首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palmitoylation is the thioester linkage of the fatty acid, palmitate (C16:0), to cysteine residues on a protein or peptide. This dynamic and reversible post-translational modification increases the hydrophobicity of proteins/peptides, facilitating protein-membrane interactions, protein-protein interactions and intracellular trafficking of proteins. Manipulation of palmitoylation provides a new mechanism for control over protein location and function, which may lead to better understanding of cell signaling disorders, such as cancer. Unfortunately, few methods exist to quantitatively monitor protein or peptide palmitoylation. In this study, a capillary electrophoresis-based assay was developed, using MEKC, to measure palmitoylation of a fluorescently-labeled peptide in vitro. A fluorescently-labeled peptide derived from the growth-associated protein, GAP-43, was palmitoylated in vitro using palmitoyl coenzyme A. Formation of a doubly palmitoylated GAP-peptide product was confirmed by mass spectrometry. The GAP-peptide substrate was separated from the palmitoylated peptide product in less than 7 min by MEKC. The rate of in vitro palmitoylation with respect to reaction time, GAP-peptide concentration, pH, and inhibitor concentration were also examined. This capillary electrophoresis-based assay for monitoring palmitoylation has applications in biochemical studies of acyltransferases and thioesterases as well as in the screening of acyltransferase and thioesterase inhibitors for drug development.  相似文献   

2.
《Life sciences》1997,60(9):PL155-PL159
An antisense oligodeoxynucleotide (ODN) targeting 20 bases of the coding sequence of the cloned delta opioid receptor (DOR-1), a mismatched ODN (different from the antisense ODN at 4 bases) or saline was administered to 3 groups of CD-1 mice implanted with naltrexone pellets (7.5 mg) for 7 days. Morphine supersensitivity (i.e., increased potency as defined by decreased morphine ED50 values) was observed 24 h after pellet removal (day 8) in mice treated with saline or mismatch ODN, but not in antisense ODN treated mice. Antisense ODN alone had no effect on basal nociceptive thresholds or morphine analgesia but reduced the analgesic potency of the delta2 opioid agonist [D-Ala2]deltorphin II. These data suggest that the delta2 opioid receptor system participates in the adaptive changes contributing to increased morphine potency following chronic naltrexone treatment.  相似文献   

3.
Protein palmitoylation, a common post-translational lipid modification, plays an important role in protein trafficking and functions. Recently developed palmitoyl-proteomic methods identified many novel substrates. However, the whole picture of palmitoyl substrates has not been clarified. Here, we performed global in silico screening using the CSS-Palm 2.0 program, free software for prediction of palmitoylation sites, and selected 17 candidates as novel palmitoyl substrates. Of the 17 candidates, 10 proteins, including 6 synaptic proteins (Syd-1, transmembrane AMPA receptor regulatory protein (TARP) γ-2, TARP γ-8, cornichon-2, Ca2+/calmodulin-dependent protein kinase IIα, and neurochondrin (Ncdn)/norbin), one focal adhesion protein (zyxin), two ion channels (TRPM8 and TRPC1), and one G-protein-coupled receptor (orexin 2 receptor), were palmitoylated. Using the DHHC palmitoylating enzyme library, we found that all tested substrates were palmitoylated by the Golgi-localized DHHC3/7 subfamily. Ncdn, a regulator for neurite outgrowth and synaptic plasticity, was robustly palmitoylated by the DHHC1/10 (zDHHC1/11; z1/11) subfamily, whose substrate has not yet been reported. As predicted by CSS-Palm 2.0, Cys-3 and Cys-4 are the palmitoylation sites for Ncdn. Ncdn was specifically localized in somato-dendritic regions, not in the axon of rat cultured neurons. Stimulated emission depletion microscopy revealed that Ncdn was localized to Rab5-positive early endosomes in a palmitoylation-dependent manner, where DHHC1/10 (z1/11) were also distributed. Knockdown of DHHC1, -3, or -10 (z11) resulted in the loss of Ncdn from Rab5-positive endosomes. Thus, through in silico screening, we demonstrate that Ncdn and the DHHC1/10 (z1/11) and DHHC3/7 subfamilies are novel palmitoyl substrate-enzyme pairs and that Ncdn palmitoylation plays an essential role in its specific endosomal targeting.  相似文献   

4.
Interleukin-1beta (IL-1beta) is a cytokine involved in homeostatic processes of the immune system and specifically in inflammatory reactions. The nonapeptide of human IL-1beta (VQGEESNDK, position 163-171) has been shown to retain adjuvant and immunostimulatory activities of the native molecule without any inflammatory and pyrogenic properties. A lipophilic derivative of IL-1beta nonapeptide having a palmitoyl residue at the amino terminus was synthesized in order to determine the effects of such structural modification on its bioactivities. The structurally modified peptide derivative, palmitoylated peptide, significantly protected C3H/HeN mice against potentially lethal doses of ionizing radiation. The dose reduction factor was found to be 1.07. Hematological studies show improved recovery of red blood cells and platelets in irradiated and palmitoylated peptide treated mice as compared with the untreated and irradiated group. These results suggest the importance of the derivatization of small peptides of radioprotective, but toxic cytokines in order to enhance radioprotective activity while reducing unwanted toxic side effects.  相似文献   

5.
Putative a-factor peptides YIIKGVFWADP, YIIKGVFWANP, YIIKGLFWADP, YIIKGLFWANP, YIIKGVFWDPA, and YIIKGVFWDPACVIA and several peptide derivatives were synthesized and were found to be inactive in growth arrest assays, yet they blocked the activity of biological a-factor. Antagonism was greatest with YIIKGVFWDPAC(palmitoyl)VIA. Thus, the structure of a-factor may be a lipopeptide resembling this palmitoylated pentadecapeptide.  相似文献   

6.
Many eukaryotic proteins are posttranslationally modified by the esterification of cysteine thiols to long-chain fatty acids. This modification, protein palmitoylation, is catalyzed by a large family of palmitoyl acyltransferases that share an Asp-His-His-Cys Cys-rich domain but differ in their subcellular localizations and substrate specificities. In Trypanosoma brucei, the flagellated protozoan parasite that causes African sleeping sickness, protein palmitoylation has been observed for a few proteins, but the extent and consequences of this modification are largely unknown. We undertook the present study to investigate T. brucei protein palmitoylation at both the enzyme and substrate levels. Treatment of parasites with an inhibitor of total protein palmitoylation caused potent growth inhibition, yet there was no effect on growth by the separate, selective inhibition of each of the 12 individual T. brucei palmitoyl acyltransferases. This suggested either that T. brucei evolved functional redundancy for the palmitoylation of essential palmitoyl proteins or that palmitoylation of some proteins is catalyzed by a noncanonical transferase. To identify the palmitoylated proteins in T. brucei, we performed acyl biotin exchange chemistry on parasite lysates, followed by streptavidin chromatography, two-dimensional liquid chromatography-tandem mass spectrometry protein identification, and QSpec statistical analysis. A total of 124 palmitoylated proteins were identified, with an estimated false discovery rate of 1.0%. This palmitoyl proteome includes all of the known palmitoyl proteins in procyclic-stage T. brucei as well as several proteins whose homologues are palmitoylated in other organisms. Their sequences demonstrate the variety of substrate motifs that support palmitoylation, and their identities illustrate the range of cellular processes affected by palmitoylation in these important pathogens.  相似文献   

7.
Although protein palmitoylation is essential for targeting many important signaling proteins to the plasma membrane, the mechanism by which palmitoylation occurs is uncharacterized, since the enzyme(s) responsible for this modification remain unidentified. To study palmitoyl acyl transferase (PAT) activity, we developed an in vitro palmitoylation (IVP) assay using a fluorescently labeled substrate peptide, mimicking the N-terminal palmitoylation motif of proteins such as non-receptor Src-related tyrosine kinases. The palmitoylated and non-palmitoylated forms of the peptide were resolved by reverse-phase HPLC and detected by fluorescence. The method was optimized for PAT activity using lysates from the MCF-7 and Hep-G2 human tumor cell lines. The PAT activity was inhibited by boiling, reducing the incubation temperature, or adding 10 microM 2-bromopalmitate, a known palmitoylation inhibitor. This IVP assay provides the first method that is suitable to study all facets of the palmitoylation reaction, including peptide palmitoylation by PAT(s), depalmitoylation by thioesterases, and evaluation of potential palmitoylation inhibitors.  相似文献   

8.
Surfactant protein C (SP-C) is a lipopeptide that contains two thioester-linked palmitoyl groups and is considered to be important for formation of the alveolar surface active lipid film. Here, a non- or dipalmitoylated SP-C analogue (SP-C(Leu)), in which all helical Val residues were replaced with Leu and Cys-5 and Cys-6 were replaced with Ser, was tested for surface activity in a captive bubble system (CBS). SP-C(Leu), either palmitoylated at Ser-5 and Ser-6 or non-palmitoylated, was added to mixtures of 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/phosphatidyl glycerol (PG)/palmitic acid (PA), 68:22:9, (by mass) at a concentration of 2 and 5%. With 2% peptide, surface film formation was rapid, reaching a surface tension below 25 mN/m within 5 s, but the samples with 5% SP-C(Leu) required more than 20 s to reach values below 25 mN/m. Minimum surface tension for the samples with dipalmitoylated SP-C(Leu) was below 1.5 mN/m and very stable, as the surface tension increased by less than 0.5 mN/m within 10 min at constant bubble volume. Minimum surface tension for the non-palmitoylated SP-C(Leu) was approximately 2 and 5 mN/m for 2 and 5% peptide, respectively, but the films were less stable as seen by frequent bubble clicking at low surface tensions. Films with dipalmitoylated SP-C(Leu) that were dynamically cycled at 20-30 cycles/min were substantially less compressible at a surface tension of 20 mN/m (0.007 m/mN) than those that contained the non-palmitoylated peptide (0.02 m/mN). After subphase depletion, the incorporation of lipids into the surface active film during initial bubble expansion occurred at a relatively low surface tension (about 35 mN/m) for the samples with dipalmitoylated SP-C(Leu) compared to approximately 45 mN/m for those containing the non-palmitoylated peptide. Furthermore, for samples that contained non-palmitoylated SP-C(Leu), the ability to reach near zero stable surface tension was lost after a few adsorption steps, whereas with the dipalmitoylated peptide the film quality did not deteriorate even after more than 10 expansion steps and the incorporation of reservoir material equivalent to more than two monolayers. It appears that the covalently linked palmitoyl groups of the SP-C analogue studied are important for the mechanical stability of the lipid film, for the capacity to incorporate material from the reservoir into the surface active film upon area expansion, and for the low film compressibility of dynamically cycled films.  相似文献   

9.
The release of unaltered nucleic bases from gamma-irradiated DNA in a dilute buffered aqueous solution was studied in both salmon sperm and superhelical viral DNA. Analyses of freed bases were made by high-performance liquid chromatography. An elution protocol was developed for maximum separation of the four nucleic bases and nucleosides with a sensitivity of 10-20 pmol of nucleic base. It was found that: (i) both prompt and delayed release of bases postirradiation occur in both types of DNA; (ii) these yields (G-values) were measured to be 10-15 times higher for the salmon sperm DNA in comparison to the SV40 DNA; (iii) the A-T/G-C ratio in the DNA was not reflected in the ratios of the released base; and (iv) based on measurements made by us of DNA strand breaks in SV40 DNA (unpublished results), less than half of all breaks result in the release of an undamaged base.  相似文献   

10.
Xue L  Jahng WJ  Gollapalli D  Rando RR 《Biochemistry》2006,45(35):10710-10718
Lecithin retinol acyl transferase (LRAT) has the essential role of catalyzing the transfer of an acyl group from the sn-1 position of lecithin to vitamin A to generate all-trans-retinyl esters (tREs). In vitro studies had shown previously that LRAT also can exchange palmitoyl groups between RPE65, a tRE binding protein essential for vision, and tREs. This exchange is likely to be of regulatory significance in the operation of the visual cycle. In the current study, the substrate specificity of LRAT is explored with palmitoylated amino acids and dipeptides as RPE65 surrogates. Both O- and S-substituted palmitoylated analogues are excellent substrates for tLRAT, a readily expressed and readily purified form of LRAT. Using vitamin A as the palmitoyl acceptor, tREs are readily formed. The cognate of these reactions occurs in crude retinal pigment epithelial (RPE) membranes as well. RPE membranes containing LRAT transfer palmitoyl groups from radiolabeled [1-(14)C]-l-alpha-dipalmitoyl diphosphatidylcholine (DPPC) to RPE65. Palmitoyl transfer is abolished by preincubation with a specific LRAT antagonist both in membranes and with purified tLRAT. These experiments are consistent with an expanded role for LRAT function as a protein palmitoyl transferase.  相似文献   

11.
Antisense oligonucleotides provide a promising therapeutic approach for several disorders including cancer. Chemical stability, controlled release, and intracellular delivery are crucial factors determining their efficacy. Gels composed of nanofibrous peptide network have been previously suggested as carriers for controlled delivery of drugs to improve stability and to provide controlled release, but have not been used for oligonucleotide delivery. In this work, a self-assembled peptide nanofibrous system is formed by mixing a cationic peptide amphiphile (PA) with Bcl-2 antisense oligodeoxynucleotide (ODN), G3139, through electrostatic interactions. The self-assembly of PA-ODN gel was characterized by circular dichroism, rheology, atomic force microscopy (AFM) and scanning electron microscopy (SEM). AFM and SEM images revealed establishment of the nanofibrous PA-ODN network. Due to the electrostatic interactions between PA and ODN, ODN release can be controlled by changing PA and ODN concentrations in the PA-ODN gel. Cellular delivery of the ODN by PA-ODN nanofiber complex was observed by using fluorescently labeled ODN molecule. Cells incubated with PA-ODN complex had enhanced cellular uptake compared to cells incubated with naked ODN. Furthermore, Bcl-2 mRNA amounts were lower in MCF-7 human breast cancer cells in the presence of PA-ODN complex compared to naked ODN and mismatch ODN evidenced by quantitative RT-PCR studies. These results suggest that PA molecules can control ODN release, enhance cellular uptake and present a novel efficient approach for gene therapy studies and oligonucleotide based drug delivery.  相似文献   

12.
Zhao Z  Hou J  Xie Z  Deng J  Wang X  Chen D  Yang F  Gong W 《The protein journal》2010,29(8):531-537
Research has shown that the palmitoyl group of α-tubulin mediates the hydrophobic interaction between microtubules and intracellular membranes and that palmitoylated tubulin plays a role in signal transduction. There are 20 cysteine residues per α/β tubulin heterodimer. C376 of α-tubulin was reported to be predominantly palmitoylated and C20, C213 and C305 of α-tubulin were palmitoylated at lower levels. The previous method used for the analysis of the palmitoylation sites on α-tubulin was based on 3H-labeling, enzymolysis, purification and sequencing. This approach, although efficient, is laborious. Mass spectrometry (MS), especially tandem MS, has been shown to be a successful method for identification of various post-translational modifications of proteins. We report here a convenient MS-based method to comprehensively analyze the palmitoylation sites of the α/β tubulin heterodimer. Acyl-biotinyl exchange chemistry and streptavidin agarose affinity purification were applied to enrich palmitoylated peptides from tubulin. After nano-LC-MS/MS analysis, database searching and manual analysis of the spectra revealed that 11 cysteine residues of the α/β tubulin heterodimer were palmitoylated.  相似文献   

13.
Conformational analyses of a recombinant mouse tooth enamel amelogenin (rM179) were performed using circular dichroism (CD), fluorescence, differential scanning calorimetry, and sedimentation equilibrium studies. The results show that the far-UV CD spectra of rM179 at acidic pH and 10 degrees C are different from the spectra of random coil in 6 M GdnHCl. A near-UV CD spectrum of rM179 at 10 degrees C is similar to that of rM179 in 6 M GdnHCl, which indicates that aromatic residues of native structure are exposed to solvent and rotate freely. Far-UV CD values of rM179 at 80 degrees C are different from that of random-coil structure in 6 M GdnHCl, which suggests that rM179 at 80 degrees C has specific secondary structures. A gradual thermal transition was observed by far-UV CD, which is interpreted as a weak cooperative transition from specific secondary structures to other specific secondary structures. The fluorescence emission maximum for the spectrum due to Trp residues in rM179 at 10 degrees C shows the same fluorescence emission maximum as rM179 in 6 M GdnHCl and amino acid Trp, which indicates that the three Trp in rM179 are exposed to solvent. Deconvolution of differential scanning calorimetry curve gives the population of three states (A, I, and C states). These results indicate that three states (A, I, and C) have specific secondary structures, in which hydrophobic and Trp residues are exposed to the solvent. The thermodynamic characteristics of rM179 are unique and different from a typical globular protein, proline-rich peptides, and a molten globule state.  相似文献   

14.
15.
Numerous proteins that are involved in cell signaling and viral replication require post-translational modification by palmitoylation to function properly. The molecular details by which this palmitoyl modification affects protein function remain poorly understood. To facilitate in vitro biochemical and structural studies of the role of palmitoylation on protein function, a method was developed for alkylating peptides with saturated C16 groups at cysteine residues and demonstrated using peptides derived from the palmitoylated region of Sindbis virus E2 glycoprotein. The synthetic approach takes advantage of disulfide chemistry to specifically modify only the cysteine residues within peptides and covalently links C16 groups via disulfide bridges using a new thioalkylating reagent, hexyldexyldithiopyridine. The chemistry presented here takes place in solution under mild conditions without the need for protection of the peptide functional groups. A method for purifying these modified peptides is also described. This protocol can be of general use to investigators studying the role of palmitoylation in biological systems.  相似文献   

16.
Many important signaling proteins require the posttranslational addition of fatty acid chains for their proper subcellular localization and function. One such modification is the addition of palmitoyl moieties by enzymes known as palmitoyl acyltransferases (PATs). Substrates for PATs include C-terminally farnesylated proteins, such as H- and N-Ras, as well as N-terminally myristoylated proteins, such as many Src-related tyrosine kinases. The molecular and biochemical characterization of PATs has been hindered by difficulties in developing effective methods for the analysis of PAT activity. In this study, we describe the use of cell-permeable, fluorescently labeled lipidated peptides that mimic the PAT recognition domains of farnesylated and myristoylated proteins. These PAT substrate mimetics are accumulated by SKOV3 cells in a saturable and time-dependent manner. Although both peptides are rapidly palmitoylated, the SKOV3 cells have a greater capacity to palmitoylate the myristoylated peptide than the farnesylated peptide. Confocal microscopy indicated that the palmitoylated peptides colocalized with Golgi and plasma membrane markers, whereas the corresponding nonpalmitoylatable peptides accumulated in the Golgi but did not traffic to the plasma membrane. Overall, these studies indicate that the lipidated peptides provide useful cellular probes for quantitative and compartmentalization studies of protein palmitoylation in intact cells.  相似文献   

17.
As shown in the companion article, tubulin is posttranslationally modified in vivo by palmitoylation. Our goal in this study was to identify the palmitoylation sites by protein structure analysis. To obtain quantities of palmitoylated tubulin required for this analysis, a cell-free system for enzymatic [3H]palmitoylation was developed and characterized in our companion article. We then developed a methodology to examine directly the palmitoylation of all 451 amino acids of alpha-tubulin. 3H-labeled palmitoylated alpha-tubulin was cleaved with cyanogen bromide (CNBr). The CNBr digest was resolved according to peptide size by gel filtration on Sephadex LH60 in formic acid:ethanol. The position of 3H-labeled palmitoylated amino acids in peptides could not be identified by analysis of the Edman degradation sequencer product because the palmitoylated sequencer products were lost during the final derivatization step to phenylthiohydantoin derivatives. Modification of the gas/liquid-phase sequencer to deliver the intermediate anilinothiozolinone derivative, rather than the phenylthiohydantoin derivative, identified the cycle containing the 3H-labeled palmitoylated residue. Therefore, structure analysis of peptides obtained from gel filtration necessitated dual sequencer runs of radioactive peptides, one for sequence analysis and one to identify 3H-labeled palmitoylated amino acids. Further cleavage of the CNBr peptides by trypsin and Lys-C protease, followed by gel filtration on Sephadex LH60 and dual sequencer runs, positioned the 3H-labeled palmitoylated amino acid residues in peptides. Integration of all the available structural information led to the assignment of the palmitoyl moiety to specific residues in alpha-tubulin. The palmitoylated residues in alpha-tubulin were confined to cysteine residues only. The major site for palmitoylation was cysteine residue 376.  相似文献   

18.
Pure rat brain tubulin is readily palmitoylated in vitro using [3H]palmitoyl CoA but no added enzymes. A maximum of approximately six palmitic acids are added per dimer in 2-3 h at 36-37 degrees C under native conditions. Both alpha and beta tubulin are labeled, and 63-73% of the label was hydroxylamine-labile, presumed thioesters. Labeling increases with increasing pH and temperature, and with low concentrations of guanidine HCl or KCl (but not with urea) to a maximum of approximately 13 palmitates/dimer. High SDS and guanidine HCl concentrations are inhibitory. At no time could all 20 cysteine residues of the dimer be palmitoylated. Polymerization to microtubules, or use of tubulin S, markedly decreases the accessibility of the palmitoylation sites. Palmitoylation increases the electrophoretic mobility of a portion of alpha tubulin toward the beta band. Palmitoylated tubulin binds a colchicine analogue normally, but during three warm/cold polymerization/depolymerization cycles there is a progressive loss of palmitoylated tubulin, indicating decreased polymerization competence. We postulate that local electrostatic factors are major regulators of reactivity of tubulin cysteine residues toward palmitoyl CoA, and that the negative charges surrounding a number of the cysteines are sensitive to negative charges on palmitoyl CoA.  相似文献   

19.
A salt-stable complex of protein and viral DNA obtained from Simian virus 40 (SV40)-infected monkey cells or mature SV40 virions has a novel structure. When viewed by high resolution electron microscopy, the circular SV40 DNA molecule has bound to it one to three globular protein "knobs". Using ecoRI and hpaII restriction endonucleases, each of which can cleave SV40 DNA once at a known location (10, 11, 12, 14), the bound protein can be localized at 0.7 plus or minis 0.05 on the SV40 DNA physical map (SV40 fractional length, clockwise from the ecoRI endonuclease-cleavage site).  相似文献   

20.
The conformational effect of the interaction between various fusogenic peptides and an 18mer single stranded antisense oligonucleotide (ODN), targeted towards the green fluorescent protein mRNA, has been studied by circular dichroism spectroscopy in water and in the presence of anionic lysolipid micelles. The peptides used were the third helix of Antennapedia homeodomain pAntp-(43-58), the flock house virus FHV-gamma-(364-407) peptide, and its N-terminal gamma1-(364-384) and C-terminal gamma2-(390-407) fragments. The most significant conformational changes were observed in ODN-pAntp-(43-58) and ODN-FHV-gamma2 complexes. The pAntp-(43-58) forms a complex with ODN through electrostatic interaction resulting in profound changes in the conformation of both the peptide and the ODN. In the case of FHV-gamma2 peptide the complex formation takes place without altering the structure of ODN, and the decreased ratio of deltaepsilon208/deltaepsilon222 reflects the insertion of the complexed peptide into the micelle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号