首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have discovered an enzyme in the cytosol of Escherichia coli that generates lipid A disaccharides from monosaccharide precursors by the following route: 2,3-diacyl-GlcN-1-P + UDP-2,3-diacyl-GlcN---- 2,3-diacyl-GlcN (beta, 1----6) 2,3-diacyl-GlcN-1-P + UDP. Previous studies from our laboratory have documented the presence in vivo of the precursors 2,3-diacylglucosamine 1-phosphate (2,3-diacyl-GlcN-1-P) (lipid X of E. coli) and UDP-2,3-diacylglucosamine (UDP-2,3-diacyl-GlcN) (Bulawa, C.E., and Raetz, C.R.H.J. Biol. Chem. 259, 4846-4851). Both substrates are novel glucosamine-derived phospholipids, acylated with beta-hydroxymyristoyl moieties, and they accumulate in E. coli mutants defective in the pgsB gene. Synthetic ADP-, GDP-, and CDP-2,3-diacylglucosamines are inefficient substrates compared to the naturally occurring UDP derivative. The free-acid form of the tetraacyldisaccharide 1-phosphate product (C68H129N2O20P) that is generated in vitro has Mr = 1325.74 as judged by fast atom bombardment mass spectrometry. Mild acid hydrolysis (0.1 M HCl for 30 min at 100 degrees C) liberates greater than 95% of the phosphate moiety as Pi. Detailed analysis by 1H and 13C NMR spectroscopy confirms the presence of a phosphate residue at position 1 of the disaccharide, an alpha-anomeric configuration at the reducing end, and a beta, 1----6 linkage between the two glucosamines. Importantly the disaccharide 1-phosphate synthase is missing in extracts of E. coli strains harboring the pgsB1 mutation, consistent with the massive accumulation of 2,3-diacyl-GlcN-1-P and UDP-2,3-diacyl-GlcN in vivo. The enzymatic reaction reported here represents a major biosynthetic route for the formation of lipid A disaccharides in E. coli and other Gram-negative bacteria. An in vitro system for the biosynthesis of lipid A disaccharides has not been described previously.  相似文献   

2.
Lipid A disaccharide synthase of Escherichia coli catalyzes the reaction 2,3-diacyl-GlcN-1-P + UDP-2,3-diacyl-GlcN----2',3'-diacyl-GlcN (beta,1'----6)2,3-diacyl-GlcN-1-P + UDP (Ray, B. L., Painter, G., and Raetz, C. R. H. (1984) J. Biol. Chem. 259, 4852-4859). Using a strain that overproduces the enzyme about 200-fold we have devised a simple purification to near homogeneity, utilizing two types of dye-ligand resins and heparin-agarose. The overall purification starting with membrane-free extracts was 54-fold (16,000-fold relative to wild-type extracts) with a 31% yield. The subunit molecular mass determined by sodium dodecyl sulfate gel electrophoresis is approximately 42,000 daltons, and the native enzyme appears to be a dimer. The amino-terminal sequence is (X)-(Thr)-Glu-Gln-(X)-Pro-Leu-Thr-Ie-Ala..., consistent with the results predicted from the DNA sequence, Met-Thr-Glu-Gln-Arg-Pro-Leu-Thr-Ile-Ala.... The purified enzyme displays a strong kinetic preference for sugar substrates bearing two fatty acyl moieties, but it is, nevertheless, very useful for the semisynthetic preparation of many lipid A analogs. Gel filtration studies demonstrate that the natural substrates (2,3-diacyl-GlcN-1-P and UDP-2,3-diacyl-GlcN) form micelles (n approximately equal to 300), rather than bilayers, under conditions used to assay the enzyme. Unlike most enzymes of glycerophospholipid synthesis, the lipid A disaccharide synthase does not require the presence of a detergent for catalytic activity. At 1 mM UDP-2,3-diacyl-GlcN the Vmax and Km values for 2,3-diacyl-GlcN-1-P are 14,028 +/- 513 nmol/min/mg and 0.27 +/- 0.02 mM. When 2,3-diacyl-GlcN-1-P is maintained at 1 mM, they are 12,368 +/- 472 nmol/min/mg and 0.11 +/- 0.01 mM for UDP-2,3-diacyl-GlcN.  相似文献   

3.
The Gram-negative bacterium Escherichia coli has previously been shown to utilize two unique glucosamine (GlcN)-derived phospholipids in the biosynthesis of lipid A disaccharides (Bulawa, C.E., and Raetz, C. R.H. (1984) J. Biol. Chem. 259, 4846-4851; Ray, B. L., Painter, G.L., and Raetz, C.R.H. (1984) J. Biol. Chem. 259, 4852-4859. We now present evidence that these compounds, UDP-2,3-diacyl-GlcN and 2,3-diacyl-GlcN-1-phosphate (2,3-diacyl-GlcN-1-P), are generated in extracts of E. coli by fatty acylation of UDP-GlcNAc. The initial reaction is an O-acylation of the glucosamine ring, presumably of the 3-OH group, with (R)-beta-hydroxymyristate, followed by removal of the acetyl moiety, and further fatty acylation of the N atom with (R)-beta-hydroxymyristate to yield UDP-2,3-diacyl-GlcN. Hydrolysis of the pyrophosphate bridge in this molecule gives 2,3-diacyl-GlcN-1-P + UMP. In vivo pulse labeling with 32Pi supports this postulated pathway, since UDP-2,3-diacyl-GlcN is labeled prior to 2,3-diacyl-GlcN-1-P. UDP-glucosamine is inactive as a substrate in the initial acylation reaction. These acylations show an absolute specificity for fatty acyl moieties activated with acyl carrier protein. No reaction is detected with fatty acyl-CoA or free fatty acid. The fatty acylation of sugar nucleotides has not been reported previously in E. coli or any other organism.  相似文献   

4.
The lipid A disaccharide of the Escherichia coli envelope is synthesized from the two fatty acylated glucosamine derivatives UDP-N2,O3-bis[(R)-3-hydroxytetradecanoyl]-alpha-D- glucosamine (UDP-2,3-diacyl-GlcN) and N2,O3-bis[(R)-3-hydroxytetradecanoyl]-alpha-D-glucosamine 1-phosphate (2,3-diacyl-GlcN-1-P) [Ray, B. L., Painter, G., & Raetz, C. R. H. (1984) J. Biol. Chem. 259, 4852-4859]. We have previously shown that UDP-2,3-diacyl-GlcN is generated in extracts of E. coli by fatty acylation of UDP-GlcNAc, giving UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc as the first intermediate, which is rapidly converted to UDP-2,3-diacyl-GlcN [Anderson, M. S., Bulawa, C. E., & Raetz, C. R. H. (1985) J. Biol. Chem. 260, 15536-15541; Anderson, M. S., & Raetz, C. R. H. (1987) J. Biol. Chem. 262, 5159-5169]. We now demonstrate a novel enzyme in the cytoplasmic fraction of E. coli, capable of deacetylating UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc to form UDP-3-O-[(R)-3-hydroxymyristoyl]glucosamine. The covalent structure of the previously undescribed UDP-3-O-[(R)-3-hydroxymyristoyl] glucosamine intermediate was established by 1H NMR spectroscopy and fast atom bombardment mass spectrometry. This material can be made to accumulate in E. coli extracts upon incubation of UDP-3-O-[(R)-3- hydroxymyristoyl]-GlcNAc in the absence of the fatty acyl donor [(R)-3-hydroxymyristoyl]-acyl carrier protein. However, addition of the isolated deacetylation product [UDP-3-O-[(R)-3-hydroxymyristoyl] glucosamine] back to membrane-free extracts of E. coli in the presence of [(R)-3-hydroxymyristoyl]-acyl carrier protein results in rapid conversion of this compound into the more hydrophobic products UDP-2,3-diacyl-GlcN, 2,3-diacyl-GlcN-1-P, and O-[2-amino-2-deoxy-N2,O3- bis[(R)-3-hydroxytetradecanoyl]-beta-D-glucopyranosyl]-(1----6)-2-amino- 2-deoxy-N2,O3-bis[(R)-3-hydroxytetradecanoyl]-alpha-D- glucopyranose 1-phosphate (tetra-acyldisaccharide-1-P), demonstrating its competency as a precursor. In vitro incubations using [acetyl-3H]UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc confirmed release of the acetyl moiety in this system as acetate, not as some other acetyl derivative. The deacetylation reaction was inhibited by 1 mM N-ethylmaleimide, while the subsequent N-acylation reaction was not. Our observations provide strong evidence that UDP-3-O-[(R)-3-hydroxymyristoyl]glucosamine is a true intermediate in the biosynthesis of UDP-2,3-diacyl-GlcN and lipid A.  相似文献   

5.
Escherichia coli mutants defective in the pgsB gene are phosphatidylglycerol-deficient in certain genetic settings and accumulate novel, glucosamine-derived phospholipids (Nishijima, M., and Raetz, C. R. H. (1979) J. Biol. Chem. 254, 7837-7844). The simplest of these compounds is 2,3-diacylglucosamine 1-phosphate (2,3-diacyl-GlcN-1-P) ("lipid X" of E. coli), in which beta-hydroxymyristoyl moieties are the sole fatty acid substituents (Takayama, K., Qureshi, N., Mascagni, P., Nashed, M. A., Anderson, L., and Raetz, C. R. H. (1983) J. Biol. Chem. 258, 7379-7385). We now report a sensitive radiochemical method for detection of 2,3-diacyl-GlcN-1-P in wild type E. coli and demonstrate that there are about 4000 molecules/cell (0.02% of the total CHCl3-soluble phosphorus). In mutants bearing the pgsB1 lesion, the levels are 100- to 300-fold higher. In addition, we have discovered a novel liponucleotide, UDP-2,3-diacyl-GlcN, that also accumulates in conjunction with the pgsb1 mutation. This material represents 0.005% of the wild type phospholipid and accumulates 50- to 100-fold in the mutant. The identification of UDP-2,3-diacyl-GlcN in E. coli is based on: 1) migration of a minor 32P-labeled lipid from wild type and mutant cells with a UDP-2,3-diacyl-GlCn standard during two-dimensional thin layer chromatography; 2) susceptibility of this 32P-labeled material to cleavage by a liponucleotide-specific pyrophosphatase; and 3) chromatographic identification of [32P]UMP and [32P]2,3-diacyl-GlcN-1-P (lipid X) as the sole products of the enzymatic degradation. As shown in the accompanying article, this novel nucleotide is crucial for biosynthesis of lipid A disaccharides in extracts of E. coli and Salmonella typhimurium.  相似文献   

6.
C F Midelfort  I A Rose 《Biochemistry》1977,16(8):1590-1596
Escherichia coli glucosamine-6-phosphate isomerase is specific for removal of the 1-pro-R hydrogen of fructose 6-phosphate (fructose-6-P). The conversion of [2-3H]glucosamine-6-P to fructose-6-P plus ammonia is accompanied by 99% exchange of tritium with water and 0.6% transfer to C-1 of fructose-6-P. The enzyme is active toward alpha-glucosamine-6-P and apparently inactive toward the beta anomer. The combination of the above results supports a cisenolamine intermediate for the reaction. The labeling of substrate and product pools in tritiated water shows that the two halves of the reaction are each freely reversible. No single step appears to be rate determining. 2-Amino-2-deoxyglucitol-6-P is an unusually strong competitive inhibitor (K1 = 2 X 10(-7) M, compared with the Km = 4 X 10(-4) M for glucosamine-6-P), suggesting the enzyme has a strong affinity for the open-chain form of glucosamine-6-P.  相似文献   

7.
2,3-Bisphosphoglycerate inhibited protein synthesis in reticulocyte lysates with 50% inhibition at 2 mM. Glycerate 2,3-P2 increased the Mg2+ optimum for protein synthesis by chelation of Mg2+, but Mg2+ addition did not completely reverse the inhibition, suggesting an additional site of action. eIF-2 has been used to examine the activity of casein kinase II in reticulocyte lysates in response to glycerate 2,3-P2. When glycerate 2,3-P2 was increased to 4mM, phosphorylation of eIF-2 beta was increasingly inhibited. Thus inhibition of phosphorylation of translational components by casein kinase II can be correlated with inhibition of globin synthesis at physiological concentrations of glycerate 2,3-P2.  相似文献   

8.
A phosphatidylinositol (PI) kinase activity associated with certain protein tyrosine kinases important in cell proliferation phosphorylates the 3' hydroxyl position of PI to produce phosphatidylinositol-3-phosphate (PI-3-P). Here we report that, in addition to PI-3' kinase activity, anti-phosphotyrosine (alpha-P-tyr) immunoprecipitates from platelet-derived growth factor (PDGF)-stimulated smooth muscle cells (SMC) contain lipid kinase activities that utilize the substrates phosphatidylinositol-4-phosphate (PI-4-P) and phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2). These activities are absent in alpha-P-tyr immunoprecipitates from quiescent SMC. The product of PI-4-P phosphorylation appears to be phosphatidylinositol-3,4-bisphosphate (PI-3,4-P2), a lipid not previously reported. The product of PI-4,5-P2 phosphorylation is phosphatidylinositol-trisphosphate (PIP3). PI-3-P was detected in quiescent SMC and increased only slightly in response to PDGF. PIP3 and the putative PI-3,4-P2 appeared only after the addition of mitogen. Both the temporal production of these novel phospholipids after PDGF stimulation and the observation of the enzymatic activities that produce them in alpha-P-tyr immunoprecipitates suggest that these phospholipids are excellent candidates for mediators of the PDGF mitogenic response.  相似文献   

9.
Tammar wallaby (Macropus eugenii) mammary glands contain a UDP-GlcNAc:Gal beta 1----3Gal beta 1----4Glc beta 1----6-N-acetylglucosaminyltransferase (GlcNAcT) whose activity has been characterized with respect to the effect of pH, apparent Km for acceptor, effects of bivalent metal ions, acceptor specificity and identity of products. The enzyme did not show an absolute requirement for any bivalent metal ion but its activity was increased markedly by Mg2+, Ca2+ and Ba2+ and, to a lesser extent, by Mn2+. When Gal beta 1----3Gal beta 1----4Glc was used as acceptor, the product was Gal beta 1----3[GlcNAc beta 1----6]Gal beta 1----4Glc. With Gal beta 1----3Gal beta 1----3Gal beta 1----4Glc as acceptor, the product was shown, by 1H-NMR spectroscopy and exo-beta-galactosidase digestion, to be a novel pentasaccharide with the structure Gal beta 1----3[GlcNAc beta 1----6]Gal beta 1----3Gal beta 1----4Glc, suggesting that the enzyme recognises the non-reducing end of the acceptor substrate, rather than the reducing end.  相似文献   

10.
Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2   总被引:7,自引:0,他引:7  
Recently, we demonstrated that ceramide kinase, and its product, ceramide 1-phosphate (Cer-1-P), were mediators of arachidonic acid released in cells in response to interleukin-1beta and calcium ionophore (Pettus, B. J., Bielawska, A., Spiegel, S., Roddy, P., Hannun, Y. A., and Chalfant, C. E. (2003) J. Biol. Chem. 278, 38206-38213). In this study, we demonstrate that down-regulation of cytosolic phospholipase A(2) (cPLA(2)) using RNA interference technology abolished the ability of Cer-1-P to induce arachidonic acid release in A549 cells, demonstrating that cPLA(2) is the key phospholipase A(2) downstream of Cer-1-P. Treatment of A549 cells with Cer-1-P (2.5 microm) induced the translocation of full-length cPLA(2) from the cytosol to the Golgi apparatus/perinuclear regions, which are known sites of translocation in response to agonists. Cer-1-P also induced the translocation of the CaLB/C2 domain of cPLA(2) in the same manner, suggesting that this domain is responsive to Cer-1-P either directly or indirectly. In vitro studies were then conducted to distinguish these two possibilities. In vitro binding studies disclosed that Cer-1-P interacts directly with full-length cPLA(2) and with the CaLB domain in a calcium- and lipid-specific manner with a K(Ca) of 1.54 microm. Furthermore, Cer-1-P induced a calcium-dependent increase in cPLA(2) enzymatic activity as well as lowering the EC(50) of calcium for the enzyme from 191 to 31 nm. This study identifies Cer-1-P as an anionic lipid that translocates and directly activates cPLA(2), demonstrating a role for this bioactive lipid in the mediation of inflammatory responses.  相似文献   

11.
Pneumococcal lipoteichoic acid was extracted and purified by a novel, quick and effective procedure. Structural analysis included methylation, periodate oxidation, Smith degradation, oxidation with CrO3, and fast-atom-bombardment mass spectrometry. Hydrolysis with 48% (by mass) HF and subsequent phase partition yielded the lipid anchor (I), the dephosphorylated repeating unit of the chain (II) and a cleavage product of the latter (III). The proposed structures are: (I) Glc(beta 1----3)AATGal(beta 1----3)Glc(alpha 1----3)acyl2Gro, (II) Glc(beta 1----3)AATGal(alpha 1----4)GalNAc(alpha 1----3)GalNAc(beta 1----1)ribitol and (III) Glc(beta 1----3)AATGal(alpha 1----4)GalNAc(alpha 1----3)GalNAc, where AATGal is 2-acetamido-4-amino-2,4,6-trideoxygalactose, and all sugars are in the pyranose form and belong to the D-series. Alkaline phosphodiester cleavage of lipoteichoic acid, followed by treatment with phosphomonoesterase, resulted in the formation of II and IV, with IV as the prevailing species: [sequence: see text] The linkage between the repeating units was established as phosphodiester bond between ribitol 5-phosphate and position 6 of the glucosyl residue of adjacent units. The chain was shown to be linked to the lipid anchor by a phosphodiester between its ribitol 5-phosphate terminus and position 6 of the non-reducing glucosyl terminus of I. The lipoteichoic acid is polydisperse: the chain length may vary between 2 and 8 repeating units and variations were also observed for the fatty acid composition of the diacylglycerol moiety. Preliminary results suggest that repeating units II and IV are enriched in separate molecular species. All species were associated with Forssman antigenicity, albeit to a various extent when related to the non-phosphocholine phosphorus. Owing to its unique structure, the described macroamphiphile may be classified as atypical lipoteichoic acid.  相似文献   

12.
Howe DL  Sundaram AK  Wu J  Gatti DL  Woodard RW 《Biochemistry》2003,42(17):4843-4854
Escherichia coli 3-deoxy-D-manno-octulosonate 8-phosphate (KDO8-P) synthase is able to utilize the five-carbon phosphorylated monosaccharide, 2-deoxyribose 5-phosphate (2dR5P), as an alternate substrate, but not D-ribose 5-phosphate (R5P) nor the four carbon analogue D-erythrose 4-phosphate (E4P). However, E. coli KDO8-P synthase in the presence of either R5P or E4P catalyzes the rapid consumption of approximately 1 mol of PEP per active site, after which consumption of PEP slows to a negligible but measurable rate. The mechanism of this abortive utilization of PEP was investigated using [2,3-(13)C(2)]-PEP and [3-F]-PEP, and the reaction products were determined by (13)C, (31)P, and (19)F NMR to be pyruvate, phosphate, and 2-phosphoglyceric acid (2-PGA). The formation of pyruvate and 2-PGA suggests that the reaction catalyzed by KDO8-P synthase may be initiated via a nucleophilic attack to PEP by a water molecule. In experiments in which the homologous enzyme, 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAH7-P) synthase was incubated with D,L-glyceraldehyde 3-phosphate (G3P) and [2,3-(13)C(2)]-PEP, pyruvate and phosphate were the predominant species formed, suggesting that the reaction catalyzed by DAH7-P synthase starts with a nucleophilic attack by water onto PEP as observed in E. coli KDO8-P synthase.  相似文献   

13.
1. Phosphatidylinositol kinase present in the membranes of Xenopus laevis oocytes was characterized. 2. The enzyme requires Mg2+ or Mn2+ at 10 mM and exogenous phosphatidylinositol (50 microM) increases the formation of phosphatidylinositol-4-phosphate. 3. The oocyte phosphatidylinositol kinase cannot use GTP as a phosphate donor but this compound inhibits competitively the utilization of ATP. 4. Addition of phosphatidylserine and phosphatidylinositol-4,5-bisphosphate stimulates the phosphorylation of phosphatidylinositol but 2,3-bisphosphoglycerate at 5 mM concentration is a strong inhibitor of the reaction.  相似文献   

14.
Although the deaminoneuraminic acid or KDN glycotope (2-keto-3-deoxy-D-glycero-D-galacto-nononic acid) is expressed in glycoconjugates that range in evolutionary diversity from bacteria to man, there is little information as to how this novel sugar is synthesized. Accordingly, biosynthetic studies were initiated in trout testis, an organ rich in KDN, to determine how this sialic acid is formed. These studies have shown that the pathway consists of the following three sequential reactions: 1) Man + ATP --> Man-6-P + ADP; 2) Man-6-P + PEP --> KDN-9-P + P(i); 3) KDN-9-P --> KDN + P(i). Reaction 1, catalyzed by a hexokinase, is the 6-O-phosphorylation of mannose to form D-mannose 6-phosphate (Man-6-P). Reaction 2, catalyzed by KDN-9-phosphate (KDN-9-P) synthetase, condenses Man-6-P and phosphoenolpyruvate (PEP) to form KDN-9-P. Reaction 3, catalyzed by a phosphatase, is the dephosphorylation of KDN-9-P to yield free KDN. It is not known if a kinase specific for Man (Reaction 1) and a phosphatase specific for KDN-9-P (Reaction 3) may exist in tissues actively synthesizing KDN. In this study, the KDN-9-P synthetase, an enzyme that has not been previously described, was identified as at least one key enzyme that is specific for the KDN biosynthetic pathway. This enzyme was purified 50-fold from rainbow trout testis and characterized. The molecular weight of the enzyme was estimated to be about 80,000, and activity was maximum at neutral pH in the presence of Mn(2+). N-Acetylneuraminic acid 9-phosphate (Neu5Ac-9-P) synthetase, which catalyzes the condensation of N-acetyl-D-mannosamine 6-phosphate and phosphoenol-pyruvate to produce Neu5Ac-9-P, was co-purified with the KDN-9-P synthetase. Substrate competition experiments revealed, however, that syntheses of KDN-9-P and Neu5Ac-9-P were catalyzed by two separate synthetase activities. The significance of these studies takes on added importance with the recent discovery that the level of free KDN is elevated in human fetal cord but not matched adult red blood cells and in ovarian cancer cells (Inoue, S., Lin, S-L., Chang, T., Wu, S-H., Yao, C-W., Chu, T-Y., Troy, F. A., II, and Inoue, Y. (1998) J. Biol. Chem. 273, 27199-27204). This unexpected finding emphasizes the need to understand more fully the role that free KDN and KDN-glycoconjugates may play in normal hematopoiesis and malignancy.  相似文献   

15.
An N-acetylglucosaminyltransferase has been partially purified from Novikoff tumor cell ascites fluid by affinity chromatography on concanavalin A-Sepharose. The enzyme was obtained in a highly concentrated form after lyophilization. The enzyme appeared to be highly specific for acceptor oligosaccharides and glycoproteins carrying a terminal Gal beta 1----4GlcNAc beta 1----R unit. Characterization of products formed by the enzyme in vitro by methylation analysis and 1H NMR spectroscopy revealed that the enzyme catalyzed the formation of a GlcNAc beta 1----3Gal beta 1----4GlcNAc beta-R sequence. The enzyme therefore could be described as an UDP-GlcNAc:Gal beta 1----4GlcNAc beta-R beta 1----3-N-acetylglucosaminyltransferase. Acceptor specificity studies with oligosaccharides that form part of N-glycans revealed that the presence of a Gal beta 1----4GlcNAc beta 1----2(Gal beta 1----4GlcNAc beta 1----6)Man pentasaccharide in the acceptor structure is a requirement for optimal activity. Studies on the branch specificity of the enzyme showed that the branches of this pentasaccharide structure, when contained in tri- and tetraantennary oligosaccharides, are highly preferred over other branches for attachment of the 1st and 2nd mol of GlcNAc into the acceptor molecule. The enzyme also showed activity toward oligosaccharides related to blood group I- and i-active polylactosaminoglycans. In addition the enzyme together with calf thymus UDP-Gal:GlcNAc beta-R beta 1----4-galactosyltransferase was capable of catalyzing the synthesis of a series of oligomers of N-acetyllactosamine. Competition studies revealed that all acceptors were acted upon by a single enzyme species. It is concluded that the N-acetylglucosaminyltransferase functions in both the initiation and the elongation of polylactosaminoglycan chains of N-glycoproteins and possibly other glycoconjugates.  相似文献   

16.
Previous studies in our laboratory led to the elucidation of the covalent structure of a tetraacyldisaccharide 1,4'-bisphosphate precursor of lipid A (designated lipid IVA), that accumulates at 42 degrees C in temperature-sensitive mutants defective in 3-deoxy-D-manno-octulosonic acid (KDO) biosynthesis (Raetz, C. R. H., Purcell, S., Meyer, M. V., Qureshi, N., and Takayama, K. (1985) J. Biol. Chem. 260, 16080-16088). Using [4'-32P]lipid IVA as the probe, we now demonstrate the existence of cytoplasmic KDO-transferases in Escherichia coli capable of attaching 2 KDO residues, derived from CMP-KDO, to lipid IVA. A partial purification has been developed to obtain a cytoplasmic subfraction that adds these 2 KDO residues with a 90% yield. The product is shown to have the stoichiometry of (KDO)2-IVA by fast atom bombardment mass spectrometry and NMR spectroscopy. The partially purified enzyme can utilize alternative lipid-disaccharide cosubstrates bearing five or six fatty acyl chains, but it has an absolute requirement for a monophosphate residue at position 4' of the lipid acceptor. When reincubated with a crude cytoplasmic fraction, a nucleoside triphosphate and Mg2+, (KDO)2-IVA is rapidly metabolized to more polar substances, the identity of which is unknown. The KDO-transferase(s) described in the present study should be very useful for the semisynthetic preparation of complex lipopolysaccharide substructures and analogs.  相似文献   

17.
A beta-N-Acetylglucosaminide alpha 1----3-fucosyltransferase was purified from human serum by ammonium sulfate precipitation, hydrophobic chromatography on phenyl-Sepharose, ion-exchange chromatography on sulfopropyl-Sepharose, affinity chromatography on GDP-hexanolamine-Sepharose, and finally high pressure liquid chromatography gel filtration. Gel filtration chromatography of the native enzyme revealed a Mr of 45,000. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified protein also appeared as a single molecular species of Mr 45,000. In contrast to the multisubunit beta-galactoside alpha 1----2-fucosyltransferases with an apparent Mr of 150,000, present in human serum, the native beta-N-acetylglucosaminide alpha 1----3-fucosyltransferase is a monomer with a Mr of 45,000. The enzyme is glycosylated, as revealed by wheat germ agglutinin binding properties. The alpha 1----3 linkage formed by the enzyme between alpha-L-fucose and the penultimate beta-N-acetylglucosamine by the purified enzyme was confirmed by 1H NMR homonuclear cross-irradiation analysis of the oligosaccharide product. The specificity of the purified enzyme is restricted to type 2 structures, as revealed by its reactivity with different substrates and from the Km values calculated from the initial rate data using various oligosaccharide acceptors. The enzyme has the ability to utilize the N-acetyl-beta-lactosamine determinant (Gal beta 1----4GlcNAc) and the sialylated (NeuAc alpha 2----3Gal beta 1----4GlcNAc) and fucosylated (Fuc alpha 1----2Gal beta 1----4GlcNAc) derivatives of N-acetyl-beta-lactosamine and thus is distinct from both the human Lewis gene-encoded enzyme and the alpha 1----3-fucosyltransferase of the myeloid cell type.  相似文献   

18.
Certain phosphatidylglycerol-deficient mutants of Escherichia coli accumulate two fatty acylated monosaccharides related to lipid A biosynthesis that have been identified as 2,3-diacylglucosamine 1-phosphate (lipid X) and triacylglucosamine 1-phosphate (lipid Y) (Raetz, C. R. H. (1984) Rev. Infect. Dis. 6, 463-472). Lipid Y has the same structure as lipid X, except that it bears an additional palmitoyl moiety, esterified to the 3-OH of the N-linked R-3-hydroxymyristoyl residue. We now describe a membrane-associated system for the enzymatic conversion of lipid X to lipid Y. Removal of glycerophospholipids form such membranes by washing with cold ethanol abolishes the activity. The system can be reactivated by the addition of exogenous phospholipids dispersed as mixed micelles with Triton X-100. When reconstituted in this manner, the formation of lipid Y is strictly dependent upon a glycerophospholipid donor bearing a palmitoyl residue in the sn-1 position. The enzyme system does not utilize palmitoyl coenzyme A or palmitoyl acyl carrier protein. It does not catalyze efficient transfer of fatty acids differing from palmitate by only one carbon atom. In contrast, the enzyme has relatively little specificity for the polar headgroup of the phospholipid donor, and it also appears to utilize a disaccharide precursor of lipid A as an alternative palmitoyl acceptor. Since the in vitro synthesis of lipid Y proceeds with a high yield, we have isolated the product and verified its structure by 1H NMR spectroscopy and mass spectrometry. The transesterification reaction that converts lipid X to lipid Y may be a model for the enzymatic synthesis of other acyloxyacyl structures, known to occur in mature lipid A.  相似文献   

19.
An alpha-mannosidase differing from 1,2-alpha-mannosidase was found to occur in Aspergillus saitoi. By a series of column chromatographies the enzyme was purified up to 1,000-fold, and its properties were studied in detail. The enzyme preparation, which was practically free from other exoglycosidases, showed a pH optimum of 5.0. In contrast to 1,2-alpha-mannosidase, the enzyme was strongly activated by Ca2+ ions. p-Nitrophenyl alpha-mannopyranoside was not hydrolyzed by the enzyme. Accordingly, the substrate specificity of the new alpha-mannosidase was studied by using a variety of tritium-labeled oligosaccharides. Studies with linear oligosaccharides revealed that the enzyme cleaves the Man alpha 1----3Man linkage more than 10 times faster than the Man alpha 1----6Man and the Man alpha 1----2Man linkages. Furthermore, it cleaves the Man alpha 1----6Man linkage of the Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAcOT only after its Man alpha 1----3 residue is removed. Because of this specificity, the enzyme can be used as an effective reagent to discriminate R----Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(+/- Fuc alpha 1----6)GlcNAcOT from its isomeric counterparts, Man alpha 1----6(R----Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(+/- Fuc alpha 1----6)GlcNAcOT, in which R represents sugars.  相似文献   

20.
Despite the importance of prostaglandins, little is known about the regulation of prostanoid synthesis proximal to the activation of cytosolic phospholipase A2, the initial rate-limiting step. In this study, ceramide-1-phosphate (C-1-P) was shown to be a specific and potent inducer of arachidonic acid (AA) and prostanoid synthesis in cells. This study also demonstrates that two well established activators of AA release and prostanoid synthesis, the cytokine, interleukin-1beta (IL-1beta), and the calcium ionophore, A23187, induce an increase in C-1-P levels within the relevant time-frame of AA release. Furthermore, the enzyme responsible for the production of C-1-P in mammalian cells, ceramide kinase, was activated in response to IL-1beta and A23187. RNA interference targeted to ceramide kinase specifically down-regulated ceramide kinase mRNA and activity with a concomitant decrease of AA release in response to IL-1beta and A23187. Down-regulation of ceramide kinase had no effect on AA release induced by exogenous C-1-P. Collectively, these results indicate that ceramide kinase, via the formation of C-1-P, is an upstream modulator of phospholipase A2 activation. This study identifies previously unknown roles for ceramide kinase and its product, C-1-P, in AA release and production of eicosanoids and provides clues for potential new targets to block inflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号