首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we describe the release of hepoxilin A3 (HxA3) by intact pieces of the rat thoracic aorta and its stimulation by exogenous arachidonic acid but not by the calcium ionophore A23187. Homogenates of the rat aorta metabolize HxA3 via two competing pathways; one involves hepoxilin epoxide hydrolase to form the trihydroxy metabolite, trioxilin A3 (TrXA3), and a second pathway involves conjugation of HxA3 with glutathione via glutathione S-transferase to form a glutathione conjugate, which we refer to as hepoxilin A3-C (HxA3-C), a name based upon the accepted nomenclature for the glutathione conjugate leukotriene C. The formation of HxA3-C was dependent on the presence of reduced glutathione in the incubation medium. HxA3-C formation was greatly enhanced in the presence of TCPO, an epoxide hydrolase inhibitor which blocks utilization of the substrate via hepoxilin epoxide hydrolase. Comparison of HxA3-C formation by several arteries and veins indicated that glutathione conjugation was more evident in veins than arteries. The aorta from spontaneously hypertensive rats was essentially similar in HxA3-C formation to aorta from local normotensive Wistar rats although the aorta from the normotensive Wistar Kyoto rats was much more active than aorta from either of the two other rat types. The biological activity of HxA3 and HxA3-C was investigated on isolated helicoidal strips of the rat aorta. While both compounds were inactive on their own, HxA3 and to a lesser extent HxA3-C potentiated the contractile response induced by norepinephrine. The present results provide evidence of the presence in rat aorta of a new pathway of arachidonic acid metabolism whose products may possess potential regulatory properties on vascular tissue.  相似文献   

2.
The 9,10-mono-ozonide of methyl linoleate was shown to be a substrate for rat hepatic cytosolic, rat lung cytosolic and rat hepatic microsomal glutathione S-transferases (GST). The activities of lung cytosol and liver microsomes with methyl linoleate ozonide (MLO) were found to be high relative to the activity demonstrated by liver cytosol, as compared with their respective activities towards 1-chloro-2,4-dinitrobenzene (CDNB). Only a slight catalytic activity towards the ozonide was noticed for rat lung microsomes. Isoenzyme 2-2 exhibited the highest specific activity (208 nmol/min/mg) when isoenzymes 1-1, 1-2, 2-2, 3-3, 3-4, 4-4 and 7-7 were compared. This isoenzyme accounts for approx. 25% of cytosolic GST protein in rat lung, while in rat liver it represents approx. 9%. This may partly explain the high activity towards the ozonide noticed for rat lung cytosol. No stable conjugates were formed as products of the reaction of MLO with glutathione; although two glutathione-conjugates were noticed on TLC, they were only formed as intermediate compounds. Coupling of an aldehyde dehydrogenase assay or a glutathione reductase assay to the GST-catalyzed conjugation, demonstrated that oxidized glutathione and aldehydes are formed as the major products in the reaction. To further confirm the formation of aldehydes, the products of the GST-catalyzed reaction were incubated with 2,4-dinitrophenylhydrazine, which resulted in hydrazone formation. In conclusion, the activity of the GST towards the ozonide of methyl linoleate is similar to their peroxidase activity with lipid hydroperoxides as substrates.  相似文献   

3.
N Kundu 《Steroids》1974,23(2):155-163
This paper describes a simple and convenient method for the preparation of tritiated mestranol and ethinylestradiol of high specific activity as a prerequisite in the development of the radioimmunoassay of the unlabelled compounds. Radioactive mestranol was prepared from estrone-6,7-3H (40 Ci/mmole) by methylation followed by ethinylation and purification by TLC. Radioactive ethinylestradiol could not be made from this mestranol by demethylation with boron tribromide, but it could be made directly from estrone-6,7-3H by ethinylation, removing the unreacted estrone by Girard's reagent T and purifying the product by TLC. Purities of these compounds were checked by TLC in two solvent systems and finally by the isotopic dilution technique. The specific activity of the final products was calculated by determining the loss of tritium during each step of reaction with a double isotopic method.  相似文献   

4.
In this paper we show that hepoxilin A3 induces the expression of heat shock protein expression in human neutrophils at a concentration of 100 nM using Western blotting techniques employing the use of a commercial monoclonal antibody to HSP72. No regiospecificity was observed as the 8S enantiomer of HxA3 was as active as the 8R enantiomer of HxA3. Comparison of the effects of HxA3 with 12S-HETE and PGA1 indicated that HxA3 was as effective as 12S-HETE although PGA1 was essentially inactive at the same concentration used for these 12-lipoxygenase products.  相似文献   

5.
Glutathione transferase (GST) A3-3 is the most efficient human steroid double-bond isomerase known. The activity with Delta(5)-androstene-3,17-dione is highly dependent on the phenolic hydroxyl group of Tyr-9 and the thiolate of glutathione. Removal of these groups caused an 1.1 x 10(5)-fold decrease in k(cat); the Y9F mutant displayed a 150-fold lower isomerase activity in the presence of glutathione and a further 740-fold lower activity in the absence of glutathione. The Y9F mutation in GST A3-3 did not markedly decrease the activity with the alternative substrate 1-chloro-2,4-dinitrobenzene. Residues Phe-10, Leu-111, and Ala-216 selectively govern the activity with the steroid substrate. Mutating residue 111 into phenylalanine caused a 25-fold decrease in k(cat)/K(m) for the steroid isomerization. The mutations A216S and F10S, separate or combined, affected the isomerase activity only marginally, but with the additional L111F mutation k(cat)/K(m) was reduced to 0.8% of that of the wild-type value. In contrast, the activities with 1-chloro-2,4-dinitrobenzene and phenethylisothiocyanate were not largely affected by the combined mutations F10S/L111F/A216S. K(i) values for Delta(5)-androstene-3,17-dione and Delta(4)-androstene-3,17-dione were increased by the triple mutation F10S/L111F/A216S. The pK(a) of the thiol group of active-site-bound glutathione, 6.1, increased to 6.5 in GST A3-3/Y9F. The pK(a) of the active-site Tyr-9 was 7.9 for the wild-type enzyme. The pH dependence of k(cat)/K(m) of wild-type GST A3-3 for the isomerase reaction displays two kinetic pK(a) values, 6.2 and 8.1. The basic limb of the pH dependence of k(cat) and k(cat)/K(m) disappears in the Y9F mutant. Therefore, the higher kinetic pK(a) reflects ionization of Tyr-9, and the lower one reflects ionization of glutathione. We propose a reaction mechanism for the double-bond isomerization involving abstraction of a proton from C4 in the steroid accompanied by protonation of C6, the thiolate of glutathione serving as a base and Tyr-9 assisting by polarizing the 3-oxo group of the substrate.  相似文献   

6.
5-(Pentafluorobenzoylamino)fluorescein (PFB-F), a new thiol-reactive molecule was synthesized to improve the detection limits and specificity of the assays for glutathione S-transferase (GST) activity and glutathione (GSH). A rapid assay method to measure GSH concentration or GST activity and the simultaneous analysis of multiple samples is possible because the glutathione adduct, GS-TFB-F, is separated from PFB-F by thin-layer chromatography (TLC) and can be quantitated by a fluorescence scanner. The detection limits for GSH and for GST activity using TLC were found to be as low as 10 pmol/microl and 1 ng/microl using equine liver GST, respectively. Determination of GSH concentration or GST activity in bovine pulmonary artery endothelial (BPAE) cell lysates gave a linear response for samples corresponding to 500-2500 cells. PFB-F could also measure GST activities of GST fusion proteins and prove to be a suitable substrate for determining the activities of human GST isozymes and other sources of mammalian GST. The selectivity of PFB-F with GSH was proven by comparing trace amount of the adducts that formed with cysteine and beta-galactosidase to that formed with GSH. The HPLC profile of a reaction mixture where cell lysate was used in place of purified GST, also shows only two main peaks, corresponding to GS-TFB-F and unreacted PFB-F. The selectivity of PFB-F for GSH was further confirmed by exposing BPAE cells to dl-buthionine-[S,R]-sulfoximine (BSO). Our results of GS-TFB-F determination indicate that 12-, 24-, or 36-h incubations with BSO caused 2-, 6-, or 7.6-fold reductions in GSH levels, respectively.  相似文献   

7.
The optical biosensor consisting of a glutathione-S-transferase (GST)-immobilized gel film was developed to detect captan in contaminated water. The sensing scheme was based on the decrease of yellow product, s-(2,4-dinitrobenzene) glutathione, produced from substrates, 1-chloro-2,4-dinitrobenzene (CDNB) and glutathione (GSH), due to the inhibition of GST reaction by captan. Absorbance of the product as the output of enzyme reaction was detected and the light was guided through the optical fibers. The enzyme reactor of the sensor system was fabricated by the gel entrapment technique for the immobilized GST film. The immobilized GST had the maximum activity at pH 6.5. The optimal concentrations of substrates were determined with 1 mM for both of CDNB and GSH. The optimum concentration of enzyme was also determined with 100 μg/ml. The activity of immobilized enzyme was fairly sustained during 30 days. The proposed biosensor could successfully detect the captan up to 2 ppm and the response time to steady signal was about 15 min.  相似文献   

8.
Substrate binding and the subsequent reaction are the two principal phenomena that underlie the activity of enzymes, and many enzyme-like catalysts were generated based on the phenomena. The single chain variable region fragment of antibody 2F3 (scFv2F3) was elicited against hapten GSH-S-DN2phBu, a conjugate of glutathione (GSH), butyl alcohol, and 1-chloro-2,4-dinitrobenzene (CDNB); it can therefore bind both GSH and CDNB, the substrates of native glutathione S-transferases (GSTs). It was shown previously that there is a serine residue that is the catalytic group of GST in the CDR regions of scFv2F3 close to the sulfhydryl of GSH. Thus, we anticipated that scFv2F3 will display GST activity. The experimental results showed that scFv2F3 indeed displayed GST activity that is equivalent to the rat-class GST T-2-2 and exhibited pH- and temperature-dependent catalytic activity. Steady-state kinetic studies showed that the Km values for the substrates are close to those of native GSTs, indicating that scFv2F3 has strong affinities for the substrates. Compared with some other GSTs, its kcat value was found to be low, which could be caused by the similarity between the GSH-S-DN2phBu and the reaction product of GSH and CDNB. These results showed that our approach to imitating enzymes is correct, which is that an active site may catalyze a chemical reaction when a catalytic group locates beside a substrate-binding site of a receptor. It is important to consider product inhibition in hapten design in order to obtain a mimic with a high catalytic efficiency.  相似文献   

9.
Pancreatic islets of Langerhans were perifused with Krebs-bicarbonate solution containing glucose (5 and 10 mM). The perifusate was spiked with tetradeuterated hepoxilin A3 and was extracted and analysed by gas chromatography-mass spectrometry using NICI detection. Evidence is presented showing the presence of hepoxilin A3 as the hydrolysis product trioxilin A3. These results demonstrate for the first time that this pathway is active in intact cells; this finding, taken together with our previous evidence that hepoxilins possess insulin secretagogue properties further supports our hypothesis that these products could play a role as endogenous mediators of insulin release.  相似文献   

10.
The cDNA of a novel human glutathione transferase (GST) of the Alpha class was cloned, and the corresponding protein, denoted GST A3-3, was heterologously expressed and characterized. GST A3-3 was found to efficiently catalyze obligatory double-bond isomerizations of Delta(5)-androstene-3,17-dione and Delta(5)-pregnene-3,20-dione, precursors to testosterone and progesterone, respectively, in steroid hormone biosynthesis. The catalytic efficiency (k(cat)/K(m)) with Delta(5)-androstene-3,17-dione was determined as 5 x 10(6) m(-1) s(-1), which is considerably higher than with any other GST substrate tested. The rate of acceleration afforded by GST A3-3 is 6 x 10(8) based on the ratio between k(cat) and the rate constant for the nonenzymatic isomerization of Delta(5)-androstene-3,17-dione. Besides being high in absolute numbers, the k(cat)/K(m) value of GST A3-3 exceeds by a factor of approximately 230 that of 3beta-hydroxysteroid dehydrogenase/isomerase, the enzyme generally considered to catalyze the Delta(5)-Delta(4) double-bond isomerization. Furthermore, GSTA3-specific polymerase chain reaction analysis of cDNA libraries from various tissues showed a message only in those characterized by active steroid hormone biosynthesis, indicating a selective expression of GST A3-3 in these tissues. Based on this finding and the high activity with steroid substrates, we propose that GST A3-3 has evolved to catalyze isomerization reactions that contribute to the biosynthesis of steroid hormones.  相似文献   

11.
1. Constitutive and ethoxyquin hydrochloride (EQ-HCl)-induced hepatic glutathione (GSH) S-transferase, GSH reductase, and GSH peroxidase activities were determined in 5 strains of 8-10 week old inbred male mice. 2. The constitutive GSH S-transferase (GST) activity varied from 2.9 (SJL/JCR) to 8.9 (C57BL/6NCR) mumol product formed/min/mg protein and the corresponding values for the EQ-HCl-treated mice were in the range of 15.3-25.3 mumol product formed/min/mg protein. 3. EQ-HCl induced GST activity in all the strains examined and this contrasted to the induction activity of Aroclor 1254 which was strain-dependent. GST activity was induced 2.9-fold in Aroclor 1254-responsive (C57BL/6) and 2.8-fold in non-responsive (DBA/2) mice, respectively.  相似文献   

12.
A study of the kinetics of a heterodimeric variant of glutathione transferase (GST) A1-1 has led to the conclusion that, although the wild-type enzyme displays all-of-the-sites reactivity in nucleophilic aromatic substitution reactions, it demonstrates half-of-the-sites reactivity in addition reactions. The heterodimer, designed to be essentially catalytically inactive in one subunit due to a single point mutation (D101K), and the two parental homodimers were analyzed with seven different substrates, exemplifying three types of reactions catalyzed by glutathione transferases (nucleophilic aromatic substitution, addition, and double-bond isomerization reactions). Stopped-flow kinetic results suggested that the wild-type GST A1-1 behaved with half-of-the-sites reactivity in a nucleophilic aromatic substitution reaction, but steady-state kinetic analyses of the GST A1-D101K heterodimer revealed that this was presumably due to changes to the extinction coefficient of the enzyme-bound product. In contrast, steady-state kinetic analysis of the heterodimer with three different substrates of addition reactions provided evidence that the wild-type enzyme displayed half-of-the-sites reactivity in association with these reactions. The half-of-the-sites reactivity was shown not to be dependent on substrate size, the level of saturation of the enzyme with glutathione, or relative catalytic rate.  相似文献   

13.
Human glutathione transferase (GST) A1-1 efficiently catalyzes the isomerization of Delta(5)-androstene-3,17-dione (AD) into Delta(4)-androstene-3,17-dione. High activity requires glutathione, but enzymatic catalysis occurs also in the absence of this cofactor. Glutathione alone shows a limited catalytic effect. S-Alkylglutathione derivatives do not promote the reaction, and the pH dependence of the isomerization indicates that the glutathione thiolate serves as a base in the catalytic mechanism. Mutation of the active-site Tyr(9) into Phe significantly decreases the steady-state kinetic parameters, alters their pH dependence, and increases the pK(a) value of the enzyme-bound glutathione thiol. Thus, Tyr(9) promotes the reaction via its phenolic hydroxyl group in protonated form. GST A2-2 has a catalytic efficiency with AD 100-fold lower than the homologous GST A1-1. Another Alpha class enzyme, GST A4-4, is 1000-fold less active than GST A1-1. The Y9F mutant of GST A1-1 is more efficient than GST A2-2 and GST A4-4, both having a glutathione cofactor and an active-site Tyr(9) residue. The active sites of GST A2-2 and GST A1-1 differ by only four amino acid residues, suggesting that proper orientation of AD in relation to the thiolate of glutathione is crucial for high catalytic efficiency in the isomerization reaction. The GST A1-1-catalyzed steroid isomerization provides a complement to the previously described isomerase activity of 3beta-hydroxysteroid dehydrogenase.  相似文献   

14.
In Pseudomonas saccharophila 2-keto-3-deoxygalactonate-6-P aldolase (EC 4.1.2.21) is induced by growth on galatose while 2-keto-3-deoxygluconate-6-P aldolase (EC 4.1.2.14) is constitutive. These enzymes catalyze identical reactions except for the configuration fixed at C-4 during the condensation reaction. It was found with each enzyme that in a condensation between [3-3H3]pyruvate and D-glyceraldehyde-3-P, the respective condensation products were formed 8 to 10 times faster than tritium was released to water. Since pyruvate deprotonation is obligatory for condensation, the above result requires a hydrogen isotope effect in enolpyruvate formation, which must be then at least partially rate limiting for C--C synthesis. Further, condensation between D-glyceraldehyde-3-P and (3R)-[3-3H, 2H,H]pyruvate or (3S)-[3-3H, 2H,H]pyruvate, as catalyzed by each enzyme, enriched for (3R)- and (3S)-3-3H, 2H-labeled condensation product, respectively. Thus, each enzyme catalyzes C--C and C--H synthesis with retention of configuration at C-3. This shows that the active sites of both enzymes are asymmetric since solutes can only approach a single face of the bound pyruvyl enolate. In addition, the respective aldehyde specific portions of the two active sites must have opposite chiralities, with respect to each other, for correctly orienting the carbonyl faces of the incoming D-glyceraldehyde-3-P, to generate the correct configuration at C-4 of the respective condensation products.  相似文献   

15.
The temporal in vivo expression of the eicosanoids (products of the cyclooxygenase pathway and one product of the 12-lipoxygenase pathway, hepoxilin A3) was investigated after bolus intravenous injection of arachidonic acid in the normal rat and in the genetic rat model of type I insulin-dependent diabetes, the diabetic BB rat. The temporal relationship between the expression of these products and plasma insulin concentrations was also investigated to determine whether any correlation existed between the rise in plasma insulin levels and any of the newly formed eicosanoids. Measurements of the eicosanoids present in whole blood were carried out using the deuterium isotope dilution technique involving separation of pentafluorobenzyl esters, O-methyl oximes, and trimethylsilyl ether derivatives by high-resolution gas chromatography and specific detection by negative ion chemical ionisation mass spectrometry in the selected ion mode. Injection of arachidonic acid resulted in large and statistically significant increases in the blood concentrations of all products within 1 min, with thromboxane B2 (the stable product of thromboxane A2) and trioxilin A3 (the stable product of hepoxilin A3) being the highest (4.5-12 ng/mL). The mean concentrations of thromboxane B2 and trioxilin A3 in blood appeared greater in the diabetic BB rat than in the normal rat, while the opposite was found for 6-keto PGF1 alpha (the stable product of prostacyclin). The apparent greater ratio of thromboxane B2 to 6-keto PGF1 alpha in the diabetic BB rat than in the normal rat supports a prothrombotic nature of platelets associated with diabetes.  相似文献   

16.
Abstract:  An enzyme that possesses glutathione S -transferase (GST) activity was found in the fall webworm, Hyphantria cunea . The enzyme was purified to homogeneity for the first time by ammonium sulphate fractionation and affinity chromatography. The N-terminal sequence of the purified protein was similar to those of Sigma-class GSTs. The purified GST retained more than 75% of its original GST activity after incubation at pH 5–8. Incubation for 30 min at temperatures below 50°C scarcely affected the activity. The enzyme was able to catalyse the reaction of glutathione with 1-chloro-2,4-dinitrobenzene, a universal substrate for GST, as well as with 4-hydroxynonenal, a product of lipid peroxidation.  相似文献   

17.
A glutathione S-transferase (GST) related to the phi (F) class of enzymes only found in plants has been cloned from the Oryza sativa. The GST cDNA was cloned by PCR using oligonucleotide primers based on the OsGSTF5 (GenBank Accession No. AF309382) sequences. The cDNA was composed of a 669-bp open reading frame encoding for 223 amino acids. The deduced peptide of this gene shared on overall identity of 75% with other known phi class GST sequences. On the other hands, the OsGSTF5 sequence showed only 34% identity with the sequence of the OsGSTF3 cloned by our previous study (Cho et al., 2005). This gene was expressed in Escherichia coli with the pET vector system and the gene product was purified to homogeneity by GSH-Sepharose affinity column chromatography. The expressed OsGSTF5 formed a homo-dimer composed of 28 kDa subunit and its pI value was approximately 7.8. The expressed OsGSTF5 displayed glutathione conjugation activity toward 1-chloro-2,4-dinitrobenzene and 1,2-epoxy-3-(p-nitrophenoxy)propane and glutathione peroxidase activity toward cumene hydroperoxide. The OsGSTF5 also had high activities towards the herbicides alachlor, atrazine and metolachlor. The OsGSTF5 was highly sensitive to inhibition by ShexylGSH, benastatin A and hematin. We propose from these results that the expressed OsGSTF5 is a phi class GST and appears to play a role in the conjugation of herbicide and GPOX activity.  相似文献   

18.
Searches with the human Omega glutathione transferase (GST) identified two outlying groups of the GST superfamily in Arabidopsis thaliana which differed from all other plant GSTs by containing a cysteine in place of a serine at the active site. One group consisted of four genes, three of which encoded active glutathione-dependent dehydroascorbate reductases (DHARs). Two DHARs were predicted to be cytosolic, whereas the other contained a chloroplast targeting peptide. The DHARs were also active as thiol transferases but had no glutathione conjugating activity. Unlike most other GSTs, DHARs were monomeric. The other class of GST comprised two genes termed the Lambda GSTs (GSTLs). The recombinant GSTLs were also monomeric and had glutathione-dependent thiol transferase activity. One GSTL was cytosolic, whereas the other was chloroplast-targeted. When incubated with oxidized glutathione, the putative active site cysteine of the GSTLs and cytosolic DHARs formed mixed disulfides with glutathione, whereas the plastidic DHAR formed an intramolecular disulfide. DHAR S-glutathionylation was consistent with a proposed catalytic mechanism for dehydroascorbate reduction. Roles for the cytosolic DHARs and GSTLs as antioxidant enzymes were also inferred from the induction of the respective genes following exposure to chemicals and oxidative stress.  相似文献   

19.
20.
Degenerate primers were designed based on all possible sequences of the N-terminal and C-terminal regions of Delonix regia trypsin inhibitor (DrTI). Five hundred sixty-one bp of polymerase chain reaction (PCR) product was amplified using the above degenerate primers and genomic DNA and cDNA of Delonix regia as a template. The amplified PCR products were cloned and sequenced. DNA sequence analysis of cDNA and genomic clones of DrTI have the same nucleotide sequence in the coding region, and manifested a genomic clone without intervening sequences in the coding region. The amino acid sequence deduced from the DrTI genomic and cDNA clones agreed with that identified via amino acid sequencing analysis, except that two amino acid residues, Ser and Lys, existed between residues Lys141 and Ser142. DrTI open reading frame was then amplified and cloned in-frame with GST in pGEX4T-1 and overexpressed in Escherichia coli to yield a glutathione S-transferase (GST)-fusion protein with a calculated molecular mass of about 45 kDa. The recombinant DrTI (reDrTI) was derived by treating the GST-DrTI fusion protein with thrombin. Both the reDrTI and GST-DrTI fusion protein exhibited a strong identical inhibitory effect on trypsin activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号