its binding partners resulted in re-localization of CypRS64 from the nuclear bodies to nuclear speckles, indicating functional interactions. These findings together with the observation that binding of SRp34/SR1 to CypRS64 is phosphorylation-dependent indicate an involvement of CypRS64 in nuclear pre-mRNA splicing, possibly by regulating phosphorylation/dephosphorylation of SR proteins and other spliceosomal components. Alternatively, binding of CypRS64 to proteins important for 5' splice site recognition suggests its involvement in the dynamics of spliceosome assembly.  相似文献   

3.
The cellular protein p32 was isolated originally as a protein tightly associated with the essential splicing factor ASF/SF2 during its purification from HeLa cells. ASF/SF2 is a member of the SR family of splicing factors, which stimulate constitutive splicing and regulate alternative RNA splicing in a positive or negative fashion, depending on where on the pre-mRNA they bind. Here we present evidence that p32 interacts with ASF/SF2 and SRp30c, another member of the SR protein family. We further show that p32 inhibits ASF/SF2 function as both a splicing enhancer and splicing repressor protein by preventing stable ASF/SF2 interaction with RNA, but p32 does not block SRp30c function. ASF/SF2 is highly phosphorylated in vivo, a modification required for stable RNA binding and protein-protein interaction during spliceosome formation, and this phosphorylation, either through HeLa nuclear extracts or through specific SR protein kinases, is inhibited by p32. Our results suggest that p32 functions as an ASF/SF2 inhibitory factor, regulating ASF/SF2 RNA binding and phosphorylation. These findings place p32 into a new group of proteins that control RNA splicing by sequestering an essential RNA splicing factor into an inhibitory complex.  相似文献   

4.
Infection with some viruses can alter cellular mRNA processing to favor viral gene expression. We present evidence that herpes simplex virus 1 (HSV-1) protein ICP27, which contributes to host shut-off by inhibiting pre-mRNA splicing, interacts with essential splicing factors termed SR proteins and affects their phosphorylation. During HSV-1 infection, phosphorylation of several SR proteins was reduced and this correlated with a subnuclear redistribution. Exogenous SR proteins restored splicing in ICP27-inhibited nuclear extracts and SR proteins isolated from HSV-1-infected cells activated splicing in uninfected S100 extracts, indicating that inhibition occurs by a reversible mechanism. Spliceosome assembly was blocked at the pre-spliceosomal complex A stage. Furthermore, we show that ICP27 interacts with SRPK1 and relocalizes it to the nucleus; moreover, SRPK1 activity was altered in the presence of ICP27 in vitro. We propose that ICP27 modifies SRPK1 activity resulting in hypophosphorylation of SR proteins impairing their ability to function in spliceosome assembly.  相似文献   

5.
PSKH1, a novel splice factor compartment-associated serine kinase   总被引:1,自引:0,他引:1       下载免费PDF全文
Small nuclear ribonucleoprotein particles (snRNPs) and non-snRNP splicing factors containing a serine/arginine-rich domain (SR proteins) concentrate in splicing factor compartments (SFCs) within the nucleus of interphase cells. Nuclear SFCs are considered mainly as storage sites for splicing factors, supplying splicing factors to active genes. The mechanisms controlling the interaction of the various spliceosome constituents, and the dynamic nature of the SFCs, are still poorly understood. We show here that endogenous PSKH1, a previously cloned kinase, is located in SFCs. Migration of PSKH1-FLAG into SFCs is enhanced during co-expression of T7-tagged ASF/SF2 as well as other members of the SR protein family, but not by two other non-SR nuclear proteins serving as controls. Similar to the SR protein kinase family, overexpression of PSKH1 led to reorganization of co-expressed T7-SC35 and T7-ASF/SF2 into a more diffuse nuclear pattern. This redistribution was not dependent on PSKH1 kinase activity. Different from the SR protein kinases, the SFC-associating features of PSKH1 were located within its catalytic kinase domain and within its C-terminus. Although no direct interaction was observed between PSKH1 and any of the SR proteins tested in pull-down or yeast two-hybrid assays, forced expression of PSKH1-FLAG was shown to stimulate distal splicing of an E1A minigene in HeLa cells. Moreover, a GST-ASF/SF2 fusion was not phosphorylated by PSKH1, suggesting an indirect mechanism of action on SR proteins. Our data suggest a mutual relationship between PSKH1 and SR proteins, as they are able to target PSKH1 into SFCs, while forced PSKH1 expression modulates nuclear dynamics and the function of co-expressed splicing factors.  相似文献   

6.
7.
Pinin (pnn) is an SR-related protein that is ubiquitously expressed in most cell types and functions in regulating pre-mRNA splicing and mRNA export. Previously, we demonstrated that pnn is expressed in all tissues during mouse embryonic development with highest levels of expression in the central nervous system (CNS). Here we show that pnn and other SR proteins including SC35 are differentially expressed in the adult mouse CNS, displaying cell type-specific distribution patterns. Immunohistochemical analysis of whole-brain sections showed that levels of pnn and SR proteins expression were very low or nonexistent in the corpus callosum and white matter of cerebellum and spinal cord. Double-immunostaining with antibodies specific to neuron or glial cells showed that most astrocytes and microglia expressed neither pnn nor SR proteins. In contrast, oligodendrocytes and neurons expressed moderate and high levels, respectively, of both pnn and SR proteins. These results suggest that astrocytes are unique among cell types of neuroblast origin in terms of expression SR family proteins. Our results pave the way for future studies of the functional roles of pnn and SR family proteins in adults.  相似文献   

8.
9.
The C-half of cisplatin resistance-associated overexpressed protein (CROP), an SR-related protein, comprises domains rich in arginine and glutamate residues (RE domain), and is rich in arginine and serine residues (RS domain). We analyzed the role of the individual domains of CROP in cellular localization, subnuclear localization, and protein-protein interaction. CROP fused with green fluorescent protein, GFP-CROP, localized exclusively to the nucleus and showed a speckled intranuclear distribution. The yeast two-hybrid system revealed that CROP interacted with SF2/ASF, an SR protein involved in RNA splicing, as well as CROP itself. The RE and RS domains were necessary for both the intranuclear speckled distribution and the protein-protein interaction. CROP was phosphorylated by mSRPK1, mSRPK2, and Clk1 in vitro, and when cells were treated with cisplatin the subnuclear distribution of GFP-CROP was changed. These results suggest that cisplatin affects RNA splicing by changing the subnuclear distribution of SR proteins including CROP.  相似文献   

10.
The U1 small nuclear ribonucleoprotein 70-kDa protein, a U1 small nuclear ribonucleoprotein-specific protein, has been shown to have multiple roles in nuclear precursor mRNA processing in animals. By using the C-terminal arginine-rich region of Arabidopsis U1-70K protein in the yeast two-hybrid system, we have identified an SC35-like (SR33) and a novel plant serine/arginine-rich (SR) protein (SR45) that interact with the plant U1-70K. The SR33 and SR45 proteins share several features with SR proteins including modular domains typical of splicing factors in the SR family of proteins. However, both plant SR proteins are rich in proline, and SR45, unlike most animal SR proteins, has two distinct arginine/serine-rich domains separated by an RNA recognition motif. By using coprecipitation assays we confirmed the interaction of plant U1-70K with SR33 and SR45 proteins. Furthermore, in vivo and in vitro protein-protein interaction experiments have shown that SR33 protein interacts with itself and with SR45 protein but not with two other members (SRZ21 and SRZ22) of the SR family that are known to interact with the Arabidopsis full-length U-70K only. A Clk/Sty protein kinase (AFC-2) from Arabidopsis phosphorylated four SR proteins (SR33, SR45, SRZ21, and SRZ22). Coprecipitation studies have confirmed the interaction of SR proteins with AFC2 kinase, and the interaction between AFC2 and SR33 is modulated by the phosphorylation status of these proteins. These and our previous results suggest that the plant U1-70K interacts with at least four distinct members of the SR family including SR45 with its two arginine/serine-rich domains, and the interaction between the SR proteins and AFC2 is modulated by phosphorylation. The interaction of plant U1-70K with a novel set of proteins suggests the early stages of spliceosome assembly, and intron recognition in plants is likely to be different from animals.  相似文献   

11.
Members of the highly conserved serine/arginine-rich (SR) protein family are nuclear factors involved in splicing of metazoan mRNA precursors. In mammals, two nuclear import receptors, transportin (TRN)-SR1 and TRN-SR2, are responsible for targeting SR proteins to the nucleus. Distinctive features in the nuclear localization signal between Drosophila and mammalian SR proteins prompted us to examine the mechanism by which Drosophila SR proteins and their antagonist repressor splicing factor 1 (RSF1) are imported into nucleus. Herein, we report the identification and characterization of a Drosophila importin beta-family protein (dTRN-SR), homologous to TRN-SR2, that specifically interacts with both SR proteins and RSF1. dTRN-SR has a broad localization in the cytoplasm and the nucleus, whereas an N-terminal deletion mutant colocalizes with SR proteins in nuclear speckles. Far Western experiments established that the RS domain of SR proteins and the GRS domain of RSF1 are required for the direct interaction with dTRN-SR, an interaction that can be modulated by phosphorylation. Using the yeast model system in which nuclear import of Drosophila SR proteins and RSF1 is impaired, we demonstrate that complementation with dTRN-SR is sufficient to target these proteins to the nucleus. Together, the results imply that the mechanism by which SR proteins are imported to the nucleus is conserved between Drosophila and humans.  相似文献   

12.
13.
Serine/arginine-rich (SR) proteins are splicing regulators that share a modular structure consisting of one or two N-terminal RNA recognition motif domains and a C-terminal RS-rich domain. We investigated the dynamic localization of the Arabidopsis thaliana SR protein RSZp22, which, as we showed previously, distributes in predominant speckle-like structures and in the nucleolus. To determine the role of RSZp22 diverse domains in its nucleolar distribution, we investigated the subnuclear localization of domain-deleted mutant proteins. Our results suggest that the nucleolar localization of RSZp22 does not depend on a single targeting signal but likely involves different domains/motifs. Photobleaching experiments demonstrated the unrestricted dynamics of RSZp22 between nuclear compartments. Selective inhibitor experiments of ongoing cellular phosphorylation influenced the rates of exchange of RSZp22 between the different nuclear territories, indicating that SR protein mobility is dependent on the phosphorylation state of the cell. Furthermore, based on a leptomycin B- and fluorescence loss in photobleaching-based sensitive assay, we suggest that RSZp22 is a nucleocytoplasmic shuttling protein. Finally, with electron microscopy, we confirmed that RSp31, a plant-specific SR protein, is dynamically distributed in nucleolar cap-like structures upon phosphorylation inhibition. Our findings emphasize the high mobility of Arabidopsis SR splicing factors and provide insights into the dynamic relationships between the different nuclear compartments.  相似文献   

14.
15.
Serine/arginine-rich (SR) splicing factors play an important role in constitutive and alternative splicing as well as during several steps of RNA metabolism. Despite the wealth of functional information about SR proteins accumulated to-date, structural knowledge about the members of this family is very limited. To gain a better insight into structure-function relationships of SR proteins, we performed extensive sequence analysis of SR protein family members and combined it with ordered/disordered structure predictions. We found that SR proteins have properties characteristic of intrinsically disordered (ID) proteins. The amino acid composition and sequence complexity of SR proteins were very similar to those of the disordered protein regions. More detailed analysis showed that the SR proteins, and their RS domains in particular, are enriched in the disorder-promoting residues and are depleted in the order-promoting residues as compared to the entire human proteome. Moreover, disorder predictions indicated that RS domains of SR proteins were completely unstructured. Two different classification methods, the charge-hydropathy measure and the cumulative distribution function (CDF) of the disorder scores, were in agreement with each other, and they both strongly predicted members of the SR protein family to be disordered. This study emphasizes the importance of the disordered structure for several functions of SR proteins, such as for spliceosome assembly and for interaction with multiple partners. In addition, it demonstrates the usefulness of order/disorder predictions for inferring protein structure from sequence.  相似文献   

16.
17.
A monoclonal antibody raised against nuclear matrix proteins detected a protein of basic pI in human nuclear matrix protein samples of various cellular origin. The ubiquitously occurring (common) nuclear matrix protein was identified as splicing factor PSF (PTB associated splicing factor). The interaction between the splicing factors PSF and PTB/hnRNP I was confirmed by co-immunoprecipitation from nuclear salt extracts. However, the nuclear localization of PSF and PTB and their distribution in subnuclear fractions differed markedly. Isolated nuclear matrices contained the bulk of PSF, but only minor amounts of PTB. In confocal microscopy both proteins appeared in speckles, the majority of which did not co-localize. Removing a large fraction of the soluble PTB structures by salt extraction revealed some colocalization of the more stable PTB fraction with PSF. These PTB/PSF complexes as well as the observed PSF-PTB interaction may reflect the previously reported presence of PTB and PSF in spliceosomal complexes during RNA processing. The present data, however, point to different cellular distribution and nuclear matrix association of the majority of PSF and PTB.  相似文献   

18.
Lai MC  Kuo HW  Chang WC  Tarn WY 《The EMBO journal》2003,22(6):1359-1369
Alternative splicing of precursor mRNA is often regulated by serine/arginine-rich proteins (SR proteins) and hnRNPs, and varying their concentration in the nucleus can be a mechanism for controlling splice site selection. To understand the nucleocytoplasmic transport mechanism of splicing regulators is of key importance. SR proteins are delivered to the nucleus by transportin-SRs (TRN-SRs), importin beta-like nuclear transporters. Here we identify and characterize a non-SR protein, RNA-binding motif protein 4 (RBM4), as a novel substrate of TRN-SR2. TRN-SR2 interacts specifically with RBM4 in a Ran-sensitive manner. TRN-SR2 indeed mediates the nuclear import of a recombinant protein containing the RBM4 C-terminal domain. This domain serves as a signal for both nuclear import and export, and for nuclear speckle targeting. Finally, both in vivo and in vitro splicing analyses demonstrate that RBM4 not only modulates alternative pre-mRNA splicing but also acts antagonistically to authentic SR proteins in splice site and exon selection. Thus, a novel splicing regulator with opposite activities to SR proteins shares an identical import pathway with SR proteins to the nucleus.  相似文献   

19.
SR and SR-related proteins have been implicated as trans-acting factors that play an important role in splice selection and are involved at specific stages of spliceosome formation. A well-established property of SR protein splicing factors is their ability to influence selection of alternative splice sites in a concentration-dependent manner. Identification of molecules that regulate SR family protein expression is therefore of vital importance in RNA biology. Here we report that depletion of Pnn expression, a SR-related protein with functions involved in pre-mRNA splicing and mRNA export, induces reduced expression of a subset of cellular proteins, especially that of SR family proteins, including SC35, SRm300, SRp55, and SRp40, but not that of other nuclear proteins, such as p53, Mdm2, and ki67. Knocking down Pnn expression was achieved in vitro by siRNA transfection. Expression levels of SR and SR-related proteins in Pnn-depleted cells as compared to those in control cells were evaluated by immunofluorescent staining and Western blot with specific antibodies. In addition, we also demonstrate that loss of Pnn expression could modulate splice site selection of model reporter gene in vivo. Our finding is significant in terms of regulation of SR protein cellular concentration because it reveals that Pnn may play a general role in the control of the cellular amount of family SR proteins through down-regulation of its own expression, thereby providing us with a better understanding of the cellular mechanism by which Pnn fulfills its biological function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号